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PROPERTIES OF HYBRID STRUCTURES IN GROUPOIDS

G. MUHIUDDIN∗, TAIF ALSHEHRI, B. ELAVARASAN, K. PORSELVI AND MOHAMED E. ELNAIR

ABSTRACT. Classical mathematical methods are insufficient for resolving certain issues
in real-life human problems due to the uncertainty of the data. Researchers from around
the world have created innovative mathematical models, like soft and fuzzy set theories, to
model the uncertainties that arise in different areas. Jun recently developed a hybrid struc-
ture that combined fuzzy and soft set concepts. The hybrid structure principle is applied
to groupoids in this paper, and the properties of hybrid ideals and hybrid subgroupoids in
groupoids are also described. Furthermore, the notions of hybrid subgroups, hybrid normal
subgroups, and hybrid cosets in a group, as well as their key properties, are discussed. In
addition, we show that any member of the collection of hybrid cut sets of a hybrid normal
subgroup of a group G is a normal subgroup of G in the traditional sense. Finally, we
obtain a finite-group hybrid version of Lagrange’s theorem.

1. INTRODUCTION

1.1. Motivations and objectives: Zadeh presented the idea of fuzzy sets in [22]. Since its
inception, fuzzy set theory has undergone various transformations, and it now has applica-
tions in a multitude of areas. Rosenfeld[20] used this notion to create fuzzy group theory,
which contains many of the basic properties of group theory. He also showed how some
fundamental concepts in group theory can be used to generate the theory of fuzzy groups
in a simple way, and by using the membership function, he defined all fuzzy groups of a
prime cycle group.

In [11], Mukherjee and Bhattacharya went on to study fuzzy group theory and found
analogs for numerous group theory findings, as well as fuzzy cosets and fuzzy normal
subgroup concepts. They proved that each member of a fuzzy normal subgroup’s family
of level subgroups is a normal subgroup in the traditional sense, as well as a finite group
fuzzy version of Lagrange’s theorem. In [1], Akgül defined fuzzy normal subgroups, fuzzy
level normal subgroups, and their homomorphisms and provided some of their properties.
Malik et al. defined and provided various properties for fuzzy cosets in groups and quo-
tient semigroups of fuzzy subgroups in [8]. Das investigated various properties of level
subgroups of a fuzzy subgroup and obtained a similar characterization of all fuzzy sub-
groups of finite cyclic groups in [21]. Molodtsov [10] pioneered the idea of soft sets as
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a fresh mathematical strategy for handling ambiguous issues. He describes a soft set as a
parameterized collection of universe set subsets, each member of which is considered a set
of approximate soft set elements. He also effectively implemented the soft set principle in
multiple ways ([12, 13]).

In an initial universe set, Jun et al. [7] recently developed the concept of ”hybrid struc-
ture” by integrating soft sets and fuzzy sets in a system of parameters. With this notion,
the ideas of a hybrid linear space, a hybrid field, and a hybrid subalgebra were established.

In [2], Anis et al. introduced the concepts of hybrid subsemigroups and hybrid ideals
in semigroups and examined some of their properties. Elavarasan and Jun [3] established
equivalent conditions for a semigroup to be regular and intra-regular in terms of hybrid
ideals and hybrid bi-ideals and also used these tools to characterize the left and right sim-
ple and completely regular semigroups. Elavarasan et al. characterized the regularity of
semigroups in terms of a hybrid generalized bi-ideal, which is an extension of a hybrid bi-
ideal, and discussed the properties of a hybrid generalized bi-ideal in [6]. In [17], Porselvi
et al. discussed hybrid interior ideals and hybrid simple in an ordered semigroup, as well
as characteristic hybrid structures based on ideals and interior ideals.

In [4], Elavarasan et al. came up with the idea of hybrid ideals in zero-symmetric
near-rings and looked at how they related to hybrid intersections and hybrid products of
hybrid left ideals. Meenakshi et al. presented the idea of hybrid ideals in near-subtraction
semigroups in [9] and provided several properties pertaining to hybrid ideals.

Muhiuddin et al. [14] introduced hybrid ideals and k−hybrid ideals in a ternary semir-
ing, proved various properties of k−hybrid ideals, and characterized hybrid intersections
with respect to these k−hybrid ideals. Muhiuddin et al. discussed the idea of hybrid sub-
semimodules in [15], where they also looked at hybrid ideals over semirings. A variety
of outcomes have been obtained when hybrid structures are applied to various algebraic
systems ([5, 16, 18, 19]).

This work describes the notions of hybrid subgroupoid and hybrid ideals in groupoid,
as well as their properties. We show every homomorphic hybrid preimage of a hybrid sub-
groupoid (resp., left ideal, right ideal) is also a hybrid subgroupoid (resp., left ideal, right
ideal). We also describe hybrid subgroups, hybrid normal subgroups, and hybrid cosets
in a group, as well as their important properties. Finally, a hybrid version of Lagrange’s
theorem is established.

1.2. Applications of Hybrid Structures:

• Decision-Making Systems: Utilizing hybrid structures in fuzzy logic can enhance
decision-making in uncertain environments, such as in finance and healthcare.

• Data Analysis: Hybrid models can improve data classification and clustering in
machine learning, effectively handling ambiguous data.

• Control Systems: Implementing hybrid structures in control theory can optimize
systems where both precise and imprecise information is present.

• Game Theory: Hybrid structures can enrich strategies in games involving uncer-
tainty, allowing for better predictions and outcomes.

• Artificial Intelligence: Incorporating hybrid soft and fuzzy sets in AI can enhance
reasoning capabilities in environments with incomplete information.
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2. PRELIMINARIES

In this section, we collect several key concepts that we will need later in our main
findings. Throughout this paper, unless stated otherwise, A is a groupoid with respect to
the multiplication “.” and the notation for the power set of a non-empty set Z is P(Z ).

Definition 2.1. [7] Let T be the universal set and I = [0, 1]. Define a hybrid structure in
A over T as a mapping

l̃θ := (l̃, θ) : A → P(T )× [0, 1], c1 7→ (l̃(c1), θ(c1)),

where l̃ : A → P(T ) and θ : A → [0, 1] are mappings.

Consider the family H(A) of all hybrid structures in A over T . As follows, define a
relationship ≪ on H(A):(

∀ k̃θ, z̃ε ∈ H(A)
)(

k̃θ ≪ z̃ε ⇔ k̃ ⊆̃ z̃, θ ⪰ ε
)
,

where k̃ ⊆̃ z̃ implying k̃(q) ⊆ z̃(q) and θ ⪰ ε implying θ(q) ≥ ε(q) ∀q ∈ A. The set
(H(A),≪) is then partially ordered.

Definition 2.2. [7] Let j̃ε, k̃ϑ ∈ H(A).
(i) The hybrid union and hybrid intersection are described as below:

(a) (k̃ϑ ⋓ j̃ε) := (k̃∪̃j̃, ϑ ∧ ε), where

(∀r0 ∈ A)
(

(k̃∪̃j̃)(r0) = k̃(r0) ∪ j̃(r0)
(ϑ ∧ ε)(r0) = ϑ(r0) ∧ ε(r0)

)
.

