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ABSTRACT. Avian influenza is known as one of the respiratory diseases that causes high
morbidity and mortality rate predominately among the immunodeficiency persons world-
wide. Treatment and vaccination remain the optimal strategies in curbing the spread of
avian infuenza infection.In this work, a mathematical model of the dynamics of influenza
infection is formulated and was computed analytically and numerically. The analytic com-
putation of the model is given in terms of the basic reproduction number, equilibria points
and their stabilities. Thus, the disease dies out whenever the basic reproduction number
is less than one. The disease free equilibrium (DFE) is locally asymptotically stable pro-
vided R0 < 1 and unstable if otherwise. The endemic equilibrium only occurs whenever
the disease threshold is greater than a unit. The endemic equilibrium, is locally, globally
asymptotically stable under certain conditions. Numerical solution shows that vaccination
and treatment of the susceptible and the infected individuals respectively have high impact
for eradicating the disease. The non-linear incidence as a force of infection with param-
eter, θ,Ψ1, u1 and u2 have great impact for reducing the pandemic of influenza disease.
In conclusion, vaccination of susceptible individuals, isolation of exposed individuals and
treatment of infected individuals are imperative for curbing the spread of an avian influenza
infection. Modelling style or structure especially, the type of force of infection adopted for
modelling an avian influenza disease depends on whether the disease, can easily be put
under control.

1. INTRODUCTION

Avian influenza (AI) is a highly contagious viral disease affecting several species of
food producing birds (chickens, turkeys, quails, guinea fowl to mention a few) as well as
pet birds and wild birds. Occasionally mammals including humans may contract avian
influenza (WAOH, 2020) [26].

The case and circulation of avian influenza (AI) virus is not a new phenomenon. There
are many descriptions of historical outbreaks of avian influenza disseminating within do-
mestic poultry flocks in the literatures (CDC, 2017 [4]; CDC, 2023 [5] WHO, 2018 [24];
WAOH, 2020 [26]; WHO, 2023 [25]). Avian Influenza (AI) occurs worldwide and differ-
ent strains are more prevalent in certain areas of the world than others (WAOH, 2020)[26].
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It is less frequent in mammalian species, including rats, mice, weasels, ferrets, pigs, cats,
tigers, dogs and horses, as well as humans. AI of the flu is a common respiratory disease
caused by influenza virus (Cox and Subbarao, 1999 [6]; Shek and Lee, 2003 [22]; Wang et
al., 2015 [23]).

Avian influenza A virus can spread from infected birds to susceptible humans and re-
ports from such transmission are documented in the Centers for Disease Control and Pre-
vention’s website. Humans infected by avian influenza infection exhibit symptoms such as
fever, cough, sore throat, acute respiratory distress and sometimes respiratory failure. The
most destructive outbreak of influenza in history happened in 1918-1919. Avian influenza
is considered as one of the most severe endemic outbreaks the world has ever witnessed and
encountered. The epidemic is believed to have resulted in over 50 million to 100 million
deaths globally. In Nigeria, a high pathogenic outbreak of avian influenza (HPAI) H5N1
in 30 poultry farms in seven states. The affected states include Kano, Plateau, Bauchi,
Gombe, Nasarawa, Kaduna and Niger state.

The outbreak of AI has become a major concern. Various health bodies and organiza-
tions throughout the world continue to seek for solutions that could bring the pandemic
under control. Modnak (2017) [15] accounts for the nonlinear incidence rate as our force
of infection in inhibiting the disease transmission. The control measures are built into the
model to help develop strategies for the control of the disease. In this study, the trans-
mission dynamics and control of AI was done by modifying the model of Modnak (2017)
[15].

It has become possible and imperative to mathematically model the progress of infec-
tious diseases to uncover the likely outcome of an epidemic or to help manage them by
different control programmes. In the early 20th century, mathematical models were intro-
duced for epidemiology by Ross (1916)[21] and others (Chong and Tchuenche, 2014[6];
Hancioglu, 2007 [9]; Henaux et al., 2013 [10]; Liu et al., 2015 [14]; Mohler et al., 2015
[16]; Taubenberger and Morens, 2006, 2008 [19, 20] Parvin et al., 2019 [17]). Even though
the actual data needed for the models might not be accurate or ever available (Aid et al.,
2015 [1]), modelling is vital in investigating how changes in the various assumptions and
parameter values affect the course of the epidemic. In order to gain more insight into the
dynamics of an avian influenza disease, we shall review related models that have been
studied by many authors as discussed below.

Putri et al. (2016) [18] studied a mathematical model of influenza dynamics and com-
pared the incubation period and control in Thailand. The data from the annual number of
cases reported by the Division of Epidemiology, Ministry of Public Health during the pe-
riod 1997 – 2013 were analyzed. They presented two models using the system of nonlinear
differential equations for the two models. The standard dynamical modeling methods are
applied to determine the behaviours of solutions to each model. The conditions required
of the parameters for the disease free and endemic equilibrium state to be local asymptot-
ically stable is obtained. Their numerical simulations are seen to support the theoretical
predictions.

Jagan and Kartheek (2016) [11] carried out research on the epidemic analysis and math-
ematical modeling of H1N1 (A) with vaccination. They consider the infected individuals
using rate coefficients such as transmission, progression, recovery and vaccination. The
fact that the dynamics analysis is completely determined by the basic reproduction number
is established. More specifically, local and global stabilities of the disease free equilibrium
and the endemic equilibrium are proved under certain parameter values when the basic
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reproduction number is below or above unity. The numerical simulations review that vac-
cination is one of the best effective strategies or solutions that is to be adopted so as to have
the spread or if possible, avoid poultry farms, contact with animals in live poultry markets,
entering areas where poultry may be slaughtered, and contact with any surfaces that ap-
pear to be contaminated with feaces from poultry or other animals. Good food safety and
food hygiene practices e.g. hands washing with soap and water should be followed. Trav-
ellers returning from affected regions should report to local health services if respiratory
symptoms suspecting zoonotic influenza virus infection.

Caroline et al. (2019) [13] studied mathematical analysis of influenza A dynamics in
the emergence of drug resistance. The qualitative analysis of the model is given in terms
of the control reproduction number, Rc. The model equilibria are computed and stability
analysis was carried out. The model is found to exhibit backward bifurcation prompting
the need to lowerRc to a critical valueRc for effective disease control. Sensitivity analysis
results reveal that vaccine efficacy is the parameter with the most control over the spread of
influenza. Numerical simulations reveal that despite vaccination reducing the reproduction
number below unity, influenza still persists in the population. Hence, it is essential, in
addition to vaccination, to apply other strategies to curb the spread of influenza.

Khan et al. (2019)[12] modelled the transmission dynamics of avian influenza with
saturation and psychological effect. They show that the birds only model is stable both
locally and globally. The stability results for disease free equilibrium is obtain when the
disease threshold parameter, R0 < 1. They also proved that R0 > 1. The analysis of
their full model shows that the disease free case (locally and globally) when R0 < 1.
More so, when R0 > 1, it was proved that the endemic equilibrium of the model is stable
locally and globally. Their numerical analysis review that the transmission dynamics of
the avian influenza is determined by the force of infection in birds. It is observed that the
parameter α, m and βm which represent the saturation effect, the psychological effect and
the contact between infective birds to susceptible humans do not change the stability of
the equilibria and so that the outbreaks as the infected humans and can help to control the
disease. Also, reducing new recruitment, newborns of domestic birds, reducing contact
between susceptible and infective birds, and shortening the lifetime would be used as an
optimal control strategy.

The organisation of this paper is as follows. The model is formulated in Section 2. The
analyses of the formulated model and its numerical simulations are carried out in Section
3 and Section 4 respectively. Discussion and conclusion are presented in Section 5.

2. MODEL FORMULATION

A simplified dynamical model of immune response to uncomplicated influenza virus
infection is presented which put into consideration on the control of the infection. Most
influenza disease mathematical model follow SV EIR model for human disease transmis-
sion. On the other hand, the carrier (bird) population has SIR model dynamics. It should
be noted that influenza model sometimes capture human population only without explicitly
show the carrier model (Modnak, 2017)[15].

