An International Journal

ISSN: 2582-0818

Online Articles: 168

Home 9 Journals 9 ACM Home
ACM Home

The Annals of Communications in Mathematics (ACM) is an international, interdisciplinary, open-access journal which provides an advanced forum for studies related to mathematical sciences that has been fully refereed since 2018. It devotes exclusively to the publication of high-quality reviews, regular research papers and short communications in all areas of Pure and Applied Mathematics. ACM also publishes timely and thorough survey articles on current trends, new theoretical techniques, novel ideas, and new Mathematical tools in different branches of Mathematics.

Editorial office e-mail: editor@technoskypub.com

Editor-in-Chief: G. Muhiuddin, University of Tabuk, KSA

Article Processing Charge

There is no article processing or publication charges. The journal is free for both authors and readers.

Open AccessArticle

Dynamic Fuzzy Sets and New DFS MADM Technique

Annals of Communications in Mathematics 2024

, 7 (4)

, 310-327

DOI: https://doi.org/10.62072/acm.2024.070401

AbstractDynamics fuzzy sets outperform fuzzy sets for dealing with unclear situations. There are many applications for fuzzy similarity metrics, including cluster analysis, problem classification, and even medical diagnosis. Lean entropy measurements are essential to determine the weights of the criteria in a situation involving multi-criteria decision-making. In this paper, we introduce and suggest alternative similarity measures for Dynamics fuzzy collections. We developed some new entropy metrics for using recommended similarity assessments. Dynamics fuzzy collections. Finally, in a Dynamics fuzzy environment, a novel multi-attribute decision-making method is developed that solves a significant limitation of the famous decision-making methodology, namely, the technique for order preference by similarity to the ideal solution.
Open AccessArticle

A Mathematical Model for Transmission Dynamics of an Avian Influenza Disease in a Human Population

Annals of Communications in Mathematics 2024

, 7 (4)

, 328-353

DOI: https://doi.org/10.62072/acm.2024.070402

AbstractAvian influenza is known as one of the respiratory diseases that causes high morbidity and mortality rate predominately among the immunodeficiency persons world- wide. Treatment and vaccination remain the optimal strategies in curbing the spread of avian infuenza infection.In this work, a mathematical model of the dynamics of influenza infection is formulated and was computed analytically and numerically. The analytic com- putation of the model is given in terms of the basic reproduction number, equilibria points and their stabilities. Thus, the disease dies out whenever the basic reproduction number is less than one. The disease free equilibrium (DFE) is locally asymptotically stable pro- vided R0 < 1 and unstable if otherwise. The endemic equilibrium only occurs whenever the disease threshold is greater than a unit. The endemic equilibrium, is locally, globally asymptotically stable under certain conditions. Numerical solution shows that vaccination and treatment of the susceptible and the infected individuals respectively have high impact for eradicating the disease. The non-linear incidence as a force of infection with param- eter, θ,Ψ1, u1 and u2 have great impact for reducing the pandemic of influenza disease. In conclusion, vaccination of susceptible individuals, isolation of exposed individuals and treatment of infected individuals are imperative for curbing the spread of an avian influenza infection. Modelling style or structure especially, the type of force of infection adopted for modelling an avian influenza disease depends on whether the disease, can easily be put under control.
Open AccessArticle

Regularity Based Characterizations of Le-Γ-semigroups

Annals of Communications in Mathematics 2024

, 7 (4)