(b) (k̃ϑ ⋒ j̃ε) := (k̃∩̃j̃, ϑ ∨ ε), where

(∀r0 ∈ A)
(

(k̃∩̃j̃)(r0) = k̃(r0) ∩ j̃(r0)
(ϑ ∨ ε)(r0) = ϑ(r0) ∨ ε(r0)

)
.

(ii) The hybrid product k̃ϑ ⊙ j̃ε := (k̃◦̃j̃;ϑ◦̃ε) is described as follows: ∀ s0 ∈ A, if
∃ w0, c0 ∈ A : s0 = w0c0, then

(k̃◦̃j̃)(s0) =
⋃

s0=w0c0

{k̃(w0) ∩ j̃(c0)};

(ϑ◦̃ε)(s0) =
∧

s0=w0c0

{ϑ(w0) ∨ ε(c0)}.

Otherwise (k̃◦̃j̃)(s0) = ∅; (ϑ◦̃ε)(s0) = 1.

Definition 2.3. Let k̃η ∈ H(A). If k̃ and η are constant functions, then k̃η is described as
a constant hybrid structure in A.

Definition 2.4. [7] For ∅ ̸= Q ⊆ A and m̃θ ∈ H(A), the characteristic hybrid structure
χQ(m̃θ) in A over T is known as follows:

χQ(m̃θ) = (χQ(m̃), χQ(θ)) : A −→ P(T )× I,
q 7→ (χQ(m̃)(q), χQ(θ)(q)) ,

where

χQ(m̃) : A → P(T ), q 7→

{
T if q ∈ Q

∅ otherwise,

χQ(θ) : A → I, q 7→,

{
0 if q ∈ Q

1 otherwise

for any q ∈ A.
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3. HYBRID SUBGROUPOIDS AND HYBRID IDEALS

In this section, we define hybrid sub-groupoids and hybrid ideals in groupoids and dis-
cuss their properties. Additionally, results based on the homomorphic hybrid preimage of
a hybrid subgroupoid’s (resp., left, right) ideals are proved.

Definition 3.1. Let l̃θ ∈ H(A). l̃θ is described as a hybrid subgroupoid of A over T if

(∀a, s ∈ A)
(

l̃(as) ⊇ l̃(a) ∩ l̃(s)
θ(as) ≤ θ(a) ∨ θ(s)

)
.

Definition 3.2. Let l̃θ ∈ H(A). l̃θ is described as a hybrid ideal in A over T if it satisfies
the below conditions:

(H1) (∀b, s ∈ A)
(

l̃(sb) ⊇ l̃(b)
θ(sb) ≤ θ(b)

)
.

(H2) (∀a, q ∈ A)
(

l̃(aq) ⊇ l̃(a)
θ(aq) ≤ θ(a)

)
.

Note that if l̃θ satisfies (H1), it is a hybrid left ideal in A, and if l̃θ satisfies (H2), it is
a hybrid right ideal in A.

A hybrid right (resp., left) ideal is obviously a hybrid subgroupoid. However, the con-
verse is not always valid, as the succeeding example illustrates.

Example 3.3. Let A be a family of positive integers. In terms of usual addition, A is
a groupoid. For Q ∈ P(T )\{∅}, define l̃β ∈ H(A) as follows: For t ∈ A, l̃(t) ={
Q if t = 2q for q ∈ A
∅ otherwise

and a constant mapping β, l̃β of A is a hybrid subgroupoid,

but it is not a hybrid left ideal of A as ∅ = l̃(1 + 2) ⊉ l̃(2) = Q.

Definition 3.4. For a group A and l̃θ ∈ H(A), l̃θ is described as a hybrid subgroup of A
over T if it satisfies the below conditions:

(i) l̃θ is a hybrid subgroupoid in A,

(ii) (∀s ∈ A)
(

l̃(s−1) ⊇ l̃(s)
θ(s−1) ≤ θ(s)

)
.

Theorem 3.1. Let A be a group and ỹϖ a hybrid subgroup in A. The conditions mentioned
below are valid.

(i) (∀s0 ∈ A)
(

ỹ(s0) = ỹ(s−1
0 )

ϖ(s0) = ϖ(s−1
0 )

)
.

(ii) (∀s0 ∈ A)
(

ỹ(s0) ⊆ ỹ(e)
ϖ(s0) ≥ ϖ(e)

)
.

(iii) (∀s0, s1 ∈ A)
(

ỹ(s0s
−1
1 ) = ỹ(e)

ϖ(s0s
−1
1 ) = ϖ(e)

)
=⇒

(
ỹ(s0) = ỹ(s1)
ϖ(s0) = ϖ(s1)

)
.

Proof: (i) Let s0 ∈ A. Then ỹ(s0) = ỹ((s−1
0 )−1) ⊇ ỹ(s−1

0 ) ⊇ ỹ(s0); ϖ(s0) =
ϖ((s−1

0 )−1) ≤ ϖ(s−1
0 ) ≤ ϖ(s0). Hence ỹ(s0) = ỹ(s−1

0 ) and ϖ(s0) = ϖ(s−1
0 ).

(ii) Let s0 ∈ A. Then ỹ(e) = ỹ(s0s
−1
0 ) ⊇ ỹ(s0) ∩ ỹ(s−1

0 ) = ỹ(s0); ϖ(e) =
ϖ(s0s

−1
0 ) ≤ ϖ(s0) ∨ϖ(s−1

0 ) = ϖ(s0). Hence ỹ(s0) ⊆ ỹ(e) and ϖ(s0) ≥ ϖ(e).
(iii) Let s0, s1 ∈ A. Then ỹ(s0) = ỹ((s0s

−1
1 )s1) ⊇ ỹ(s0s

−1
1 ) ∩ ỹ(s1) ⊇ ỹ(e) ∩

ỹ(s1) = ỹ(s1) = ỹ((s1s
−1
0 )s0) ⊇ ỹ(s1s

−1
0 ) ∩ ỹ(s0) ⊇ ỹ(e) ∩ ỹ(s0) = ỹ(s0);ϖ(s0) =

ϖ((s0s
−1
1 )s1) ≤ ϖ((s0s

−1
1 ))∨ϖ(s1) ≤ ϖ(e)∨ϖ(s1) = ϖ(s1) = ϖ(s1s

−1
0 )∨ϖ(s0) ≤

ϖ(e) ∨ϖ(s0) = ϖ(s0). Hence ỹ(s0) = ỹ(s1) and ϖ(s0) = ϖ(s1).
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Theorem 3.2. For a group A and z̃φ ∈ H(A), the following assertions are equivalent:
(i) z̃φ is a hybrid subgroup of A,

(ii) (∀v1, v2 ∈ A)
(

z̃(v1v
−1
2 ) ⊇ z̃(v1) ∩ z̃(v2)

φ(v1v
−1
2 ) ≤ φ(v1) ∨ φ(v2)

)
.