2.1. Formulation of Existing Model. In this section, we shall present the model by Mod-
nak (2017) [15] by putting into consideration the assumptions, variables and parameters
of the model
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2.2. Assumptions of the existing model. The following assumptions were made by Mod-
nak (2017) [15] for formulating avian influenza virus model.

• Influenza Avian virus can spread from infected birds to susceptible humans;
• Recovered or vaccinated class(es) of humans may lose immunity over time and

re-enter the susceptible population and become re-infected individuals;
• Individuals are born and die at an average rate, µ;
• Susceptible individuals are vaccinated.

The variables and parameters of the existing model are given in Table 1 while the flow
diagram of the model is presented in Figure 1.

TABLE 1. Description and Interpretation of Variables of the Existing
Model Equations

Variable Interpretation
S(t) Number of susceptible human at time t
V (t) Number of vaccinated human at time t
E(t) Number of exposed human at time t
I(t) Number of infected human at time t
R(t) Number of recovered human at time t
µN Birth and death rate of the population
α Disease induced death rate
ϕ1(t) Vaccination rate of the susceptible individual
σ = (1− ξ) Degree of protection, where, ξ is the vaccine efficacy
ϕ2(t) Treatment of the infected individual rate
γ Natural recovery rate of the infected individuals
k Progression rate from exposed to infectious
δ Rate at which recovered individual loss immunity and

become susceptible
1 + θI(t) Inhibition effect from the behavioural increase
λ(t) The force of infection which represent the transmission

rate of the disease

2.3. Equations of the existing model. The equations of the existing model is given by
Equations (1) - (5)

dS

dt
= µ− βIS(t)− (ψ1(t) + µ)S(t) + δR(t), (1)

dV

dt
= ψ1(t)S(t)− σβI(t)V (t)− µV (t), (2)

dE

dt
= σβI(t)V (t) + βI(t)S(t)− kE(t)− µE(t), (3)

dI

dt
= kE(t)− (α+ µ+ γ + ψ2(t))I(t), (4)

dR

dt
= ψ2(t)I(t) + γI(t)− µR(t)− δR(t). (5)
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FIGURE 1. Flow Diagram of the Existing Model (Modnak, 2017) [15]

where ψ1(t) and ψ2(t) are function of t, representing non-uniform and time dependent
controls.

2.4. The Modified Model Equations. We modified the model by Modnak (2017) [15]
by converting the model from autonomous version to a non-autonomous version. We also
considered the force of infection to be incidence rate. Lastly, we employed the use of
constant recruitment rate into the population.

2.5. Assumptions of the modified model. In addition to the assumptions of the existing
model, we make the following assumptions:

H1 The recruitment into the susceptible is considered for a varying population;
H2 The force of infection follows saturated rate due to the disease inhibition;
H3 A non-autonomous model is considered due to the time dependence of each state

variable;
H4 Two controls which represent the reduction of force of infection and the isolation

of some exposed individuals that had contact with the infected individuals respec-
tively are introduced;

H5 Parameters used in the model are not time dependent as opposed to the existing
model.

The variables and parameters of the modified model are given in Table 2. While the
schematic diagram for the modified model is represented by Figure 2.
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TABLE 2. Description and Interpretation of Variables of the Model Equations

Variable Interpretation
S(t) Number of susceptible human at time t
V (t) Number of vaccinated human at time t
E(t) Number of exposed human at time t
I(t) Number of infected human at time t
R(t) Number of recovered human at time t
Λ Recruitment rate of human population
µ Natural death rate
u1, u2 Infection control parameters
δ Disease induced death rate
ψ1 Vaccination rate of the susceptible individual
σ = (1− ξ) Degree of protection where ξ is the vaccine efficacy
ψ2 Treatment of the infected individual
γ Natural recovery rate of the infected individuals
k Progression rate from exposed to infectious
δ Rate at which recovered individual loss immunity and become susceptible
1 + θI(t) Inhibition effect from the behavioural increase
λ(t) The force of infection which represent the transmission rate of the disease

FIGURE 2. Flow Diagram of the Modified Model
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2.6. Governing equations of the modified model. Putting into consideration the vari-
ables, parameters and the assumptions stated above we arrived at our modified model as
seen in Equations (6)− (11) below.

dS

dt
= ΛN(t)− λ(t)(1− u1)S(t)− (ψ1 + µ)S(t) + δR(t), (6)

dV

dt
= ψ1S(t)− σβI(t)V (t)− µV (t), (7)

dE

dt
= σβI(t)V (t) + λ(t)(1− u1)S(t)− k(1− u2)E(t)− µE(t), (8)

dI

dt
= k(1− u2)E(t)− (α+ µ+ γ + ψ2)I(t), (9)

dR

dt
= ψ2I(t) + γI(t)− (δ + µ)R(t), (10)

where

λ(t) =
βI(t)

(1 + θI(t))
, N(t) = S(t) + V (t) + E(t) + I(t) +R(t). (11)

3. MODEL ANALYSIS

3.1. Positive invariant region. In this sub-section, we show the positive invariant of the
five state variables in model Equations (6)− (10).

dN(t)

dt
=
dS(t)

dt
+
dV (t)

dt
+
dE(t)

dt
+
dI(t)

dt
+
dR(t)

dt
= Λ− µN(t)− αI(t)

(12)

When the disease no longer kills. Thus, dN(t)
dt ≤ Λ− µN(t) for α = 0

At dN(t)
dt = 0, we have

Λ− µN(t) ≤ 0 (13)
therefore,

N(t) ≤ Λ

µ

Proposition 1: The solution of the model (6) − (10) is feasible for all t > 0 if they enter
the invariant region.

D = {(S(t), V (t), E(t), I(t), R(t)) ∈ ℜ5+ : S(t) > 0, V (t) ≥ 0, E(t) ≥ 0, I(t) ≥ 0, R(t) ≥ 0|N(t) ≤ Λ

µ
}

(14)

Theorem 3.1. The closed set D = {(S(t), V (t), E(t), I(t), R(t)) ∈ ℜ5
+ : N(t) ≤ Λ

µ } is
positively invariant and attract all positive solutions of the model equations.

Remark 1. In the theorem, we think of the solution space as having five dimensions, so
that at any point in time t, we have a vector of solutions with five elements (standing for
the state variables) real and positive solutions, hence the plus sign in ℜ5+. We therefore
prove Theorem (6− 10). Generally, it implies thus:

Proof:
dN

dt
= Λ− µN(t)− αI(t), (15)
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By a standard comparison theorem [Lakshmikantham et al.,1989], we see that
dN

dt
= Λ− µN(t), (16)

which yields (by the method of integrating factor)

N(t) ≤ N(0)e−µt +
Λ

µ
(1− e−µt). (17)

To be specific, if N(0) ≤ Λ
µ , then N(t) ≤ Λ

µ . Hence, D is positively invariant and an
attractor so that no solution path leaves through any boundary of D.

3.2. Disease Free Equilibrium (DFE) Analysis. Under this sub-section, we carry out
the equilibrium state of our model Equations (6) − (10) when there is no disease in the
population of interest. To investigate this, we simply substitute E(t) = I(t) = R(t) = 0
and dS

dt = dV
dt = dE

dt = dI
dt =

dR
dt = 0 in model Equations (6)− (10) and obtain

Λ− (ψ1 + µ)S(t) = 0, (18)

ψ1S(t)− µV (t) = 0. (19)
Solving Equations (18) and (19) simultaneously, we have

S(t) =
Λ

ψ1 + µ
, (20)

and
V (t) =

ψ1Λ

µ(ψ1 + µ)
, (21)

Thus, the DFE of the model (6)− (10) is given by

E1 = (S(t)∗, V (t)∗, E(t)∗, I(t)∗, R(t)∗),

= (
Λ

ψ1 + µ
,

ψ1Λ

µ(ψ1 + µ)
, 0, 0, 0).

