Home 9 Volume 9 Schauder-Tychonoff Fixed Point Theorem on Sequentially Complete Hausdorff Strongly Convex Topological Vector Spaces
Open AccessArticle
Schauder-Tychonoff Fixed Point Theorem on Sequentially Complete Hausdorff Strongly Convex Topological Vector Spaces

Vel Tech Rangarajan Dr. Sagunthala R&d Institute Of Science And Technology, Chennai, India.

Vel Tech Rangarajan Dr. Sagunthala R&d Institute Of Science And Technology, Chennai, India.

Vel Tech Rangarajan Dr. Sagunthala R&d Institute Of Science And Technology, Chennai, India.

* Corresponding Author
Annals of Communications in Mathematics 2023
, 6 (4),
253-259.
https://doi.org/10.62072/acm.2023.060406
Received: 20 October 2023 |
Accepted: 10 December 2023 |
Published: 31 December 2023

Abstract

In this paper, we study the Schauder-Tychonoff fixed point (STFP) on a subset A of a sequentially complete Hausdorff strongly convex topological vector space (SCHSCTVS) E (over the field R) with calibration Γ have a unique STFP in Topological Vector Space (TVS).

Keywords

Cite This Article

G. Saravanakumar*, K. A. Venkatesan, S. Sivaprakasam.
Schauder-Tychonoff Fixed Point Theorem on Sequentially Complete Hausdorff Strongly Convex Topological Vector Spaces.

Annals of Communications in Mathematics,

2023,
6 (4):
253-259.
https://doi.org/10.62072/acm.2023.060406
References

[1] C. Hagopian, The Fixed-Point Property for simply-connected plane continua, Trans. Amer. Math. Soc. 348(1996), 4525-4548.
[2] A.Kolmogroff, Zur Normierbarkeit eines topologischen linearen Raumes, Studia Mathematica, 5 (1934), 29-33.
[3] A. Grothendieck, Topological Vector Spaces, Gordon and Breach Science Publishers (1973), NewYork.
[4] K. Goegel, W.A, Kirk and T. N. Shimi, A fixed point theorem in uniformly convex spaces, Boll. Un. Mat. Ital., 4(7) (1973), 63-75.
[5] G. Hardy and T. Roger, A generalization of a fixed point theorem of Reich, Canad. Math. Bull., 16 (1973), 201-206.
[6] R. Kannan, Some results on fixed points II, Amer. Math. Monthly, 76(1969), 405-408.
[7] R.T. Moore, Banach algebra of operators on locally convex spaces, Bull. Amer. Math. Soc., 75(1969),,68-73.
[8] L.G. Nova, Fixed point theorem for some discontinuous operators, Pacific J. Math., 123(1986),189-196.
[9] P. Robertson and W.J. Robertson, Topological Vector Spaces, Cambridge University Press, 1964
[10] J. Schauder, Der Fixpunktsatz in Funktionalr a¨umen, Studia Math. 2(1930), 171-180.
[11] Sidney A. Morris, E. S. Noussair, The Schauder-Tychonoff fixed point theorem and applications, univeristy of New South Wales, (1973).
[12] A. Tychonoff, Ein Fixpunktsatz, Math. Ann. 111(1935), 767-776.
[13] Victor Bryant, Topological Convexity spaces, proceedings of the edinburgh mathematical society, 19(2) (1974), 125-132.
[14] K. Wlodarczyk, New extension of Banach contraction principle to locally convex spaces and applications, Proc. Konink.Nederl. Akad. 91(1974), 265-276.
[15] C.S.Wong,Fixed point theorems for generalized nonexpansive mappings, J. Austral. Math. Soc., 18(1974), 265-276.

  • Creative Commons License
  • Copyright (c) 2023 by the Author(s). Licensee Techno Sky Publications. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

    0 Comments

    Submit a Comment

    Your email address will not be published. Required fields are marked *

    Preview PDF

    XML File

    Loading

    Share