Proof: Assume that z̃φ is a hybrid subgroup in A and let v1, v2 ∈ A. Then z̃(v1v
−1
2 ) ⊇

z̃(v1) ∩ z̃(v−1
2 ) = z̃(v1) ∩ z̃(v2), φ(v1v

−1
2 ) ≤ φ(v1) ∨ φ(v−1

2 ) = φ(v1) ∨ φ(v2).
Conversely, let v2 = v1 in (ii). Then we get z̃(e) ⊇ z̃(v1) and φ(e) ≤ φ(v1) for

all v1 ∈ A. So z̃(v−1
2 ) = z̃(ev−1

2 ) ⊇ z̃(e) ∩ z̃(v2) = z̃(v2); φ(v−1
2 ) = φ(ev−1

2 ) ≤
φ(e) ∨ φ(v2) = φ(v2). Now, z̃(v1v2) = z̃(v1(v

−1
2 )−1) ⊇ z̃(v1) ∩ z̃(v−1

2 ) ⊇ z̃(v1) ∩
z̃(v2);φ(v1v2) = φ(v1(v

−1
2 )−1) ≤ φ(v1) ∨ φ(v−1

2 ) ≤ φ(v1) ∨ φ(v2). So z̃φ is a hybrid
subgroup in A.

Lemma 3.3. In a finite group A, if k̃δ is a hybrid subgroupoid, then k̃δ in A is a hybrid
subgroup.

Proof: Let s1 ∈ A. Then there exists an integer n such that sn1 = e which implies
s−1
1 = sn−1

1 . By repeatedly applying the definition of a hybrid subgroupoid, we obtain
k̃(s−1

1 ) = k̃(sn−1
1 ) = k̃(sn−2

1 s1) ⊇ k̃(s1) and δ(s−1
1 ) = δ(sn−1

1 ) = δ(sn−2
1 s1) ≤ δ(s1).

Hence k̃δ is a hybrid subgroup in A.

Lemma 3.4. For ∅ ̸= Q ⊆ A and k̃δ ∈ H(A) , we have
(i) Q is a subgroupoid(resp., right ideal, left ideal) of A if and only if χQ(k̃δ) is a hybrid

subgroupoid(resp., right ideal, left ideal) in A.
(ii) If A is a group, then Q is a subgroup of A if and only if χQ(k̃δ) is a hybrid subgroup

of A.

Proof: The proof of (i) is identical to those for Theorem 3.5. of [2].
(ii) Assume that Q is a subgroup of A. Then by (i), χQ(k̃δ) is a hybrid subgroupoid in

A. Let w ∈ A.
If w ∈ Q, then w−1 ∈ Q. So χQ(k̃)(w) = T = χQ(k̃)(w

−1) and χQ(δ)(w) =

0 = χQ(δ)(w
−1). If w /∈ Q, then w−1 /∈ Q. So χQ(k̃)(w) = ∅ = χQ(k̃)(w

−1) and
χQ(δ)(w) = 1 = χQ(δ)(w

−1). Therefore χQ(k̃δ) is a hybrid subgroup in A.
Conversely, let w ∈ Q. Then T = χQ(k̃)(w) = χQ(k̃)(w

−1) and 0 = χQ(δ)(w) =
χQ(δ)(w

−1) which imply w−1 ∈ Q.

Theorem 3.5. For l̃δ ∈ H(A), the below criteria are equivalent:
(i) l̃δ in A is a hybrid subgroupoid (resp., right ideal, left ideal, ideal),
(ii) for any Q ∈ P(T ) and ∂ ∈ I, the sets

∅ ̸= LQ

l̃
:= {s ∈ A : l̃(x) ⊇ Q} and ∅ ̸= L∂

δ := {s ∈ A : δ(s) ≤ ∂}
are subgroupoids (resp., right ideal, left ideal, ideal) of A.

Proof: (i) Consider LQ

l̃
̸= ∅ and L∂

δ ̸= ∅ for any (Q, ∂) ∈ P(T )× I.
If l̃δ is a hybrid subgroupoid of A, then for s, t ∈ LQ

l̃
∩L∂

δ , we get l̃(st) ⊇ l̃(t)∩l̃(s) ⊇ Q

and δ(st) ≤ δ(s) ∨ δ(t) ≤ ∂ imply that st ∈ LQ

l̃
∩ L∂

δ . So LQ

l̃
and L∂

δ are subgroupoids of
A.

If l̃δ is hybrid left ideal and r ∈ A, then l̃(rt) ⊇ l̃(t) ⊇ Q and δ(rt) ≤ δ(t) ≤ ∂ which
imply rt ∈ LQ

l̃
∩ L∂

δ . So LQ

l̃
and L∂

δ are left ideals of A.
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Assume, on the other hand, that ∀(Q, ∂) ∈ P(T ) × I, LQ

l̃
̸= ∅ and L∂

δ ̸= ∅ are
subgroupoids of A. For s, r ∈ A, let l̃(r) = Qr; l̃(s) = Qs and δ(r) = ∂r; δ(s) = ∂s for
some Qr, Qs ∈ P(T ); ∂r, ∂s ∈ I.

Set Q = Qr∩Qs and ∂ = ∂r∨∂s. Then r, s ∈ LQ

l̃
∩L∂

δ . By assumption, LQ

l̃
and L∂

δ are

subgroupoids, we have rs ∈ LQ

l̃
∩ L∂

δ which implies l̃(rs) ⊇ Q = Qr ∩Qs = l̃(r) ∩ l̃(s)

and δ(rs) ≤ ∂ = ∂r ∨ ∂s = δ(r) ∨ δ(s). So l̃δ is a hybrid subgroupoid of A.
Assume that LQ

l̃
and L∂

δ are left ideals of A ∀(Q, ∂) ∈ P(T ) × I. Let c ∈ A. Then

l̃(c) = Qc; δ(c) = ∂c for some (Qc, ∂c) ∈ P(T )× I with sc ∈ LQc

l̃
∩L∂c

δ which implies
l̃(sc) ⊇ Qc = l̃(c) and δ(sc) ≤ ∂c = δ(c). So l̃δ of A is a hybrid left ideal.

Definition 3.5. For d̃ϱ ∈ H(A) and (∇, ξ) ∈ P(T )× I, the set

d̃ϱ[∇, ξ] := {q1 ∈ A | d̃(q1) ⊇ ∇, ϱ(q1) ≤ ξ}
is termed as the [∇, ξ] -hybrid cut of d̃ϱ.

For a hybrid groupoid (resp., ideal, right ideal, left ideal) d̃ϱ ∈ H(A), d̃ϱ[∇, ξ] of A is a
groupoid (resp., ideal, right ideal, left ideal).