(22)

3.3. Analysis of Basic Reproduction Number (R0). To calculate the basic reproduction
number, we divide model Equations (6) − (10) into appearance of infection and transfer
of infection as matrix Fi(x) and Vi(x) (Driessche and Watmough, 2002)[8] where Fi(x)
be the rate of appearance of new infections in compartment i and Vi(x) be the difference
between the transfer rate of individuals out of compartment i by all other means. Thus,
the Fi(x) and Vi(x) of model Equations (6)− (10) is shown below: Let x0 be the DFE of
model Equations (6)− (10). Thus, we have the following partitioned derivatives,

DF (x0) =

(
F 0
0 0

)
,

DV (xo) =

(
V 0
J3 J4

)
,

where F and V are M ×N matrices defined by

F =
(

∂Fi
∂xj(xo)

)
, (23)

and
V =

(
∂Vi

∂xj(xo)

)
, (24)
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So that
V −1 =

1

determinant

(
∂Vi

∂xj(xo)

)
, (25)

1 ≤ 1, j ≤ m.
Here,the partial derivatives of Fi and Vi are with respect to the infected classes only. The
basic reproduction number is defined as

Ro = ρ(FV −1), (26)

where ρ is the spectral radius of FV −1(by spectral radius we mean the maximum eigen-
value of FV −1.

Theorem 3.2. Consider the disease transmission model (2) with f(x) satisfying the sta-
bility conditions if x0 is a DFE of the model,the xo is locally asymptotically stable if
R0 < 1, but unstable if R0 > 1.

For the purpose of easy access and clarity, we shall rewrite model Equations (6)− (10) as
follows:

dS

dt
= ΛN(t)− λ(t)(1− u1)S(t)− (ϕ1 + µ)S(t) + δR(t), (27)

dV

dt
= ϕ1S(t)− σβI(t)V (t)− µV (t), (28)

dE

dt
= σβI(t)V (t) + λ(t)(1− u1)S(t)− k(1− u2)E(t)− µE(t), (29)

dI

dt
= k(1− u2)E(t)− (α+ µ+ γ + ϕ2)I(t), (30)

dR

dt
= ϕ2I(t) + γI(t)− (δ + µ)R(t), (31)

where

λ(t) =
βI(t)

(1 + θI(t))
, N(t) = S(t) + V (t) + E(t) + I(t) +R(t). (32)

Thus, F and V are given as

F =

(
σβI(t)V (t) + βI(t)S(t)(1−u1)

1+θI(t)

0

)
, (33)

and

V =

(
k(1− u2)E(t) + µE(t)

−k(1− u2)E(t) + (α+ µ+ γ + ψ2)I(t)

)
. (34)

Since we have only two infected classes, E(t) and I(t). It follows that m = 2.
We should note that at theDFE,E(t)∗ = I(t)∗ =R(t)∗ = 0,X ∈ (S(t), V (t), E(t), I(t), R(t))

S(t)∗ =
ΛN(t)

ψ1 + µ
.V (t)∗ =

ψ1ΛN(t)

µ(ψ1(t) + µ)
, (35)

Putting these into consideration, we have

M =
∂F

∂X
(E1) =

(
0 σβV (t) + βS(t)
0 0

)
, (36)
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N =

(
k (1− u2) + µ 0
−k (1− u2) α+ γ + µ+ ψ2

)
,

and

N−1 =


1

k(1−u2)+µ
0

k(1−u2)
(k(1−u2)+µ)(α+γ+µ+ψ2)

1
α+γ+µ+ψ2

 . (37)

Therefore,

MN−1 =


βkΛN(t)σ(1−u2)ϕ1

µ(µ+ϕ1)(k(1−u2)+µ)(α+γ+µ+ϕ2)
βΛN(t)σϕ1

µ(µ+ϕ1)(α+γ+µ+ϕ2)

0 0

 . (38)

∣∣MN−1 − xI
∣∣ =

∣∣∣∣∣∣∣∣
βkΛσ(1−u2)ψ1

µ(µ+ψ1)(k(1−u2)+µ)(α+γ+µ+ψ2)
− x βΛσψ1

µ(µ+ψ1)(α+γ+µ+ψ2)

0 0− x

∣∣∣∣∣∣∣∣ = 0

(39)
Thus, calculating the eigenvalues of equation (39), we have,

x1 = 0,

x2 =
βkΛσ (1− u2)ψ1

µ (µ+ ψ1) (k (1− u2) + µ) (α+ γ + µ+ ψ2)
.

More so, the dominant eigenvalue is the basic reproduction number. Therefore,

R0 =
βkΛσ (1− u2)ψ1

µ (µ+ ψ1) (k (1− u2) + µ) (α+ γ + µ+ ψ2)
.

The biological interpretation of this R0 is that, the avian influenza disease will die off
whenever its numerical value is less one. It becomes endemic whenever the R0 is greater
than one. It becomes inconclusive whenever R0 equals 0 or 1. In such case backward or
forward bifurcation analysis will be required.

3.4. Local Asymptotic Stability of the Disease Free Equilibrium. In this sub-section,
we investigate the local asymptotic stability (LAS) of our model Equations (6)−(10) in the
case where there is no disease in a population of interest (Asquith and Bangham, 2003)[2].
To do this, we linearized our model equations with the corresponding equilibrium, E1. We
first rewrite model Equations (6)− (10) as follows.

f1 = ΛN(t)− λ(t)(1− u1)S(t)− (ψ1 + µ)S(t) + δR(t), (40)

f2 = ψ1S(t)− σβI(t)V (t)− µV (t), (41)

f3 = σβI(t)V (t) + λ(t)(1− u1)S(t)− k(1− u2)E(t)− µE(t), (42)

f4 = k(1− u2)E(t)− (α+ µ+ γ + ψ2)I(t), (43)

f5 = ψ2I(t) + γI(t)− (δ + µ)R(t). (44)

Differentiating (40)− (44) with respect to S(t), V (t), E(t), I(t) and R(t), which yielded
Equations (45), (46), (47), (48) and (49) respectively
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∂f1
∂S

=
βI(t)(1− u1)

1 + θI(t)
− µ− ψ1,

∂f1
∂V

= 0,
∂f1
∂E

= 0,
∂f1
∂I

= − S(t)I(t)βθ

(1 + θI(t))2

− S(t)β

1 + θI(t)
, (45)

∂f1
∂R

= δ,
∂f2
∂S

= ψ1,
∂f2
∂V

= −µ− I(t)βσ,
∂f2
∂E

= 0,
∂f2
∂I

= −σ(t), ∂f2
∂R

= 0, (46)

∂f3
∂S

=
(t)(1− u1)

1 + θI(t)
,
∂f2
∂V

= σβI(t),
∂f3
∂E

= −k(1− u2)− µ,
∂f3
∂I

= σβV (t)

+
S(t)I(t)βθ

(1 + θI(t))2
+

S(t)β

1 + θI(t)
, (47)

∂f3
∂R

= 0,
∂f4
∂S

= 0,
∂f4
∂V

= 0,
∂f4
∂E

= k(1− u2),
∂f4
∂I

= −(α+ µ+ γ + ψ2),
∂f4
∂R

= 0,

(48)
∂f5
∂S

= 0,
∂f5
∂V

= 0,
∂f5
∂E

= 0,
∂f5
∂I

= ψ2 + γ,
∂f5
∂R

= −(µ+ δ). (49)

Using the above linearized system, we obtain the general Jacobian Matrix of the model
(6)− (10) and is given by

J =


∂f1
∂S

∂f1
∂V

∂f1
∂E

∂f1
∂I

∂f1
∂R

∂f2
∂S

∂f2
∂V

∂f2
∂E

∂f2
∂I

∂f2
∂R

∂f3
∂S

∂f3
∂V

∂f3
∂E

∂f3
∂I

∂f3
∂R

∂f4
∂S

∂f4
∂V

∂f4
∂E

∂f4
∂I

∂f4
∂R

∂f5
∂S

∂f5
∂V

∂f5
∂E

∂f5
∂I

∂f5
∂R

 , (50)

