AbstractIn this article, the notion of a new kind of derivation is introduced for a lattice L called symmetric bi-(T, F)-derivations on L as a generalization of derivation of lattices and characterized some of its related properties. Some equivalent conditions provided for a lattice L with greatest element 1 by the notion of isotone symmetric bi- (T, F)-derivation on L. By using the concept of isotone derivation, we characterized the modular and distributive lattices by the notion of isotone symmetric bi-(T, F)-derivation