Theorem 3.6. Let j̃κ ∈ H(A). For any (Υ, µ) ∈ P(T ) × I, the assertions mentioned
below are equivalent:

(i) j̃κ [Υ, µ] of A is a subgroupoid (resp., left ideal, right ideal, ideal),
(ii) j̃κ of A is a hybrid subgroupoid (resp., left ideal, right ideal, ideal).

Proof: The proof is similar to Theorem 3.5.

Theorem 3.7. For q̃δ, m̃ζ ∈ H(A), the assertions listed below are valid:
(i) If q̃δ and m̃ζ are hybrid subgroupoids in A, then q̃δ ⋒ m̃ζ in A is a hybrid sub-

groupoid.
(ii) If q̃δ and m̃ζ are hybrid left (resp., right) ideals in A, then q̃δ ⋒ m̃ζ and q̃δ ⋓ m̃ζ in

A are hybrid left (resp., right) ideals.
(iii) If q̃δ and m̃ζ are hybrid subgroups of a group A, then q̃δ ⋒ m̃ζ in A is a hybrid

subgroup.

Proof: (i) Assume that q̃δ and m̃ζ are hybrid subgroupoids of A and let a, s ∈ A.
Then (q̃∩̃m̃)(as) = q̃(as) ∩ m̃(as) ⊇ {q̃(a) ∩ q̃(s)} ∩ {m̃(a) ∩ m̃(s)} = {q̃(a) ∩
m̃(a)} ∩ {q̃(s) ∩ m̃(s)} = (q̃ ∩ m̃)(a) ∩ (q̃ ∩ m̃)(s), (δ ∨ ζ)(as) = δ(as) ∨ ζ(as) ≤
{δ(a)∨ δ(s)}∨{ζ(a)∨ ζ(s)} ≤ {δ(a)∨ ζ(a)}∨{δ(s)∨ ζ(s)} = (δ∨ ζ)(a)∨ (δ∨ ζ)(s).
Hence q̃δ ⋒ m̃ζ is a hybrid subgroupoid in A.

(ii) Consider that q̃δ and m̃ζ are hybrid left ideals in A. For a, s ∈ A, we get (q̃∩̃m̃)(as) =
q̃(as)∩m̃(as) ⊇ q̃(s)∩m̃(s) = (q̃∩m̃)(s), (δ∨ζ)(as) = δ(as)∨ζ(as) ≤ δ(s)∨ζ(s) =
(δ ∨ ζ)(s). So q̃δ ⋒ m̃ζ is a hybrid left ideal in A.

Also, (q̃∪̃m̃)(as) = q̃(as) ∪ m̃(as) ⊇ q̃(s) ∪ m̃(s) = (q̃ ∪ m̃)(s), (δ ∧ ζ)(as) =
δ(as) ∧ ζ(as) ≤ δ(s) ∧ ζ(s) = (δ ∧ ζ)(s). So q̃δ ⋓ m̃ζ is a hybrid left ideal in A.

(iii) If q̃δ and m̃ζ are hybrid subgroups and b0 ∈ A. Then (q̃∩̃m̃)(b0) = q̃(b0)∩m̃(b0) =

q̃(b−1
0 ) ∩ m̃(b−1

0 ) = (q̃ ∩ m̃)(b−1
0 ), (δ ∨ ζ)(b0) = δ(b0) ∨ ζ(b0) = δ(b−1

0 ) ∨ ζ(b−1
0 ) =

(δ ∨ ζ)(b−1
0 ). So q̃δ ⋒ m̃ζ is a hybrid subgroup in A.

It is important to note that the hybrid union of two hybrid subgroupoids does not have
to be a hybrid subgroupoid.

Example 3.6. Let A be the set of positive integers. Then, with respect to usual addition,
A is a groupoid. Define the hybrid structures l̃η and g̃µ of A over P ( ̸= ∅) as follows: For
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s ∈ A,

l̃(s) =

{
P if s = 2x for x ∈ A
∅ otherwise,

g̃(s) =

{
P if s = 3x for x ∈ A
∅ otherwise

and any constant mappings η and µ, l̃η and g̃µ are hybrid subgroupoids of A, but l̃η ⋓ g̃µ
of A is not a hybrid subgropoid as ∅ = (l̃ ∪ g̃)(2 + 3) ⊉ (l̃ ∪ g̃)(2) ∪ (l̃ ∪ g̃)(3).

Theorem 3.8. Let A be a group and p̃η ∈ H(A). Then p̃η is a constant hybrid structure in
A if and only if p̃η is a hybrid left (resp., right) ideal in A.

Proof: If p̃η is a constant hybrid structure in A, then clearly p̃η is a hybrid left ideal in
A.

Conversely, assume that p̃η is a hybrid left ideal in A and let a0 ∈ A. Then p̃(a0) =

p̃(a0e) ⊇ p̃(e) and p̃(e) = p̃(a−1
0 a0) ⊇ p̃(a0) which imply p̃(e) = p̃(a0). Also, η(a0) =

η(a0e) ≤ η(e) and η(e) = η(a−1
0 a0) ≤ η(a0) which imply η(e) = η(a0).

Thus p̃ and η are constant functions and hence p̃η is a constant hybrid structure in A.

Definition 3.7. [7] Consider the non-empty sets A1 and A2. Let Ω : A1 → A2 be
a mapping from A1 to A2. For k̃η ∈ H(A2), define a hybrid structure Ω−1(k̃η) :=

(Ω−1(k̃),Ω−1(η)) in A1 over T , where Ω−1(k̃(q)) = k̃(Ω(q)) and Ω−1(η)(q) = η(Ω(q))

for all q ∈ A1. We describe that Ω−1(k̃η) is the hybrid preimage of k̃η under Ω.
For k̃η ∈ H(A1), the hybrid image of k̃η under Ω is the hybrid structure Ω(k̃η) :=

(Ω(k̃),Ω(η)) in A2 over T , where

(Ω(k̃))(d) =


⋃

q∈Ω−1(d)

k̃(q) if Ω−1(d) ̸= ∅

∅ otherwise,

(Ω(η))(d) =


∧

q∈Ω−1(d)

η(q) if Ω−1(d) ̸= ∅

1 otherwise

for every d ∈ A2.

Theorem 3.9. Every homomorphic hybrid preimage of a hybrid subgroupoid (resp., right
ideal, left ideal, ideal) is also a hybrid subgroupoid (resp., right ideal, left ideal, ideal).

Proof: Consider a groupoid homomorphism Ω : A1 → A2 and let l̃µ be a hybrid
subgroupoid of A2 over T .

Let w, s ∈ A1. Then Ω−1(l̃)(ws) = l̃(Ω(ws)) = l̃(Ω(w)Ω(s)) ⊇ l̃(Ω(w))∩ l̃(Ω(s)) =

Ω−1(l̃)(w) ∩ Ω−1(l̃)(s),Ω−1(µ)(ws) = µ(Ω(ws)) = µ(Ω(w)Ω(s))

≤ µ(Ω(w)) ∨ µ(Ω(s)) = Ω−1(µ)(w) ∨ Ω−1(µ)(s). So Ω−1(l̃µ) is a hybrid subgroupoid
of A1.