Now, at the equilibriumE1, we have

J(E1) =



−µ− ψ1 0 0 0 δ

ψ1 −µ 0 − βΛσψ1
µ(µ+ψ1)

0

0 0 −k (1 − u2) − µ
βΛσψ1
µ(µ+ψ1)

0

0 0 k (1 − u2) −α− γ − µ− ψ2 0

0 0 0 γ + ψ2 −δ − µ


, (51)

J(E1)−xI =


−µ− x− ψ1 0 0 0 δ

ψ1 −µ− x 0 − βΛσψ1
µ(µ+ψ1)

0

0 0 −k (1 − u2) − µ− x
βΛσψ1
µ(µ+ψ1)

0

0 0 k (1 − u2) −α− γ − µ− x− ψ2 0
0 0 0 γ + ψ2 −δ − µ− x

 ,

(52)

The eigenvalues of equation (52) was obtained using Mathematica Software with the
command in Appendix A.

a1x
2 + a2x+ a3 = 0, (53)

where
a1 = 1,

a2 =
A−B

µ2 + µψ1
,

a3 =
T

µ2 + µψ1
,



A MATHEMATICAL MODEL FOR TRANSMISSION DYNAMICS 339

with

A = αµ2 + αµψ1 + γµ2 + γµψ1 + kµ2 + kµψ1 + 2µ3 + 2µ2ψ1 + µ2ψ2 + µψ1ψ2,

B = kµ2u2 + kµu2ψ1,
T = αkµ2 + γkµ2 + kµ3 + αµ3 + γµ3 + µ4 − αkµ2u2 − γkµ2u2 − kµ3u2 + αkµψ1 +
γkµψ1+kµ

2ψ1+αµ
2ψ1+γµ

2ψ1+µ
3ψ1−βkΛσψ1−αkµu2ψ1−γkµu2ψ1−kµ2u2ψ1+

βkΛσu2ψ1 + kµ2ψ2 + kµψ1ψ2 − kµ2u2ψ2 − kµu2ψ1ψ2 − µ3ψ2 + µ2ψ1ψ2.

Remark 2. The model (6) − (10) is locally asymptotically stable provided R0 < 1 and
unstable if otherwise.

3.5. Disease Endemic Equilibrium. Disease endemic equilibrium (DEE) only occurs
when the basic reproduction number R0 is greater than a unit. Whenever this occurred,
the disease evade a population and persist for a long time. We therefore seek to investigate
the DEE of model (6)− (10),
E2 = (S(t)∗∗, V (t)∗∗, E(t)∗∗, I(t)∗∗, R(t)∗∗) by equating the left hand sides of the model
(6)− (10) to zero and then solve for each state variable as follows:

Λ− λ(t)(1− u1)S(t)− (ψ1 + µ)S(t) + δR(t) = 0,

ψ1S(t)− σβI(t)V (t)− µV (t) = 0,

σβI(t)V (t) + λ(t)(1− u1)S(t)− k(1− u2)E(t)− µE(t) = 0,

k(1− u2)E(t)− (α+ µ+ γ + ψ2)I(t) = 0,

ψ2I(t) + γI(t)− (δ + µ)R(t) = 0.

(54)

We solve for each state variable of Equations (15) and we obtain

S(t)∗∗ =
K1

K2
,

V (t)∗∗ =
L1

L2
,

E(t)∗∗ =
Φ1

Φ2
,

I(t)∗∗ =
k (1− u2)

α+ γ + µ+ ψ2
,

R(t)∗∗ =
k (1− u2) (γ + ψ2)

(δ + µ) (α+ γ + µ+ ψ2)
,

where Φ1,Φ2, L1, L2,K1,K2 are presented in D.

3.6. Local Asymptotic Stability of the Disease Endemic Equilibrium. Here, we seek
to analyze the local asymptotic stability of the disease endemic equilibrium (DEE). To do
this we claim the following result

J(E2) =


P1 − u1 − ψ1 0 0 P2 δ

ψ1 −µ− P3 0 −βH∗σ 0
P4 P5 −k (1− u2)− µ βH∗σ + P6 0
0 0 k (1− u2) −α− γ − µ− ψ2 0
0 0 0 γ + ψ2 −δ − µ

 ,

(55)
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where
P1 = −βI(t)(1−u1)

1+θI(t) , P2 = − (1+θI(t)βS(t))−βI(t)S(t)θ
(1+θI(t))2 , P3 = σβI(t), P4 = βI(t)(1−u1)

1+θI(t) ,

P5 = σβV (t), P6 = (1+θI(t)βS(t))−βI(t)S(t)θ
(1+θI(t))2 , H = V (t)∗∗.

J(E2)−Iy =


P1 − u1 − ψ1 − y 0 0 P2 δ

ψ1 −µ− P3 − y 0 −βH∗σ 0
P4 P5 c1 − y βH∗σ + P6 0
0 0 k (1− u2) c2 − y 0
0 0 0 γ + ψ2 −δ − µ− y

 ,

(56)
where c1 = −k (1− u2)− µ, c2 = −α− γ − µ− ϕ2.

The characteristic equation corresponding to the above matrix is given by

y5 + a1y
4 + a2y

3 + a3y
2 + a4y + a5 = 0, (57)

where a1, a2, a3, a4, a5 are obtained using Mathematica Software command in Appendix
B and the coefficients of equation (57) are stated in Appendix E.

Theorem 3.3. The equilibrium, E2 is locally asymptotically stable provided the coeffi-
cients of the characteristic equation (19) satisfies the following Routh Hurwitz stability
conditions:

(1) ai(i = 1, 2, ..., 5) > 0,
(2) a1a2 > a3,
(3) a1a2a3 > a23 + a21a4,
(4) a1a2a3a4 + a1a2a5 + 2a1a4a5 > a23a4 + a21a

2
4 + a1b

2
2a5 + a25.

Proof: The prove of Theorem 3.5 is omitted due to the size of the polynomial coefficients
(a1, a2, a3, a4, a5). However, in application, we will simply use numerical values as tabu-
lated in Table 3 to check.

3.7. Global Stability Analysis of the Disease Endemic Equilibrium. In this section, we
present the global stability of the model (2) at E∗

2 equilibrium. We assume that the drug
efficacy ξ → 1 and then σ → 0. We give the following theorem by following (Li et al.,
2018). [18]

The global stability analysis of the endemic equilibrium, E∗
2 of model (2) becomes im-

perative when R0 > 1. To investigate the stability of the E∗
2 equilibrium, we first of all

consider the compartments with the disease force of infection and the infected classes only
as follow.

Λ =
βI(t)∗∗

(1 + θI(t)∗∗)
(1− u1)S(t)

∗∗ + (ψ1 + µ)S(t)− δR(t)∗∗,

k(1− u2) + µ =
σβI(t)∗∗V (t)∗∗ + βI(t)∗∗

(1+θI(t)∗∗) (1− u1)S(t)

E(t)∗∗
,

α+ µ+ γ + ψ2

k(1− u2)
=

I(t)∗∗

E(t)∗∗
.



A MATHEMATICAL MODEL FOR TRANSMISSION DYNAMICS 341

Thus, we construct a Lyapunov function

Y (t) = (S(t)− S∗∗(t)− S∗∗(t)log
S(t)

S∗∗(t))
+ (E(t)− E∗∗(t)− E∗∗(t)log

E(t)

E∗∗(t)

+
k + µ

k
(I(t)− I∗∗(t)− I∗∗(t)log

I(t)

I∗∗(t)
.