, 354-365

DOI: https://doi.org/10.62072/acm.2024.070403

AbstractThis article provides an in-depth examination of (m, n, γ)-regular le-Γ- semigroups, focusing on the characterization and properties of various types of ideal el- ements within these structures. Specifically, the discussion encompasses (m, n, γ)-ideal elements, (m, 0, γ)-ideal elements, and (0, n, γ)-ideal elements, highlighting their sig- nificance and interrelationships. Furthermore, the article investigates the (m, n, α, β)- regularity associated with the set denoted as I(m,n,α,β), which consists of all (m, n, α, β)- ideal elements. In conjunction, the study explores the set Q(m,n,α,β), which comprises all (m, n, α, β)-quasi-ideal elements of le-Γ-semigroups, detailing the implications of these classifications on the structure and behavior of the semigroups. Additionally, the research delves into the concept of 0-minimality, particularly concerning (0, m, γ)-ideal elements in both poe-Γ-semigroups and le-Γ-semigroups. This aspect of the study aims to clarify the foundational properties of ideal elements and their roles in the broader context of semi- group theory. The findings presented in this article contribute to a deeper understanding of the algebraic properties of le-Γ-semigroups and their ideal elements, paving the way for future research in this area.
Open AccessArticle

On Somewhat Neutrosophic Regular Semi Continuous Functions

Annals of Communications in Mathematics 2024

, 7 (4)

, 366-375

DOI: https://doi.org/10.62072/acm.2024.070404

AbstractIn this paper the concept of somewhat neutrosophic regular semi continuous functions, somewhat neutrosophic regular semi-open functions are introduced and studied. Besides giving characterizations of these functions, several interesting properties of these functions are also given. More examples are given to illustrate the concepts introduced in this paper.
Open AccessArticle

Fuzzy Multiplication Γ-semigroups

Annals of Communications in Mathematics 2024

, 7 (4)

, 386-392

DOI: https://doi.org/10.62072/acm.2024.070406

AbstractThe concept of fuzzy right multiplication Γ-semigroup is introduced by means of fuzzy right Γ-ideals, and some properties are investigated with the help of some classes of Γ-semigroups. It is shown that for any fuzzy right Γ-ideal ϑ of X, ϑ ⊆ X ◦Γ ϑ. More- over, if a Γ-semigroup X is simple with a ∈ aΓX for every a ∈ X, then X is a fuzzy right multiplication Γ-semigroup.
Open AccessArticle

Direct Products and Cuts of Soft Multigroups

Annals of Communications in Mathematics 2024

, 7 (4)

, 455-465

DOI: https://doi.org/10.62072/acm.2024.070412

AbstractIn this paper, the concept of the direct product of a group is studied from the classical settings. We then propose the notion of the direct product of a soft multigroup and investigate some of its structural properties. Finally, the concept of upper and lower cuts of soft multigroup is introduced, exemplified and some related results are established.
Open AccessArticle

A Note on Relative Tri-quasi-Γ-hyperideals of Γ-semihyperring

Annals of Communications in Mathematics 2024

, 7 (4)

, 376-385

DOI: https://doi.org/10.62072/acm.2024.070405

AbstractIn this paper, we introduce the concept of tri-quasi hyperideal in Γ-semihyperring generalizing the classical ideal, left ideal, right ideal, bi-ideal, quasi ideal, interior ideal, bi-interior ideal, weak interior ideal, bi-quasi ideal, tri-ideal, quasi-interior ideal and bi- quasi-interior ideal of Γ-semihyperring and semiring. Furthermore, charecterizations of Γ-semihyperring, regular Γ-semihyperring and simple Γ-semihyperring with relative tri- quasi hyperideals are provided discussing the characteristics of Γ-semihyperring of relative tri-quasi hyperideals.
Open AccessArticle

On Iyengar’s and Ostrowski’s Integral Means

Annals of Communications in Mathematics 2024

, 7 (4)

, 393-400

DOI: https://doi.org/10.62072/acm.2024.070407

AbstractFrullani’s Integral Formula is an old formula that was known to hold under strict conditions. Iyengar, and later Ostrowski, provided necessary and sufficient conditions for the existence of the Frullani Integral Formula. Their conditions were different but equivalent. In this article, we identify other conditions that are equivalent. We show that these conditions are, in fact, solutions to a family of linear differential equations of the first order. We study the limiting behavior of these solutions at zero and infinity, and in doing so, arrive at a new proof of the equivalence of Iyengar’s and Ostrowski’s conditions. Lastly, we provide applications of our results.
Open AccessArticle