For a hybrid left ideal l̃µ in A2, we get Ω−1(l̃)(sw) = l̃(Ω(sw)) = l̃(Ω(s)Ω(w)) ⊇
l̃(Ω(w)) = Ω−1(l̃)(w), Ω−1(µ)(sw) = µ(Ω(sw)) = µ(Ω(s)Ω(w)) ≤ µ(Ω(w)) =

Ω−1(µ)(w) for any w, s ∈ A1. So Ω−1(l̃µ) of A1 is a hybrid left ideal.

Theorem 3.10. Let Ω : A1 → A2 be a onto homomorphism of groupoids. For l̃τ ∈ H(A2),
if the preimage Ω−1(l̃τ ) of l̃τ under Ω is a hybrid subgroupoid (resp., right ideal, left ideal,
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ideal) of A1 over T , then l̃τ is a hybrid subgroupoid (resp., right ideal, left ideal, ideal) of
A2 over T .

Proof: Let Ω : A1 → A2 be a onto homomorphism and let l̃τ ∈ H(A2).

Assume that the preimage Ω−1(l̃τ ) of l̃τ under Ω is a hybrid subgroupoid of A1.
Let t, s, r ∈ A2. Then Ω(r1) = r,Ω(s1) = s and Ω(t1) = t for some r1, s1, t1 ∈

A1. Now, l̃(rs) = l̃(Ω(r1)Ω(s1)) = l̃(Ω(r1s1)) = Ω−1(l̃)(r1s1) ⊇ Ω−1(l̃)(r1) ∩
Ω−1(l̃)(s1) = l̃(Ω(r1))∩l̃(Ω(s1)) = l̃(r)∩l̃(s), τ(rs) = τ(Ω(r1)Ω(s1)) = τ(Ω(r1s1)) =
Ω−1(τ)(r1s1) ≤ Ω−1(τ)(r1) ∨ Ω−1(τ)(s1) =

τ(Ω(r1)) ∨ τ(Ω(s1)) = τ(r) ∨ τ(s). So l̃τ of A2 is a hybrid subgroupoid.
If Ω−1(l̃τ ) is a hybrid left ideal of A1, then l̃(rs) = l̃(Ω(r1)Ω(s1)) = l̃(Ω(r1s1)) =

Ω−1(l̃)(r1s1) ⊇ Ω−1(l̃)(s1) = l̃(Ω(s1)) = l̃(s), τ(rs) =
τ(Ω(r1)Ω(s1)) = τ(Ω(r1s1)) = Ω−1(τ)(r1s1) ≤ Ω−1(τ)(s1) = τ(Ω(s1)) = τ(s).

So l̃τ of A2 is a hybrid left ideal.
We describe that k̃δ ∈ H(A) has the sup property if for Q ∈ P(A), ∃b0 ∈ Q :

k̃(b0) =
⋃
b∈Q

k̃(b) and δ(b0) =
∧
b∈Q

δ(b).

Theorem 3.11. A homomorphic image of a hybrid subgroupoid (resp., right ideal, left
ideal) which has the sup property is a hybrid subgroupoid (resp., right ideal, left ideal).

Proof: Let Ω : A1 → A2 be a groupoid homomorphism and ãη be a hybrid structure of
A1 with the sup property and l̃µ be the image of ãη under Ω.

For Ω(v),Ω(s) ∈ Ω(A1), let v0 ∈ Ω−1(Ω(v)),
s0 ∈ Ω−1(Ω(s)) be such that

ã(v0) =
⋃

s∈Ω−1(Ω(v))

ã(s);η(v0) =
∧

s∈Ω−1(Ω(v))

η(s) ã(s0) =
⋃

s∈Ω−1(Ω(s))

ã(s);

η(s0) =
∧

s∈Ω−1(Ω(s))

η(s).

If ãη is a hybrid subgroupoid of A1, then

l̃(Ω(v)Ω(s)) =
⋃

s∈Ω−1(Ω(v)Ω(s))

ã(s)

⊇ ã(v0s0) ⊇ ã(v0) ∩ ã(s0)

= {
⋃

s∈Ω−1(Ω(v))

ã(s)} ∩ {
⋃

s∈Ω−1(Ω(s))

ã(s)}

= l̃(Ω(v)) ∩ l̃(Ω(s)),

µ(Ω(v)Ω(s)) =
∧

s∈Ω−1(Ω(v)Ω(s))

η(s)

≤ η(v0s0) ≤ η(v0) ∨ η(s0)

= {
∧

s∈Ω−1(Ω(v))

η(s)} ∨ {
∧

s∈Ω−1(Ω(s))

η(s)}

= η(Ω(v)) ∨ η(Ω(s)).

Hence Ω(ãη) is a hybrid subgroupoid in A2.
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If ãη is a hybrid left ideal of A1, then l̃(Ω(v)Ω(s)) =
⋃

s∈Ω−1(Ω(v)Ω(s))

ã(s) ⊇ ã(v0s0) ⊇

ã(s0) =⋃
s∈Ω−1(Ω(v))

ã(s) = l̃(Ω(s)), µ(Ω(v)Ω(s)) =∧
s∈Ω−1(Ω(v)Ω(s))

η(s) ≤ η(v0s0) ≤ η(s0) =∧
s∈Ω−1(Ω(v))

(µ(s)) = µ(Ω(s)). Hence Ω(ãη) is a hybrid left ideal of A2. In a similar way,

we can prove for hybrid right ideal.

4. HYBRID NORMAL SUBGROUPS

In this section, we define hybrid normal subgroups and hybrid cosets within a group
and discuss some of their key properties. Finally, we show the finite-group hybrid version
of Lagrange’s theorem.

Definition 4.1. A hybrid structure k̃θ ∈ H(A) is described as a hybrid normal subgroup in
A if it satisfies the below conditions:

(i) k̃θ is a hybrid subgroup in A.

(ii) (∀r, t ∈ A)
(

k̃(rt) = k̃(tr)
θ(rt) = θ(tr)

)
.

Theorem 4.1. If k̃θ ∈ H(A) is a hybrid subgroup of a group A, then the below assertions
are equivalent:

(i) (∀t, s ∈ A)
(

k̃(sts−1) = k̃(t)
θ(sts−1) = θ(t)

)
,

(ii) k̃θ of A is a hybrid normal subgroup.

Proof: For any s, t ∈ A, we get k̃(st) = k̃(s(ts)s−1)

= k̃(ts) and θ(st) = θ(s(ts)s−1) = θ(ts).
Conversely, let s, t ∈ A. Then

k̃(sts−1) = k̃((st)s−1) = k̃(s−1(st)) = k̃(s−1st) = k̃(t),

θ(sts−1) = θ((st)s−1) = θ(s−1(st)) = θ(s−1st) = θ(t).

