An International Journal

ISSN: 2582-0818

Home 9 Keyword: Lp modulus of continuity
Lp modulus of continuity
Open AccessArticle

Trigonometric generated Lp degree of approximation

Annals of Communications in Mathematics 2023

, 6 (4)

, 209-219

DOI: https://doi.org/10.62072/acm2023060401

AbstractIn this article we continue the study of smooth Picard singular integral operators that started in [3], see there chapters 10-14. This time the foundation of our research is a trigonometric Taylor’s formula. We establish the Lp convergence of our operators to the unit operator with rates via Jackson type inequalities engaging the first Lp modulus of continuity. Of interest here is a residual appearing term. Note that our operators are not positive.
Open AccessArticle

Parametrized error function based Banach space valued univariate neural network approximation

Annals of Communications in Mathematics 2023

, 6 (1)

, 31-43

DOI: https://doi.org/10.62072/acm2023060104

AbstractHere we research the univariate quantitative approximation of Banach space valued continuous functions on a compact interval or all the real line by quasi-interpolation Banach space valued neural network operators. We perform also the related Banach space valued ractional approximation. These approximations are derived by establishing Jackson type inequalities involving the modulus of continuity of the engaged function or its Banach space valued high order derivative or fractional derivaties. Our operators are defined by using a density function induced by a parametrized error function. The approximations are pointwise and with respect to the uniform norm. The related Banach space valued feed-forward neural networks are with one hidden layer. We finish with a convergence analysis.