Home 9 Volume 9 Anti fuzzy k-ideals of ordered semirings
Open AccessArticle
Anti fuzzy k-ideals of ordered semirings

Department of Mathematics, Sankethika Institute of Tech. and Management, Visakhapatnam–530 041, A.P. India.

* Corresponding Author
Annals of Communications in Mathematics 2023
, 6 (4),
Received: 7 Dec 2023 |
Accepted: 27 Dec 2023 |
Published: 31 Dec 2023


In this paper we introduce the notion of anti fuzzy ideals, anti fuzzy k−ideals of ordered semirings and we study the properties of anti fuzzy ideals, anti fuzzy k−ideals, homomorphic and anti homomorphic image and pre-image of fuzzy ideals, anti fuzzy ideals and anti fuzzy k−ideals of an ordered semiring. We characterize the ideals of an ordered semiring in terms of anti fuzzy k−ideals.


Cite This Article

M. Murali Krishna Rao.
Anti fuzzy k-ideals of ordered semirings.

Annals of Communications in Mathematics,

6 (4):

[1] P. J. Allen. A fundamental theorem of homomorphism for semirings, Proc. Amer. Math. Sco., 21 (1969), 412–416.
[2] M. Akram and K. H. Dar. On Anti fuzzy left h−ideals in Hemirings, Int. Math. Forum, 46(2) (2007), 2295–2304.
[3] M. Akram and W. A. Dudek. Intuitionistic fuzzy left k-ideals of semirings, Soft Comput., 12 (2008), 881– 890.
[4] R. Biswas. Fuzzy subgroups and anti fuzzy subgroups, Fuzzy Sets Systems, 44 (1990), 121 – 124.
[5] S. I. Baik and H.S. Kim. On fuzzy k-ideals in semirings, Kangweon Kyungki Math j., 8 (2000), 147–154.
[6] A. Borumand Saeid, M. Murali Krishna Rao, K. Rajendra Kumar , N Rafi. Fuzzy (Soft) Quasi-Interior Ideals of Semirings, Transactions on Fuzzy Sets and Systems , 1 (2), (2022), 129–141.
[7] A. Borumand Saeid, M. Murali Krishna Rao, K. Rajendra Kumar. Fuzzy Ideals In Γ−BCK-algebras, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. , 30 (4) (2023), 429–442.
[8] M. Henriksen. Ideals in semirings with commutative addition, Amer. Math. Soc. Notices, 5 (1958), 321.
[9] S. M. Hong and Y. B. Jun. Anti fuzzy ideals in BCK-algebras, Kyungpook Math. J., 38(1998), 145–150.
[10] K. Izuka. On the Jacobson radical of a semiring, Tohoku, Math. J., 11(2)(1959), 409–421.
[11] N. Kehayopulu and M. Tsingelis. Regular ordered semigroups in terms of fuzzy subsets, Inform. Sci., 176 (2006), 3675–3693.
[12] K. H . Kim and Y. B. Jun. On Anti Fuzzy Ideals in Near-Rings, Iranian J. of Fuzzy Systems, 2( 2) (2005), 71 – 80.
[13] N. Kuroki. On fuzzy semigroups, Information Sciences, 53(3) (1991), 203–236.
[14] Kul Hur, S. Kim and K. Pyung. Intuitionistic fuzzy k-ideals of a semiring, Int. J. of Fuzzy Logic and Intelligent Systems, 9(2), (2009) 110–114.
[15] D. Mandal. Fuzzy ideals and fuzzy interior ideals in ordered semirings, Fuzzy info. and Engg., 6 (2014), 101–114.
[16] M. Murali Krishna Rao. Γ−semirings-I, Southeast Asian Bull. Math., 19 (1) (1995), 49–54.
[17] M. Murali Krishna Rao. A study of r-ideals, k-ideals and (m-k)ideals of an ordered semirings, Asia Pac. J. Math., 7(2) 2020.
[18] M. Murali Krishna Rao, K. Rajendra Kumar and Arsham Borumand Saeid. Hesitant Fuzzy Ideals of (Ordered) Γ Semirings, New Mathematics and Natural Computation (2024), 1–19.
[19] M. K. Sen. On Γ−semigroup, Proc. of International Conference of algebra and its application, (1981), Decker Publicaiton, New York, 301–308.
[20] A. Rosenfeld. Fuzzy groups, J. Math. Anal. Appl., 35(1971), 512–517.
[21] H. S. Vandiver. Note on a simple type of algebra in which cancellation law of addition does not hold, Bull. Amer. Math. Soc.(N.S.), 40 (1934), 914–920.
[22] L. A. Zadeh. Fuzzy sets, Information and control, 8 (1965), 338–353.

  • Creative Commons License
  • Copyright (c) 2023 by the Author(s). Licensee Techno Sky Publications. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).


    Submit a Comment

    Your email address will not be published. Required fields are marked *

    Preview PDF

    XML File