(58)

Taking the time derivative of equation (58) along the solution of the Equations (6)− (10),
we have

Ẏ = (1− S∗∗(t)

S(t)
)Ṡ + (1− E∗∗(t)

E(t)
)Ė + (

k + µ

k
)(1− I∗∗(t)

I(t)
)İ . (59)

By direct substitution of Equations (6)− (10) in (59), we obtain

(1− S∗∗(t)

S(t)
)Ṡ = (1− S∗∗(t)

S(t)
)[Λ− βI(t)∗∗

(1 + θI(t)∗∗)
(1− u1)S(t)

∗∗ − (ψ1 + µ)S(t)∗∗ + δR(t)∗∗]

= (1− S∗∗(t)

S(t)
)[

βI∗∗(t)

(1 + θI∗∗(t))
S∗∗(t) + (ψ1(t) + µ)S∗∗(t)

− δR∗∗(t)]− βI(t)∗∗

(1 + θI(t)∗∗)
(1− u1)S(t)

∗∗ + (ψ1 + µ)S(t)− δR(t)∗∗]

=
βI∗∗(t)S∗∗(t)

1 + θI∗∗(t)
(1− u1)(1−

S∗∗(t)

S(t)
) + (ψ1 + µ)S∗∗(t)(1− S∗∗(t)

S(t)
)

− δR∗∗(t)(1− S∗∗(t)

S(t)
)− βI(t)S(t)

1 + θI(t)
(1− u1)(1−

S∗∗(t)

S(t)
)

(60)

− (ψ1(t) + µ)S(t)(1− S∗∗(t)

S(t)
)

− δR(t)(1− S∗∗(t)

S(t)
)

= (ψ1(t) + µ)S∗∗(t)(2− S∗∗(t)

S(t)
− S(t)

S∗∗(t)
) + (1− S∗∗(t)

S(t)
)(
βI∗∗(t)S∗∗(t)

1 + θI∗∗(t)

(1− u1)−
βI(t)S(t)

1 + θI(t)
(1− u1))

(1− E∗∗(t)

E(t)
)Ė = (1− E∗∗(t)

E(t)
)[
βI(t)S(t)

1 + θI(t)
(1− u1)− (k + µ)E(t)]

= (1− E∗∗(t)

E(t)
)[
βI(t)S(t)

1 + θI(t)
(1− u1)−

βI∗∗(t)S∗∗(t)

1 + θI∗∗(t)
(1− u1)

E(t)

E∗∗(t)
]

=
βI(t)S(t)

1 + θI(t)
(1− u1)−

βI∗∗(t)S∗∗(t)

1 + θI∗∗(t)
(1− u1)

E(t)

E∗∗(t)

− βI(t)S(t)

1 + θI(t)
(1− u1)

E(t)

E∗∗(t)
+
βI∗∗(t)S∗∗(t)

1 + θI∗∗(t)
(1− u1).

(61)
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(
k + µ

k
)(1− I∗∗(t)

I(t)
)İ = (

k + µ

k
)(1− I∗∗(t)

I(t)
)[k(1− u2)E(t)− (α+ µ+ γ + ψ2)I(t)]

= (k(1− u2) + µ)(1− I∗∗(t)

I(t)
)E(t)− k + µ

k(1− u2)
(α+ µ+ γ + ψ2(1−

I∗∗(t)

I(t)
)I(t)

=
βI∗∗(t)S∗∗(t)

1 + θI∗∗(t)
(1− u1)

E(t)

E∗∗(t)
(1− I∗∗(t)

I(t)
)− βI∗∗(t)S∗∗(t)

1 + θI∗∗(t)
(1− u1)

I(t)

I∗∗(t)
(1− I∗∗(t)

I(t)
)

=
βI∗∗(t)S∗∗(t)

1 + θI∗∗(t)

E(t)

E∗∗(t)
− βI∗∗(t)S∗∗(t)

1 + θI∗∗(t)

E(t)

E∗∗(t)

I∗∗(t)

I(t)

− βI∗∗(t)S∗∗(t)

1 + θI∗∗(t)

I(t)

I∗∗(t)
+
βI∗∗(t)S∗∗(t)

1 + θI∗∗(t)
(62)

It follows from (60− 62) that

Ẏ = (ψ1 + µ)S∗∗(t)

(
2− S∗∗(t)

S(t)
− S(t)

S∗∗(t)

)
+
βI∗∗(t)S∗∗(t)

1 + θI∗∗(t)
(1− u1)

(
3− S∗∗(t)

S(t)
− E(t)I∗∗(t)

E∗∗I(t)
− I(t)

I∗∗(t)

)
+
βI(t)S∗∗(t)

1 + θI(t)
(1− u1)

(
1− S(t)E∗∗(t)

S∗∗(t)E(t)

) (63)

From equation (63), we have(
2− S∗∗(t)

S(t)
− S(t)

S∗∗(t)

)
≤ 0,(

3− S∗∗(t)

S(t)
− E(t)I∗∗(t)

E∗∗I(t)
− I(t)

I∗∗(t)

)
≤ 0, (64)(

1− S(t)E∗∗(t)

S∗∗(t)E(t)

)
≤ 0.

Thus, the condition (64) implies that Ẏ ≤ 0, for (S(t), V (t), E(t), I(t), R(t)) ∈ Ω. Then,
the equilibrium, E∗

2 is globally asymptotically stable on Ω.

Remark 3. The occurrence of this condition implies that the influenza disease becomes
endemic globally. When this happens, it will claim many lives and may also put the world
in recession as similar to the novel corona virus disease 2019 (COVID 19 Pandemic).

3.8. Sensitivity Analysis. In this section, we performed the sensitivity analysis in order
to determine the relative importance of the model parameters on disease transmission. The
analysis will enable us to find out parameters that have high impact on the basic reproduc-
tion number and which should be targeted for intervention strategies. We perform sensitiv-
ity analysis by calculating the sensitivity indices of the effective reproduction number R0

since our major emphasis is on the invasive plants in order to determine whether malaria
fever can be controlled or not. These indices tell us how crucial each parameter is on the
transmission of malaria fever. The sensitivity index of R01 to a parameter say τ , where τ
is any of the parameters in Table 3 is given by

ΓR0
τ =

∂R0

∂τ
× τ

R0
,
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where
ΓR0

β = ΓR0

Λ 1 = ΓR0
σ = 1,

ΓR0

k =
µ

k (−u2) + k + µ
,

ΓR0
u2

=
µu2

(u2 − 1) (k (−u2) + k + µ)
,

ΓR0

Ψ1
=

µ

µ+ ψ1
,

ΓR0
µ =

d1
d2
,

ΓR0

Ψ2
= − ψ2

α+ γ + µ+ ψ2
,

ΓR0
α = − α

α+ γ + µ+ ψ2
,

ΓR0
γ = − γ

α+ γ + µ+ ψ2
.

where
d1 = ψ1 (µ(2α+ 2γ + 3µ) + k(α+ γ + 2µ) + ψ2(k + 2µ)) + µ (µ(3α+ 3γ + 4µ)

+ k(2α+ 2γ + 3µ) + ψ2(2k + 3µ)− ku2 (ψ1 (α+ γ + 2µ+ ψ2) .

+ µ (2α+ 2γ + 3µ+ 2ψ2)

d2 = (µ+ ψ1) (k (−u2) + k + µ) (α+ γ + µ+ ψ2) .

4. MODEL SIMULATION

In this section, we use the inbuilt MATLAB function ode 45 to solve the modified model
equations above. The graphical user interface in the MATLAB version 7.5 was used for the
solution method, simulation and visualization on graphs. We made use of the parameters
of the model and their values from related literature and we assumed some parameters
values that are not found in literature. The values used here are as contained in Table 4.
The Matlab code used is in Appendix C.