Theorem 4.2. If d̃ϱ ∈ H(A) is a hybrid subgroup of a group A, then the below criteria
are equivalent:

(i) d̃ϱ in A is a hybrid normal subgroup,

(ii) (∀t0, s0 ∈ A)
(

d̃(s−1
0 t−1

0 s0t0) ⊇ d̃(s0)
ϱ(s−1

0 t−1
0 s0t0) ≤ ϱ(s0)

)
.

Proof: If d̃ϱ of A is a hybrid normal subgroup, then, by Theorem 4.1, for s0, t0 ∈ A,

d̃(s−1
0 t−1

0 s0t0) ⊇ d̃(s−1
0 ) ∩ d̃(t−1

0 s0t0)

= d̃(s0) ∩ d̃(s0) = d̃(s0),

ϱ(s−1
0 t−1

0 s0t0) ≤ ϱ(s−1
0 ) ∨ ϱ(t−1

0 s0t0)

= ϱ(s0) ∨ ϱ(s0) = ϱ(s0).
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Assume that (ii) is valid and let s0, t0, a0 ∈ A. Then d̃(s−1
0 a0s0) = d̃(a0a

−1
0 s−1

0 a0s0) ⊇
d̃(a0) ∩ d̃(a−1

0 s−1
0 a0s0) ⊇ d̃(a0) ∩ d̃(a0) = d̃(a0), ϱ(s−1

0 a0s0)
= ϱ(a0a

−1
0 s−1

0 a0s0) ≤ ϱ(a0) ∨ ϱ(a−1
0 s−1

0 a0s0) ≤ ϱ(a0) ∨ ϱ(a0) = ϱ(a0).

If a0 = s0t0, then we get d̃(t0s0) ⊇ d̃(s0t0) and ϱ(t0s0) ≤ ϱ(s0t0).

Replace s0 by s−1
0 in the above steps, we can get d̃(s0a0s−1

0 ) ⊇ d̃(a0) and ϱ(s0a0s
−1
0 ) ≤

ϱ(a0). If a0 = t0s0 in this case, we get d̃(s0t0) ⊇ d̃(t0s0) and ϱ(s0t0) ≤ ϱ(t0s0).

Therefore d̃ϱ of A is a hybrid normal subgroup.

Theorem 4.3. For a group A and l̃θ ∈ H(A), the below assertions are equivalent:
(i) l̃θ of A is a hybrid normal subgroup,
(ii) for any X ∈ P(T );∆ ∈ I, the sets

∅ ̸= AX
l̃

:= {s ∈ A : l̃(x) ⊇ X} and ∅ ̸= A∆
θ := {s ∈ A : θ(s) ≤ ∆}

are normal subgroups of A.

Proof: For (X,∆) ∈ P(T ) × I, by Theorem 3.5, AX
l̃

and A∆
θ are subgroups of

A. Let s ∈ A and t ∈ AX
l̃

∩ A∆
θ . Then l̃(t) ⊇ X and θ(t) ≤ ∆. By Theorem 3.5,

l̃(s−1ts) = l̃(t) ⊇ X and θ(s−1ts) = θ(t) ≤ ∆ which imply s−1ts ∈ AX
l̃
∩ A∆

θ . Hence
AX

l̃
and A∆

θ are normal subgroups of A.
Conversely, assume AX

l̃
̸= ∅ and A∆

θ ̸= ∅ for all (X,∆) ∈ P(T ) × I. Then, by
Theorem 3.5, l̃θ is a hybrid subgroup of A. Let t ∈ A. Then l̃(t) = Xt; θ(t) = βt for some
(Xt, βt) ∈ P(T ) × I and s−1ts ∈ AXt

l̃
∩ Aβt

θ which imply l̃(s−1ts) ⊇ Xt = l̃(t) and
θ(s−1ts) ≤ βt = θ(t). Hence l̃θ of A is a hybrid normal subgroup.

Theorem 4.4. Let l̃η ∈ H(A) and A be a group. For any (Ψ, t1) ∈ P(T )× I, the below
criteria are equivalent:

(i) l̃η[Ψ, t1] of A is a normal subgroup,
(ii) l̃η of A is a hybrid normal subgroup.

Proof: The proof is similar to Theorem 4.3.

Theorem 4.5. Every hybrid normal subgroup’s homomorphic hybrid preimage is also a
hybrid normal subgroup.

Proof: Let A1 and A2 be two groups. Let Ω : A1 → A2 be a homomorphism and
l̃β a hybrid normal subgroup of A2. Let k, s ∈ A1. Then Ω−1(l̃)(ks) = l̃(Ω(ks)) =

l̃(Ω(k)Ω(s)) = l̃(Ω(s)Ω(k)) = l̃(Ω(sk))

= Ω−1(l̃)(sk),Ω−1(β)(ks) = β(Ω(ks)) =

β(Ω(k)Ω(s)) = β(Ω(s)Ω(k)) = β(Ω(sk)) = Ω−1(β)(sk). Hence Ω−1(l̃β) of A1 is a
hybrid normal subgroup.

Theorem 4.6. Let A be a group with identity element e and k̃η be a hybrid normal sub-
group in A. Let Aη

k̃
:= {b ∈ A : k̃(b) = k̃(e) and η(b) = η(e)}. Then Aη

k̃
is a normal

subgroup of A.
Define a map ̂̃kη := (

̂̃
k, η̂) : A/Aη

k̃
→ P(T )× I as follows: For l ∈ A,̂̃

k(lAη

k̃
) = k̃(l) and η̂(lAη

k̃
) = η(l),̂̃

kη is well defined and is a hybrid normal subgroup in A/Aη

k̃
.
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Conversely, if Q of A is normal subgroup and ̂̃m∂ of A/Q is a hybrid normal subgroup
such that ̂̃m∂(tQ) = ̂̃m∂(Q) only when t ∈ Q, then ∃ hybrid normal subgroup k̃η in

A : Aη

k̃
= Q and ̂̃kη = ̂̃m∂ .

Proof: Consider k̃η is a hybrid normal subgroup in A. Then by using Theorem 3.1(ii),
Aη

k̃
is a normal subgroup of A.

If qAη

k̃
= yAη

k̃
for some q, y ∈ A, then qy−1 ∈ Aη

k̃
and so k̃(qy−1) = k̃(e) and

η(qy−1) = η(e). By Theorem 3.1(iii), we get k̃(q) = k̃(y) and η(q) = η(y). i.e.,
̂̃
k(qAη

k̃
) =̂̃

k(yAη

k̃
) and η̂(qAη

k̃
) = η̂(yAη

k̃
). Therefore ̂̃kη is well defined structure.

Now, we claim that ̂̃kη is a hybrid normal subgroup in A/Aη

k̃
.

Let qAη

k̃
, yAη

k̃
∈ A/Aη

k̃
. Then ̂̃k(qAη

k̃
yAη

k̃
) =

̂̃
k(qyAη

k̃
) = k̃(qy) ⊇ k̃(q) ∩ k̃(y) =̂̃

k(qAη

k̃
) ∩ ̂̃k(yAη

k̃
), η̂(qAη

k̃
yAη

k̃
) = η̂(qyAη

k̃
) = η(qy) ≤ η(q) ∨ η(y) = η̂(qAη

k̃
) ∨ η̂(yAη

k̃
).

