Abstract
In this paper, we introduce the algebra of tricomplex numbers as in idempo- tent forms and tricomplex polynomials as a generalization of the field of bicomplex num- bers. We describe how to define elementary functions in such an algebra, polynomials, Taylor series for tricomplex holomorphic functions, algebra of eigenvalues corresponding to an eigenvector on tricomplex space, and using a specific result, we define tricomplex polynomial, which is a better generalization of bicomplex polynomial.
0 Comments