TABLE 3. Parameter values of the Model Equation

Parameter Value References
Λh 100 Assumed
β 0.005/day Modnak (2017)[15]
σ 0.699/day Modnak (2017)[15]
k 0.00015(0-0.8) Varied
u2 0.2(0-0.8) Varied
ψ1 0.7 Modnak (2017)[15]
µ 0.00197 Assumed
ψ2 0.7 Assumed
α 0.03 Modnak (2017)[15]
γ 0.36 Modnak (2017)[15]
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4.1. Results from the Analysis of the Model Equations. The modified model equations
positive region was proved to exist within the domain,D = {(S(t), V (t), E(t), I(t), R(t)) ∈
ℜ5+ : S(t) > 0, V (t) ≥ 0, E(t) ≥ 0, I(t) ≥ 0, R(t) ≥ 0 : N(t) ≤ Λ

µ . The model has
two equilibria namely, the disease-free equilibrium and the disease endemic equilibrium
denoted as E1 and E2 respectively. In the case of E1, the susceptible and the vaccinated
humans or populations exist with intake of the vaccines. In the case of E2 equilibrium, all
the sub-populations coexist.

The stability analysis of the E1 equilibrium shows that the system is locally asymp-
totically stable provided R0 < 1 and unstable if otherwise. The E2 equilibrium is lo-
cally asymptotically stable provided the given Routh Hurwitz stability conditions stated in
Theorem 3.5 is satisfied. The model global stability was proved by the use of Lyapunov
function.

We also carried out the sensitivity analysis of the modified model by taking partial
derivatives of theR0 with respect to each of the model parameters. We found that β, k, σ,Λ
and ψ1 are the most sensitive parameters. This implies that any increase in any of these
parameters’ value will lead to increase of the model basic reproduction number R0, and
thereby trigger the disease infection.

TABLE 4. Parameter values of the model equations

Parameter Value Sensitivity Index
Λ 100 +1.0000
β 0.005/day +1.0000
σ 0.699/day +1.0000
k 0.00015(0-0.8) +0.942584
u2 0.2(0-0.8) 0.0028064
ψ1 0.7 +0.0001343
µ 0.00197 -0.2356460
ψ2 0.7 -0.6410430
α 0.03 -0.0274730
γ 0.36 -0.3296790

4.2. Results from the Sensitivity Analysis. The most sensitive parameters are λh, β, σ, k, ψ1

and µ. Any increment in the values of the parameters with negative indices would reduce
the value of the basic reproduction number, also any increment in the value of the param-
eters having positive indices will increase the endemicity of the disease. The basic repro-
duction number increases in all cases as all these parameters increases, which means that
all these parameters have to be kept under control in order to have a complete eradication
of avian influenza.

4.3. Numerical Simulation. In this section, we shall use the parameters values given in
Table 4 to carryout our numerical simulation as follows.

5. CONCLUSIONS AND DISCUSSIONS

We present a mathematical model on avian influenza with detailed analysis. We basi-
cally considered human population only and ignored the bird population as a result of our
interest in the dynamics of avian influenza on human population. Initially, we presented
a detailed mathematical results of the model equations. The results obtained show that
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FIGURE 3. Plots of Exposed Individuals over time at different values of
inhibition rate, θ

FIGURE 4. Plots of Infected Individuals over time at different values of
Inhibition Rate, θ

FIGURE 5. Plots of Recovered Individuals over time at different values
of Inhibition Rate, θ

the model is stable both locally and globally under some certain conditions. The stability
results for disease free equilibrium is obtained when R0 < 1 . If R0 > 1, we proved that
the endemic equilibrium of the model is both locally, globally asymptotically stable under
some certain conditions.
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FIGURE 6. Plots of Exposed Individuals over time at different values of
Control Rate, u1

FIGURE 7. Plots of Infected Individuals over time at different values of
Treatment Rate, k

FIGURE 8. Plots of Infected Individuals over time at different values of
Control Rate, u2

The numerical results of the model is obtained and is given in Figure 3 - 9. The nu-
merical results validate that the transmission dynamics of the avian influenza which is
determined by force of infections. It is observed that the parameter the saturation effect, θ
and the contact between infected humans to susceptible humans do not change the stability
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FIGURE 9. Plots of Exposed Individuals over time at different values of
Vaccination Rate, ψ1

of the equilibria and so that the outbreaks, as the infected humans do not spread the virus
further. Figure 3 shows the dynamics of avian influenza disease with respect to exposed
individual by varying the inhibition rate parameter, θ. The exposed individuals population
decreases with increase in θ and vice versa within the first ten (10) days.

In Figure 4, we show the dynamics of the disease with respect to infected population
by varying the inhibition rate, θ. The infected population decreases with the increase in
θ value and vice versa for 20 - 30 days. However, it is interesting to know here that the
inhibition rate, θ reduced the infected population from 4,500 to about 1,250 (i.e. decline
or reduction of infected population by 1, 350).

In Figure 5, we plot the recovered population over time. We observed that the recovered
population increases with decrease of the inhibition rate, θ. This is expected to happen
since the waiting time in exposed and infected compartment is ignored or reduced.

Figure 6 shows the plot of exposed individuals over time by varying the control pa-
rameter value, u1 which represents the control of susceptible individuals from getting or
moving into the exposed compartment. It was found that the higher the control rate the
lower the exposed population becomes over time.

Figure 7 describes the plot of infected individuals over time with respect to varying
the parameter, k which represents the progression rate of exposed individuals to infected
compartment. It was found that the higher the progression rate value the higher the growth
of the infected individuals population over time and vice versa.

In Figure 8, we vary u2 which represents the control of exposed individuals from be-
coming infected. The control was achieved significantly from day 0 to day 35. An equilib-
rium point is observed from day 35 to day 50.

Figure 9 shows variation of the vaccination parameter, ψ1. With vaccination, the ex-
posed population declined drastically. It was found that vaccination of individuals is para-
mount at the early stage of the disease occurrence.

Following the numerical results obtained from this study, we found out that the re-
sults are in agreement with the works of Jagan and Kartheek (2016) [11], Caroline et al.
(2018)[3], and Khan et al. (2019)[12] who observed that vaccination, force of infection
and contact with infected birds are the major ways the disease can be eliminated. However,
Caroline et al. (2018)observed that vaccination alone cannot eliminate the disease despite
the numerical analysis shows that the basic reproduction number was reduced to less than
unity.
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In conclusion, the numerical results show that increasing the vaccination parameter and
the treatment parameter decrease the exposed humans and the infected humans respectively
and can help to control the disease.

In this study we have formulated a non-autonomous mathematical model that study
the dynamics of an avian influenza with saturated incidence rate by modifying Modnak
(2017)[15]. The model exhibits two equilibria, namely, the disease free equilibrium (DFE)
and the disease endemic equilib- rium (DEE). The disease threshold that is, the basic re-
production number was computed using the next generation matrix method. The DFE is
locally asymptotically stable when R0 < 1 and the endemic equilibrium is both locally
and globally stable when R0 > 1. The disease can be eradicated provided the efficacy of
the vaccine is high and the administration is up to 80% - 90% of the susceptible individuals
and the treatment of the infected individuals are seriously observed.
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APPENDICES

Appendix A. (J(E1)−xI) = {{−µ−x, 0, 0, 0, δ}, {ψ1,−µ, 0,− βΛσψ1

µ(µ+ψ1)
, 0}, {0, 0,−k(1−

u2)

−µ−x, βΛσψ1

µ(µ+ψ1)
, 0}, {0, 0, k(1−u2),−α−γ−µ−x−2, 0}, {0, 0, 0, γ+ψ2,−δ−µ−x}}

characteristicPolynomial[%1, x]

Collect[%2, x]

Appendix B. (J(E2)−Iy) = {{P1−u1−ψ1−y, 0, 0, P2, δ}, {ψ1,−µ−P3−y, 0,−βH∗σ, 0}, {P4, P5, c1−
y, βH∗σ + P6, 0}, {0, 0, k(1− u2), c2 − y, 0}, {0, 0, 0, γ + ψ2,−δ − µ− y}}

characteristicPolynomial[%3, y]

Collect[%4, y]