So ̂̃kη is a hybrid subgroup in A/Aη

k̃
.

Also, ̂̃k(qAη

k̃
yAη

k̃
) =

̂̃
k(qyAη

k̃
) = k̃(qy) = k̃(yq) =

̂̃
k(yqAη

k̃
) =

̂̃
k(yAη

k̃
qAη

k̃
), η̂(qAη

k̃
yAη

k̃
) =

η̂(qyAη

k̃
) = η(qy) = η(yq) = η̂(yqAη

k̃
) = η̂(yAη

k̃
qAη

k̃
).

Therefore ̂̃kη is a hybrid normal subgroup in A/Aη

k̃
.

Conversely, for the given hybrid normal subgroup ̂̃m∂ in A/Q, define a hybrid structure
k̃η := (k̃, η) : A → P(T )× I as follows:

k̃(q) = ̂̃m(qQ) and η(q) = ∂̂(qQ).

It is easy to confirm that k̃η is well defined and a hybrid subgroup in A.
Let q, y ∈ A. Then, by Theorem 4.1, k̃(y−1qy) = ̂̃m(y−1qyQ) = ̂̃m(y−1QqQyQ) =̂̃m(qQ) = k̃(q), η(y−1qy) = ∂̂(y−1qyQ) = ∂̂(y−1QqQyQ) = ∂̂(qQ) = η(q). By Theo-

rem 4.1, k̃η is a hybrid normal subgroup in A.
Further, for n ∈ Q, k̃(n) = ̂̃m(nQ) = ̂̃m(Q) = k̃(e) and η(n) = ∂̂(nQ) = ∂̂(Q) =

η(e). Thus Q ⊆ Aη

k̃
. If q ∈ Aη

k̃
, then k̃(q) = k̃(e) and η(q) = η(e) which imply ̂̃m(qQ) =̂̃m(Q) and η(qQ) = η(Q). Consequently, qQ = Q, so q ∈ Q. Thus Aη

k̃
⊆ Q and hence

Aη

k̃
= Q, it follows that ̂̃kη = ̂̃m∂ .

Definition 4.2. Let l̃η be a hybrid subgroup in a group A. For s ∈ A, define a hybrid

structure ̂̃lsη := (
̂̃
ls, η̂s) : A → P(T )× I as follows:̂̃

ls(t) = l̃(ts−1) and η̂s(t) = η(ts−1) ∀t ∈ A.̂̃
lsη is described as the hybrid coset in A determined by s and l̃η.

Theorem 4.7. Let A be a group. If b̃η of A is a hybrid normal subgroup, then for x ∈ A,

we get

( ̂̃
bx(xt) =

̂̃
bx(tx) = b̃(t)

η̂x(xt) = η̂x(tx) = η(t)

)
(∀t ∈ A).

Proof: Consider b̃η of A is a hybrid normal subgroup. Then for any t ∈ A, ̂̃bx(xt) =
b̃(xtx−1) = b̃(t),

̂̃
bx(tx) = b̃(txx−1) = b̃(t). Also η̂x(xt) = η(xtx−1) = η(t), η̂x(tx) =

η(txx−1) = η(t).
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Theorem 4.8. Let l̃η be a hybrid normal subgroup in a group A and F be the gathering
of every hybrid cosets of l̃η. Then F forms a group under the hybrid composition

̂̃
lxη ⊙ ̂̃

lyη =
̂̃
lxyη ∀x, y ∈ A,

Define a hybrid structure l̃η : F → P(T )× I as follows:

l̃
( ̂̃
lx
)
= l̃(x) and η̂

(
η̂x
)
= η(x) ∀x ∈ A. (4.1)

Then l̃η on F is a hybrid subgroup.

Proof: We first claim that the hybrid composition defined on F given by Definition 4.2
is well defined.

Let x, y, x0, y0 ∈ A :
̂̃
lxη =

̂̃
lx0
η and ̂̃lyη =

̂̃
ly0
η . Then we must prove that ̂̃lxη⊙ ̂̃lyη =

̂̃
lx0
η ⊙̂̃ly0

η ,

i.e., ̂̃lxyη = ̂̃lx0y0
η .

For t ∈ A, by assumption, we have(
l̃(tx−1) = l̃(tx−1

0 )
η(tx−1) = η(tx−1

0 )

)
(4.2)(

l̃(ty−1) = l̃(ty−1
0 )

η(ty−1) = η(ty−1
0 )

)
(4.3)

Take t as x0y0y
−1 in (4.2), we get

l̃(x0y0y
−1x−1) = l̃(x0y0y

−1x−1
0 )

= l̃(y0y
−1) (as l̃η is hybrid normal)

= l̃(e), (by 4.3)

η(x0y0y
−1x−1) = η(x0y0y

−1x−1
0 )

= η(y0y
−1) (as l̃η is hybrid normal)

= η(e) (by 4.3).
Now ̂̃

lxy(t) = l̃(ty−1x−1) = l̃(ty−1
0 x−1

0 x0y0y
−1x−1)

⊇ l̃(ty−1
0 x−1

0 ) ∩ l̃(x0y0y
−1x−1)

= l̃(ty−1
0 x−1

0 ) ∩ l̃(e)

= l̃(ty−1
0 x−1

0 ) = ̂̃lx0y0(t),

η̂xy(t) =η(ty−1x−1) = η(ty−1
0 x−1

0 x0y0y
−1x−1)

≤ η(ty−1
0 x−1

0 ) ∨ η(x0y0y
−1x−1)

= η(ty−1
0 x−1

0 ) ∨ η(e)

= η(ty−1
0 x−1

0 ) = η̂x0y0(t).

So, ̂̃lxyη ≫ ̂̃lx0y0
η . Similarly, we can get ̂̃lxyη ≪ ̂̃lx0y0

η . Thus ̂̃lxyη = ̂̃lx0y0
η and hence the

hybrid product defined on F given by Definition 4.2 is well defined.

Let ̂̃lxη , ̂̃lyη , ̂̃lzη ∈ F . Then ̂̃lxη ⊙
(̂̃
lyη ⊙ ̂̃

lzη

)
=

̂̃
l
x(yz)
η =

̂̃
l
(xy)z
η =

( ̂̃
lxη ⊙ ̂̃

lyη
)
⊙ ̂̃
lzη.
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So, the hybrid product defined in the Definition 4.2 is associative, Also ̂̃leη is the identity

element of F , and ̂̃lx−1

η is the inverse of ̂̃lxη in F . Hence (F ,⊙) forms a group.

Let w, b ∈ A. Then l̃(
̂̃
lw ◦ ̂̃lb) = l̃(

̂̃
lwb) = l̃(wb) ⊇ l̃(w) ∩ l̃(b) = l̃(

̂̃
lw) ∩ l̃(

̂̃
lb), η(η̂w ◦

η̂b) = η(η̂wb) = η(wb) ≤ η(w) ∨ η(b) = η(η̂w) ∨ η(η̂b).