Smooth Symmetrized and Perturbed Hyperbolic Tangent Real and Complex, Ordinary and Fractional Neural Network Approximations Over Infinite Domains

Annals of Communications in Mathematics 2024

, 7 (4)

, 401-429

DOI: https://doi.org/10.62072/acm.2024.070408

AbstractIn this article we study the univariate quantitative smooth approximation, real and complex, ordinary and fractional under differentiation of functions. The approximators here are neural network operators activated by the symmetrized and perturbed hyperbolic tangent function. All domains used are of the whole real line. The neural network operators here are of quasi-interpolation type: the basic ones, the Kantorovich type ones, and of the quadrature type. We give pointwise and uniform approximations with rates. We finish with interesting illustrations.
Open AccessArticle

Applications of an Anti-fuzzy Semigroup

Annals of Communications in Mathematics 2024

, 7 (4)

, 430-438

DOI: https://doi.org/10.62072/acm.2024.070409

AbstractThis paper introduces the ”anti fuzzy semigroup,” a novel algebraic structure that integrates the concepts of semigroups and anti fuzzy sets. We demonstrate, through a specific example, how a Kinship system can be represented as an anti fuzzy semigroup, effectively capturing the relationships between managers and subordinates. This appli- cation underscores the potential of anti fuzzy semigroups to model complex hierarchical structures and relationships within organizational settings. Furthermore, we investigate the representation of DNA sequences using this framework. We delve into the algebraic properties of anti fuzzy semigroups, proving that the union of two such semigroups always results in another anti fuzzy semigroup. However, we provide a counterexample to demon- strate that the intersection of two anti fuzzy semigroups may not necessarily preserve the anti fuzzy semigroup property. Finally, the Cartesian product of two anti fuzzy semigroups forms an anti fuzzy semigroup.
Open AccessArticle

Neutrosophic Weakly Regular Semi Continuous Functions

Annals of Communications in Mathematics 2024

, 7 (4)

, 439-450

DOI: https://doi.org/10.62072/acm.2024.070410

AbstractIn this paper, we introduce the concept of neutrosophic weakly regular semi continuous, neutrosophic regular semi q-neighbourhood in neutrosophic topological spaces. Also, we investigate the relationship among neutrosophic weakly regular semi continuous and other existing continuous functions. Moreover, some counter examples to show that these types of mappings are not equivalent. Finally, Neutrosophic retracts, neutrosophic regular semi retracts, neutrosophic regular semi quasi Urysohn space and neutrosophic regular semi Hausdorff spaces are introduced and studied.
Open AccessArticle

On the Riemann Problem

Annals of Communications in Mathematics 2024

, 7 (4)

, 451-454

DOI: https://doi.org/10.62072/acm.2024.070411

AbstractThe Riemann problem is stated as follows: find an analytic in a domain D+ ∪ D− function Φ(z) such that (∗) Φ+(t) = G(t)Φ−(t) + g(t), t ∈ S. Here S is the boundary of D+, D− complements the complex plane to D+ ∪ S, the functions G = G(t) and g = g(t) belong to Hμ(S), the space of H¨older-continuous functions. The theory of problem (*) is developed also for continuous G. If G = 1, S ∈ C∞ and g is a tempered distribution, then problem (∗) has a solution in tempered distributions. It is proved that problem (∗) for G ∈ Lp(S) and g a tempered distribution does not make sense. It is proved that if G ∈ C∞(S), G̸ = 0 on S, and g is a distribution of the class D′, then the Riemann problem makes sense and a method for solving this problem is given. It is proved that if S = R = (−∞, ∞) and G ∈ Lp(R), where p ≥ 1 is a fixed number, then | ln G| does not belong to Lq (R) for any q ≥ 1.
Open AccessArticle