Appendix C. functiondy = umoru(t, y)
dy = zeros(5, 1);
Lambda = 100;mu = 0.001917; beta = 0.04; theta = 0.9; gamma = 0.036;
delta = 0.01;xi = 0.05; sigma = (1− xi); k = 0.15; alpha = 0.03;
psi1 = 0.09; psi2 = 0.08;

u1 = 0.2; u2 =0; lambda = beta*y(4)/(1+theta*y(4));
dy(1)= Lambda - lambda*(1-u1)*y(1)-(psi1 +mu) ∗ y(1) + delta ∗ y(5);
dy(2) = psi1 ∗ y(1)− sigma ∗ beta ∗ y(4) ∗ y(2)−mu ∗ y(2);
dy(3) = sigma∗beta∗y(4)∗y(2)+lambda∗(1−u1)∗y(1)−(k∗(1−u2)+mu)∗y(3);
dy(4) = k ∗ (1− u2) ∗ y(3)− (alpha+mu+ gamma+ psi2) ∗ y(4);
dy(5) = psi2 ∗ y(4) + gamma ∗ y(4)− (delta+mu) ∗ y(5);
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T,Y
= ode45(′umoru′, [0, 100], [500045002000340300]);
y1 = Y (:, 1);
y2 = Y (:, 2);
y3 = Y (:, 3);
y4 = Y (:, 4);
y5 = Y (:, 5);

gridon
holdon
plot(T, y3,′ r′,′ Linewidth′, 2)
xlabel(′Time(days)′)
ylabel(′ExposedIndividuals′)
legend(′θ = 0′,′ θ = 0.5′,′ θ = 0.9′)
subplot(2, 3, 1); plot(y4, y1,′ Linewidth′, 1)
subplot(2, 3, 1);xlabel(′Time(hour)′)
subplot(2, 3, 1); ylabel(′FishPopulation′)
subplot(2, 3, 2); plot(T, y2,′ Linewidth′, 1)
subplot(2, 3, 2);xlabel(′Time(hour)′)
subplot(2, 3, 2); ylabel(′Pesticidesinwater′)
subplot(2, 3, 3); plot(T, y3,′ Linewidth′, 1)
subplot(2, 3, 3);xlabel(′Time(hour)′)
subplot(2, 3, 3); ylabel(′Pesticidesinsediment′)
subplot(2, 3, 4); plot(T, y4,′ Linewidth′, 1)
subplot(2, 3, 4);xlabel(′Time(hour)′)
subplot(2, 3, 4); ylabel(′Uptakeconcentration′)
subplot(2, 3, 5); plot(T, y5,′ Linewidth′, 1)
subplot(2, 3, 5);xlabel(′Time(hour)′)
subplot(2, 3, 5); ylabel(′Uptakeconcentration′)

APPENDIX D

Φ1 = βk (u2 − 1) (α+ γ + θk − θku2 + µ+ ψ2) (αδΛ + αΛµ+ γδΛ + γΛµ

+ δΛµ+ δΛψ2 + γδk + δkψ2 − γδku2 − δku2ψ2 + Λµ2 + Λµψ2

(−αµ− ασψ1 − γµ− γσψ1 − βkσ − θkσψ1 + βkσu1 + βkσu2

− βkσu1u2 + θkσu2ψ1 − µ2 − µσψ1 − µψ2 − σψ1ψ2 + αµu1 + γµu1 + µ2u1 + µu1ψ2

Φ2 = (δ + µ) (k (−u2) + k + µ) (α+ γ + µ+ ψ2)
2 (αψ1 + γψ1 + βk + θkψ1

− βku1 − βku2 + βku1u2 − θku2ψ1 + θku1 − θku1u2 + µψ1 + αu1 + γu1 + µu1 + u1ψ2

+ ψ1ψ2

(
αµ+ γµ+ βkσ − βkσu2 + µ2 + µψ2

)
L1 = ϕ1 (α+ γ + θk − θku2 + µ+ ψ2) (αδΛ + αΛµ+ γδΛ + γΛµ

+ δΛµ+ δΛψ2 + γδk + δkψ2 − γδku2 − δku2ψ2 + Λµ2 + Λµψ2
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L2 = (δ + µ) (αψ1 + γψ1 + βk + θkψ1 − βku1 − βku2 + βku1u2 − θku2ψ1

+ θku1 − θku1u2 + µψ1 + αu1 + γu1 + µu1 + u1ψ2 + ψ1ψ2(αµ+ γµ

+ βkσ − βkσu2 + µ2 + µψ2)

K1 = (α+ γ + θk − θku2 + µ+ ψ2) (αδΛ + αΛµ+ γδΛ + γΛµ+ δΛµ+ δΛψ2

+ γδk + δkψ2 − γδku2 − δku2ψ2 + Λµ2 + Λµψ2

K2 = (δ + µ) (α+ γ + µ+ ψ2) (αψ1 + γψ1 + βk + θkψ1 − βku1 − βku2 + βku1u2

− θku2ψ1 + θku1 − θku1u2 + µψ1 + αu1 + γu1 + µu1 + u1ψ2 + ψ1ψ2

Appendix E.
a1 = α+ γ + δ + k (1− u2) + 4µ+ P1 + P3 + u1 + ψ1 + ψ2

a2 = −(αδ−3αµ−αψ1−γδ−3γµ−γψ1−3δµ−δψ1−δψ2+k (1− u2) (βH
∗σ + P6)+

kP1 (1− u2)−kP3 (1− u2)−αk (1− u2)−γk (1− u2)−δk (1− u2)−3kµ (1− u2)−
k (1− u2)ψ1 − k (1− u2)ψ2 − ku1 (1− u2) − 6µ2 − 4µψ1 − 3µψ2 + αP1 − αP3 +
γP1−γP3+ δP1− δP3+4µP1−3µP3−P3u1−P3ψ1+P1ψ2−P3ψ2+P1P3−αu1−
γu1 − δu1 − 4µu1 − u1ψ2 − ψ1ψ2)

a3 = −(4µ3−3αµ2−3γµ2−3δµ2+6P1µ
2−3P3µ

2−6u1µ
2−3k (1− u2)µ

2−6ψ1µ
2−

3ψ2µ
2−2αδµ−2γδµ+3αP1µ+3γP1µ+3δP1µ−2αP3µ−2γP3µ−2δP3µ+3P1P3µ−

3αu1µ−3γu1µ−3δu1µ−3P3u1µ−2kα (1− u2)µ−2kγ (1− u2)µ−2kδ (1− u2)µ+
3kP1 (1− u2)µ − 2kP3 (1− u2)µ − 3ku1 (1− u2)µ − 3αψ1µ − 3γψ1µ − 3δψ1µ −
3P3ψ1µ−3k (1− u2)ψ1µ−2δψ2µ+3P1ψ2µ−2P3ψ2µ−3u1ψ2µ−2k (1− u2)ψ2µ−
3ψ1ψ2µ+2k (1− u2) (P6 + βσH∗)µ+αδP1+γδP1−αδP3−γδP3+αP1P3+γP1P3+
δP1P3 − αδu1 − γδu1 − αP3u1 − γP3u1 − δP3u1 − kαδ (1− u2) − kγδ (1− u2) +
kαP1 (1− u2) + kγP1 (1− u2) + kδP1 (1− u2) − kαP3 (1− u2) − kγP3 (1− u2) −
kδP3 (1− u2) + kP1P3 (1− u2) + kP2P4 (1− u2)− kαu1 (1− u2)− kγu1 (1− u2)−
kδu1 (1− u2)−kP3u1 (1− u2)−αδψ1−γδψ1−αP3ψ1−γP3ψ1−δP3ψ1−kα (1− u2)ψ1−
kγ (1− u2)ψ1−kδ (1− u2)ψ1−kP3 (1− u2)ψ1+δP1ψ2−δP3ψ2+P1P3ψ2−δu1ψ2−
P3u1ψ2 − kδ (1− u2)ψ2 + kP1 (1− u2)ψ2 − kP3 (1− u2)ψ2 − ku1 (1− u2)ψ2 −
δψ1ψ2 − P3ψ1ψ2 − k (1− u2)ψ1ψ2 − kβσP5 (1− u2)H