Also l̃(
̂̃
lw) = l̃(w) = l̃(w−1) = l̃(

̂̃
lw−1); η(η̂w) = η(w) = η(w−1) = η(η̂w−1).

Hence l̃η is a hybrid subgroup.

Definition 4.3. Let A be a group. For a hybrid normal subgroup l̃η in A, the hybrid
structure defined in (4.1) is described as the hybrid quotient group determined by l̃η.

Lemma 4.9. Let A be a group with identity element e. With the same notation as in Theo-
rem 4.8, consider a map θ : A → F which is defined as follows:

θ(x) =
̂̃
lxη . (4.4)

Then θ is a homomorphism with kernal given by
Al̃η

= {q ∈ A : l̃(q) = l̃(e) and η(q) = η(e)}.

Proof: Let s, y ∈ A. Then θ(sy) =
̂̃
lsyη =

̂̃
lsη ⊙

̂̃
lyη = θ(s)⊙ θ(y). Further, the kernal of

θ consists of all s ∈ A :
̂̃
lsη =

̂̃
leη which implies that l̃(s) = l̃(e) and η(s) = η(e).

We now have an analogue of a result of the “fundamental theorem of homomorphism
of groups” for hybrid subgroups.

Theorem 4.10. Let l̃δ be a hybrid normal subgroup of A and F be the family of every
hybrid cosets of l̃η. Then each hybrid (resp., normal) subgroup of F corresponds in a
natural way to a hybrid (resp., normal) subgroup of A.

Proof: Let g̃∗η∗ be a hybrid subgroup in F over the universal set T . Define a hy-
brid structure m̃τ ∈ H(A) as m̃τ := (m̃, τ) : A → P(T ) × I, where m̃(b) =

g̃∗(
̂̃
lb) and τ(b) = η∗(δ̂b) ∀b ∈ A.
We now claim that m̃τ is a hybrid subgroup in A. Let b, y ∈ A. Then m̃(by) =

g̃∗(
̂̃
lby) = g̃∗(

̂̃
lb ◦ ̂̃ly) ⊇ g̃∗(

̂̃
lb)∩ g̃∗(

̂̃
ly) = m̃(b)∩ m̃(y), τ(by) = η∗(δ̂by) = η∗(δ̂b ◦ δ̂y) ≤

η∗(δ̂b) ∨ η∗(δ̂y) = τ(b) ∨ τ(y). Also m̃(b) = g̃∗(
̂̃
lb) = g̃∗(

̂̃
lb−1) = m̃(b−1); τ(b) =

η∗(δ̂b) = η∗(δ̂b−1) = τ(b−1). Hence m̃τ is a hybrid subgroup in A.

If g̃∗η∗ is a hybrid normal subgroup of F , then for any y, x ∈ A, m̃(xy) = g̃∗(
̂̃
lxy) =

g̃∗(
̂̃
lx ◦ ̂̃ly) = g̃∗(

̂̃
ly ◦ ̂̃lx) = g̃∗(

̂̃
lyx) = m̃(yx), τ(xy) = η∗(δ̂xy) = η∗(δ̂x ◦ δ̂y) =

η∗(δ̂y ◦ δ̂x) = η∗(δ̂yx) = τ(yx). Therefore m̃τ is a hybrid normal subgroup in A.
We now construct a hybrid analogue of Lagrange’s theorem for finite groups, which is

a fundamental result in group theory.
Let l̃η be a hybrid subgroup of a finite group A. The collection of hybrid cosets of l̃η is

given by

F = { ̂̃lxη : x ∈ A },

where ̂̃lxη is defined by Definition 4.2. The order of F is described as the index of the
hybrid subgroup l̃η. If A is a finite group, then F is a finite set.

Theorem 4.11. (Hybrid Lagrange’s Theorem) Let l̃η be a hybrid subgroup of a finite group
A. Then the index of l̃η divides the order of A.
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Proof: From Lemma 4.9, there exists a homomorphism θ : A → F such that θ(x) =̂̃
lxη .

Define a subgroup Q of A by Q := {h ∈ A :
̂̃
lhη =

̂̃
leη}. Let h ∈ Q. Then for any

t ∈ A, ̂̃lhη (t) =
̂̃
leη(t) implies l̃(th−1) = l̃(t) and η(th−1) = η(t). In particular, we get

l̃(h−1) = l̃(e) and η(h−1) = η(e). i.e., l̃(h) = l̃(e) and η(h) = η(e).

Next, if l̃(h) = l̃(e) and η(h) = η(e), then clearly ̂̃lhη =
̂̃
leη.

Thus Q = {h ∈ A : l̃(h) = l̃(e) and η(h) = η(e)}.
Now, decompose A as a disjoint union of the cosets of A with respect to Q :

A = Qx1 ∪Qx2 ∪ ... ∪Qxk, (4.5)

where Qx1 = Q. We now claim that corresponding to each coset Qxi given in (4.5), there
is a hybrid cosets belonging to F and this correspondence is one-to-one.

Consider the coset Qxi and let h ∈ Q. Then θ(hxi) =
̂̃
lhxi
η =

̂̃
lhη ⊙

̂̃
lxi
η =

̂̃
lhη ⊙

̂̃
lxi
η =

̂̃
lxi
η .

Thus θ maps each element of Qxi into the hybrid coset ̂̃lxi
η .

We now set up a natural correspondence θ between the set {Qxi : 1 ≤ i ≤ k} and the

set F by θ(Qxi) =
̂̃
lxi
η , 1 ≤ i ≤ k.

If ̂̃lxi
η =

̂̃
l
xj
η , then

̂̃
l
xix

−1
j

η =
̂̃
leη implies xix

−1
j ∈ Q and Qxi = Qxj . So θ is one-to-one.

As shown in the previous discussion, the number of distinct Q cosets in A is equal to
the number of hybrid l̃η cosets.

As the number of distinct cosets of Q in A is a divisor of the order of A, we have the
index of l̃η divides the order of A.

5. CONCLUSION

In this study, we examined and discussed the notions of hybrid ideals and hybrid sub-
groupoids in groupoid. We obtained some equivalent assertions for a hybrid structure to
be a hybrid subgroupoid and a hybird ideal. We proved that every homomorphic hybrid
preimage of a hybrid subgroupoid (left ideal, right ideal) is also a hybrid subgroupoid (left
ideal, right ideal). The properties of a group’s hybrid subgroup, hybrid normal subgroup,
and hybrid coset, as well as their important properties, were defined and established. Fi-
nally, we used a hybrid structure to prove Lagrange’s theorem. It is intended to define the
concept of hybrid prime (resp., semi) ideals and derive their various properties and equiva-
lent conditions for a hybrid ideal to be a hybrid prime (resp., semi) ideal in groupoids using
the ideas and findings of this paper.
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