Quotient Nearness d-algebras

Annals of Communications in Mathematics 2024

, 7 (4)

, 466-477

DOI: https://doi.org/10.62072/acm.2024.070413

AbstractBCK/BCI-algebra is a class of logical algebras that was defined by K. Iseki and S. Tanaka. BCK-algebras have a lot of generalizations. One of them is d-algebras. Near set theory which is a generalization of rough set theory. This theory is based on the determination of universal sets according to the available information of the objects. Based on the image analysis, the near set theory was created. ¨Ozt¨urk applied the notion of near sets defined by J. F. Peters to the theory of d-algebras. In this paper we introduce upper-nearness d-ideal, upper-near (upper-nearness) d#- ideal, upper-near (upper-nearness) d∗-ideal. We explored what conditions we should put on the ideal for quotient nearness d-algebra to become an nearness d-algebra again. More- over, we introduce quotient nearness d-algebras with the help of upper-nearness d∗-ideals of nearness d-algebras. Finally, we present a theorem involving the canonical homomor- phism and the structure of the kernel for nearness d-algebras. Thus, we aim to make preliminary preparations for proving isomorphism theorems for nearness d-algebras.
Open AccessArticle

A Novel Approach to Filters in BL-algebras Through Bipolar Fuzzy Set Theory

Annals of Communications in Mathematics 2024

, 7 (4)

, 478-484

DOI: https://doi.org/10.62072/acm.2024.070414

AbstractThis paper introduces a novel approach to the study of filters in BL-algebras by leveraging the principles of bipolar fuzzy set theory and investigating some of their properties. Filters are essential in the structural analysis of BL-algebras, affecting their properties and applications across various fields. Moreover, Bipolar-valued fuzzy filters generated by a fuzzy set are discussed. By integrating bipolar fuzzy set concepts, we provide a new framework that enhances the representation of uncertainty and vagueness inherent in filter operations.  We explore the foundational aspects of bipolar fuzzy sets and demonstrate their applicability in defining and characterizing filters within BL-algebras. Our findings highlight the potential of bipolar fuzzy set theory to enrich the understanding of filters in BL-algebras.
Open AccessArticle

q-Deformed and L-parametrized hyperbolic tangent function relied complex valued multivariate trigonometric and hyperbolic neural network approximations

Annals of Communications in Mathematics 2023

, 6 (3)

, Pages: 141-164

DOI: https://doi.org/10.62072/acm.2023.060301

AbstractHere we study the multivariate quantitative approximation of complex valued continuous functions on a box of RN , N ∈ N, by the multivariate normalized type neural network operators. We investigate also the case of approximation by iterated multilayer neural network operators. These approximations are achieved by establishing multidimen-sional Jackson type inequalities involving the multivariate moduli of continuity of the en- gaged function and its partial derivatives. Our multivariate operators are defined by using a multidimensional density function induced by a q-deformed and λ-parametrized hyper-bolic tangent function, which is a sigmoid function. The approximations are pointwise and uniform. The related feed-forward neural network are with one or multi hidden layers. The basis of our theory are the introduced multivariate Taylor formulae of trigonometric and hyperbolic type.
Open AccessArticle

Quotient quasi-ordered residuated systems induced by quasi-valuation maps

Annals of Communications in Mathematics 2023

, 6 (3)

, Pages: 199-208

DOI: https://doi.org/10.62072/acm.2023.060305

AbstractThe concept of quasi-ordered residuated systems was introduced in 2018 by Bonzio and Chajda as a generalization both of commutative residuated lattices and hoopalgebras. Then this author investigated the substructures of ideals and filters in these algebraic structures. As a continuation of these research, in this article we design the concept of quotient quasi-ordered residuated systems induced by a quasi-valuation on it. Additionally, we prove some important properties of the thus constructed quotient structure.