∗ +
kδ (1− u2) (P6 + βσH∗)−kP1 (1− u2) (P6 + βσH∗)+kP3 (1− u2) (P6 + βσH∗)+
ku1 (1− u2)
(P6 + βσH∗) + k (1− u2)ψ1 (P6 + βσH∗)

a4 = −(µ4 − αµ3 − γµ3 − δµ3 + 4P1µ
3 − P3µ

3 − 4u1µ
3 − k (1− u2)µ

3 − 4ψ1µ
3 −

ψ2µ
3 − αδµ2 − γδµ2 + 3αP1µ

2 + 3γP1µ
2 + 3δP1µ

2 − αP3µ
2 − γP3µ

2 − δP3µ
2 +

3P1P3µ
2−3αu1µ

2−3γu1µ
2−3δu1µ

2−3P3u1µ
2−kα (1− u2)µ

2−kγ (1− u2)µ
2−

kδ (1− u2)µ
2 + 3kP1 (1− u2)µ

2 − kP3 (1− u2)µ
2 − 3ku1 (1− u2)µ

2 − 3αψ1µ
2 −

3γψ1µ
2 − 3δψ1µ

2 − 3P3ψ1µ
2 − 3k (1− u2)ψ1µ

2 − δψ2µ
2 + 3P1ψ2µ

2 − P3ψ2µ
2 −

3u1ψ2µ
2−k (1− u2)ψ2µ

2−3ψ1ψ2µ
2+k (1− u2) (P6 + βσH∗)µ2+2αδP1µ+2γδP1µ−

αδP3µ− γδP3µ+2αP1P3µ+2γP1P3µ+2δP1P3µ− 2αδu1µ− 2γδu1µ− 2αP3u1µ−
2γP3u1µ−2δP3u1µ−kαδ (1− u2)µ−kγδ (1− u2)µ+2kαP1 (1− u2)µ+2kγP1 (1− u2)µ+
2kδP1 (1− u2)µ−kαP3 (1− u2)µ−kγP3 (1− u2)µ−kδP3 (1− u2)µ+2kP1P3 (1− u2)µ+
2kP2P4 (1− u2)µ−2kαu1 (1− u2)µ−2kγu1 (1− u2)µ−2kδu1 (1− u2)µ−2kP3u1 (1− u2)µ−
2αδψ1µ−2γδψ1µ−2αP3ψ1µ−2γP3ψ1µ−2δP3ψ1µ−2kα (1− u2)ψ1µ−2kγ (1− u2)ψ1µ−
2kδ (1− u2)ψ1µ−2kP3 (1− u2)ψ1µ+2δP1ψ2µ−δP3ψ2µ+2P1P3ψ2µ−2δu1ψ2µ−
2P3u1ψ2µ−kδ (1− u2)ψ2µ+2kP1 (1− u2)ψ2µ−kP3 (1− u2)ψ2µ−2ku1 (1− u2)ψ2µ−
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2δψ1ψ2µ−2P3ψ1ψ2µ−2k (1− u2)ψ1ψ2µ−kβσP5 (1− u2)H
∗µ+kδ (1− u2) (P6 + βσH∗)µ−

2kP1 (1− u2) (P6 + βσH∗)µ+kP3 (1− u2) (P6 + βσH∗)µ+2ku1 (1− u2) (P6 + βσH∗)µ+
2k (1− u2)ψ1 (P6 + βσH∗)µ+αδP1P3+γδP1P3−αδP3u1−γδP3u1+kαδP1 (1− u2)+
kγδP1 (1− u2)−kαδP3 (1− u2)−kγδP3 (1− u2)+kαP1P3 (1− u2)+kγP1P3 (1− u2)+
kδP1P3 (1− u2)+kδP2P4 (1− u2)+kP2P3P4 (1− u2)−kαδu1 (1− u2)−kγδu1 (1− u2)−
kαP3u1 (1− u2)−kγP3u1 (1− u2)−kδP3u1 (1− u2)−αδP3ψ1−γδP3ψ1−kαδ (1− u2)ψ1−
kγδ (1− u2)ψ1−kαP3 (1− u2)ψ1−kγP3 (1− u2)ψ1−kδP3 (1− u2)ψ1+kP2P5 (1− u2)ψ1+
δP1P3ψ2 − δP3u1ψ2 + kδP1 (1− u2)ψ2 − kδP3 (1− u2)ψ2 + kP1P3 (1− u2)ψ2 −
kδu1 (1− u2)ψ2−kP3u1 (1− u2)ψ2−δP3ψ1ψ2−kδ (1− u2)ψ1ψ2−kP3 (1− u2)ψ1ψ2+
kδP4 (1− u2) (γ + ψ2)−kβδσP5 (1− u2)H

∗+kβσP1P5 (1− u2)H
∗−kβσP5u1 (1− u2)H

∗−
kβσP5 (1− u2)ψ1H

∗ − kδP1 (1− u2) (P6 + βσH∗) + kδP3 (1− u2) (P6 + βσH∗)−
kP1P3 (1− u2) (P6 + βσH∗)+kδu1 (1− u2) (P6 + βσH∗)+kP3u1 (1− u2) (P6 + βσH∗)+
kδ (1− u2)ψ1 (P6 + βσH∗) + kP3 (1− u2)ψ1 (P6 + βσH∗)

a5 = −P1µ
4 +u1µ

4 +ψ1µ
4 −αP1µ

3 − γP1µ
3 − δP1µ

3 −P1P3µ
3 +αu1µ

3 + γu1µ
3 +

δu1µ
3 + P3u1µ

3 − kP1 (1− u2)µ
3 + ku1 (1− u2)µ

3 + αψ1µ
3 + γψ1µ

3 + δψ1µ
3 +

P3ψ1µ
3 + k (1− u2)ψ1µ

3 − αδP1µ
2 − γδP1µ

2 − αP1P3µ
2 − γP1P3µ

2 − δP1P3µ
2 +

αδu1µ
2+γδu1µ

2+αP3u1µ
2+γP3u1µ

2+δP3u1µ
2−kαP1 (1− u2)µ

2−kγP1 (1− u2)µ
2−

kδP1 (1− u2)µ
2−kP1P3 (1− u2)µ

2−kP2P4 (1− u2)µ
2+kαu1 (1− u2)µ

2+kγu1 (1− u2)µ
2+

kδu1 (1− u2)µ
2 + kP3u1 (1− u2)µ

2 + αδψ1µ
2 + γδψ1µ

2 + αP3ψ1µ
2 + γP3ψ1µ

2 +
δP3ψ1µ

2+kα (1− u2)ψ1µ
2+kγ (1− u2)ψ1µ

2+kδ (1− u2)ψ1µ
2+kP3 (1− u2)ψ1µ

2−
αδP1P3µ−γδP1P3µ+αδP3u1µ+γδP3u1µ−kαδP1 (1− u2)µ−kγδP1 (1− u2)µ−
kαP1P3 (1− u2)µ − kγP1P3 (1− u2)µ − kδP1P3 (1− u2)µ − kδP2P4 (1− u2)µ −
kP2P3P4 (1− u2)µ+kαδu1 (1− u2)µ+kγδu1 (1− u2)µ+kαP3u1 (1− u2)µ+kγP3u1 (1− u2)µ+
kδP3u1 (1− u2)µ + αδP3ψ1µ + γδP3ψ1µ + kαδ (1− u2)ψ1µ + kγδ (1− u2)ψ1µ +
kαP3 (1− u2)ψ1µ+ kγP3 (1− u2)ψ1µ+ kδP3 (1− u2)ψ1µ− kP2P5 (1− u2)ψ1µ−
kαδP1P3 (1− u2) − kγδP1P3 (1− u2) − kδP2P3P4 (1− u2) + kαδP3u1 (1− u2) +
kγδP3u1 (1− u2) + kαδP3 (1− u2)ψ1 + kγδP3 (1− u2)ψ1 − kδP2P5 (1− u2)ψ1
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