transmission dynamics
Open AccessArticle
A Mathematical Model for Transmission Dynamics of an Avian Influenza Disease in a Human Population
Annals of Communications in Mathematics 2024
, 7 (4)
, 328-353
DOI: https://doi.org/10.62072/acm.2024.070402
AbstractAvian influenza is known as one of the respiratory diseases that causes high morbidity and mortality rate predominately among the immunodeficiency persons world- wide. Treatment and vaccination remain the optimal strategies in curbing the spread of avian infuenza infection.In this work, a mathematical model of the dynamics of influenza infection is formulated and was computed analytically and numerically. The analytic com- putation of the model is given in terms of the basic reproduction number, equilibria points and their stabilities. Thus, the disease dies out whenever the basic reproduction number is less than one. The disease free equilibrium (DFE) is locally asymptotically stable pro- vided R0 < 1 and unstable if otherwise. The endemic equilibrium only occurs whenever the disease threshold is greater than a unit. The endemic equilibrium, is locally, globally asymptotically stable under certain conditions. Numerical solution shows that vaccination and treatment of the susceptible and the infected individuals respectively have high impact for eradicating the disease. The non-linear incidence as a force of infection with param- eter, θ,Ψ1, u1 and u2 have great impact for reducing the pandemic of influenza disease. In conclusion, vaccination of susceptible individuals, isolation of exposed individuals and treatment of infected individuals are imperative for curbing the spread of an avian influenza infection. Modelling style or structure especially, the type of force of infection adopted for modelling an avian influenza disease depends on whether the disease, can easily be put under control.