Open AccessArticle

Trigonometric generated Lp degree of approximation

Annals of Communications in Mathematics 2023

, 6 (4)

, Pages: 209-219

DOI: https://doi.org/10.62072/acm2023060401

AbstractIn this article we continue the study of smooth Picard singular integral operators that started in [3], see there chapters 10-14. This time the foundation of our research is a trigonometric Taylor’s formula. We establish the Lp convergence of our operators to the unit operator with rates via Jackson type inequalities engaging the first Lp modulus of continuity. Of interest here is a residual appearing term. Note that our operators are not positive.
Open AccessArticle

New definition of a singular integral operator

Annals of Communications in Mathematics 2023

, 6 (4)

, Pages: 220-224

DOI: https://doi.org/10.62072/acm.2023.060402

AbstractLet D be a connected bounded domain in R^2, S be its boundary which is closed, connected, and smooth, or S=(-∞,∞). Let Φ(z) be the function defined as Φ(z)=1/(2πi) ∫S(f(s)ds)/(s-z), where f∈L^1(S) and z=x+iy. The singular integral operator Af is defined as Af: =1/(iπ) ∫S(f(s)ds)/(s-t), where t∈S. This new definition simplifies the proof of the existence of Φ(t). Necessary and sufficient conditions are given for f∈L^1(S) to be the boundary value of an analytic function in D. The Sokhotsky-Plemelj formulas are derived for f∈L^1(S). Our new definition allows one to treat singular boundary values of analytic functions.
Open AccessArticle

Fuzzy soft tri-ideals over Gamma-semirings

Annals of Communications in Mathematics 2023

, 6 (4)

, Pages: 225-237

DOI: https://doi.org/10.62072/acm.2023.060403

AbstractIn this paper, we introduce the notion of a fuzzy soft tri-ideal over Γ−semiring. We characterize the regular Γ−semiring in terms of fuzzy soft tri-ideals, and study some of the properties. M is a regular Γ−semiring, E be a parameters set and A ⊆ E. If (µ, A) is a fuzzy soft left tri-ideal over M, then (µ, A) is a fuzzy soft right ideal over M.
Open AccessArticle

q-Deformed and L-parametrized hyperbolic tangent function relied complex valued multivariate trigonometric and hyperbolic neural network approximations

Annals of Communications in Mathematics 2023

, 6 (3)

, Pages: 141-164

DOI: https://doi.org/10.62072/acm.2023.060301

AbstractHere we study the multivariate quantitative approximation of complex valued continuous functions on a box of RN , N ∈ N, by the multivariate normalized type neural network operators. We investigate also the case of approximation by iterated multilayer neural network operators. These approximations are achieved by establishing multidimen-sional Jackson type inequalities involving the multivariate moduli of continuity of the en- gaged function and its partial derivatives. Our multivariate operators are defined by using a multidimensional density function induced by a q-deformed and λ-parametrized hyper-bolic tangent function, which is a sigmoid function. The approximations are pointwise and uniform. The related feed-forward neural network are with one or multi hidden layers. The basis of our theory are the introduced multivariate Taylor formulae of trigonometric and hyperbolic type.
Open AccessArticle

Quotient quasi-ordered residuated systems induced by quasi-valuation maps

Annals of Communications in Mathematics 2023

, 6 (3)

, Pages: 199-208

DOI: https://doi.org/10.62072/acm.2023.060305

AbstractThe concept of quasi-ordered residuated systems was introduced in 2018 by Bonzio and Chajda as a generalization both of commutative residuated lattices and hoopalgebras. Then this author investigated the substructures of ideals and filters in these algebraic structures. As a continuation of these research, in this article we design the concept of quotient quasi-ordered residuated systems induced by a quasi-valuation on it. Additionally, we prove some important properties of the thus constructed quotient structure.

Latest News

  • A member of CrossRef (ACM DOI: http://dx.doi.org/10.62072)
  • The Latest Published Issue (https://www.technoskypub.com/acm/v7n4/
  • All papers published by ACM have Digital Object Identifier (DOI)

Download