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ON A GENERALIZED HARDY INTEGRAL INEQUALITY

CHRISTOPHE CHESNEAU

ABSTRACT. In this article, we present a new, generalized version of the Hardy integral
inequality. This version depends on an auxiliary function. Thanks to this function, nu-
merous variants can be derived. The theory is complemented by several secondary results,
including one demonstrating that the main inequality can be improved upon under certain
additional assumptions and another providing a valuable lower bound for the main integral
term. Several examples are given for illustration.

1. INTRODUCTION

Integral inequalities are important tools in all areas of mathematics. They have specific
applications in differential equations, optimization, statistics, engineering and mathemat-
ical physics. Their main contribution to solving practical problems is providing rigor-
ous bounds that simplify analysis. A wide panel of integral inequalities can be found in
[11, 2, 19, 1, 21]. The Hardy integral inequality, originally developed in [10], is one of
the most famous. To present it, we need p > 1, f : (0,+∞) → (0,+∞) an integrable
function, and, for any t ∈ (0,+∞), the primitive of f defined by

F (t) =

∫ t

0

f(x)dx.

Then the Hardy integral inequality ensures that∫ +∞

0

1

tp
[F (t)]pdt ≤

(
p

p− 1

)p ∫ +∞

0

[f(t)]pdt, (1.1)

provided that the integrals considered converge. This inequality is useful in several con-
texts, including the study of integral operators and transforms. The constant factor [p/(p−
1)]p is the optimal one. It guarantees the tightness of the upper bound.

The Hardy integral inequality has been generalized in various ways, starting with the
work in [10]. Natural extensions include weighted Hardy-type integral inequalities, leading
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to further refinements and multidimensional versions. See [3, 17, 18, 14, 12, 5, 13, 9, 6, 7,
8].

A notable contemporary result on this topic is [16, Theorem 2.2]. It introduces an
auxiliary function g : (0,+∞) → (0,+∞), which can adapt to different mathematical
scenarios. More precisely, assuming that t/g(t) is non-increasing, the following inequality
is established:∫ +∞

0

1

[g(t)]p
[F (t)]pdt ≤

(
p

p− 1

)p ∫ +∞

0

tp

[g(t)]p
[f(t)]pdt. (1.2)

The proof mainly relies on the Hölder integral inequality, an exchange of the order of
integration, and the non-increasing assumption on t/g(t). Obviously, by choosing g(t) =
t, Equation (1.2) reduces to the Hardy integral inequality. Other variants are suggested in
[16], including several based on different convexity assumptions. See also [15], which has
extended Equation (1.2) considering two parameters, p and q. Important advances in the
topic are also discussed in [20, 4].

In this article, we present another variant of the Hardy integral inequality, which is still
based on an auxiliary function g. It has the following form:∫ +∞

0

g′(t)

[g(t)]p
[F (t)]pdt ≤

(
p

p− 1

)p ∫ +∞

0

1

[g′(t)]p−1
[f(t)]pdt. (1.3)

There are significant differences compared to the inequality in Equation (1.2), mainly with
the determinant role of g′ appearing in the two main integral terms. Obviously, by taking
g(t) = t, the Hardy integral inequality is restored. The proof of Equation (1.3) follows
the spirit of the original proof in [10]; it relies on integration by parts, several limit results,
and a well-calibrated Hölder integral inequality. To the best of our knowledge, although
the proof is intuitive, it has not been presented in this form before. We then illustrate this
generalized Hardy integral inequality with several examples based on different functions g.
A final part is devoted to secondary results, including a refinement of our main inequality
under some additional assumptions on f . A tight lower bound on the left term in Equation
(1.3) is also given, which may be viewed as of independent interest.

The rest of the article is composed of the following sections: Section 2 contains the
details on our main inequality. Examples are described in Section 3. Section 4 is devoted
to the secondary results. A conclusion is formulated in Section 5.

2. MAIN RESULT

Our generalized Hardy integral inequality is formalized below, with all assumptions on
the functions involved.

Proposition 2.1. Let p > 1, f, g : (0,+∞) → (0,+∞) be two functions such that
f is continuous and integrable, and g is differentiable, non-decreasing and satisfies the
following limit properties:

lim
t→0

tp

[g(t)]p−1
= 0, lim

t→+∞
g(t) ̸= 0.

For any t ∈ (0,+∞), let us consider the primitive of f defined by

F (t) =

∫ t

0

f(x)dx.
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Then we have∫ +∞

0

g′(t)

[g(t)]p
[F (t)]pdt ≤

(
p

p− 1

)p ∫ +∞

0

1

[g′(t)]p−1
[f(t)]pdt,

provided that the integrals considered converge.

Proof. We start by setting

J =

∫ +∞

0

g′(t)

[g(t)]p
[F (t)]pdt.

An integration by parts taking account that the primitive of g′(t)/[g(t)]p is −1/{(p −
1)[g(t)]p−1} and the derivative of [F (t)]p is p[F (t)]p−1f(t) gives

J =

{
− 1

(p− 1)[g(t)]p−1
[F (t)]p

}t→+∞

t→0

+
p

p− 1
K,

where

K =

∫ +∞

0

1

[g(t)]p−1
[F (t)]p−1f(t)dt.

Since F (0) = 0, f(0) is finite, and limt→0 t
p/[g(t)]p−1 = 0, we have

lim
t→0

1

[g(t)]p−1
[F (t)]p = lim

t→0

tp

[g(t)]p−1
×

[
lim
t→0

F (t)− F (0)

t− 0

]p
= 0× [f(0)]p = 0

and, using limt→+∞ g(t) ̸= 0,

lim
t→+∞

{
− 1

[g(t)]p−1
[F (t)]p

}
= − 1

[limt→+∞ g(t)]p−1

[∫ +∞

0

f(x)dx

]p
∈ (−∞, 0),

that is, negative and finite. Therefore, we have

J ≤ p

p− 1
K. (2.1)

Since g is differentiable and non-decreasing, we have g′(t) ≥ 0 for any t ∈ (0,+∞),
and we can write

K =

∫ +∞

0

{
[g′(t)]1−1/p

[g(t)]p−1
[F (t)]p−1

}{
1

[g′(t)]1−1/p
f(t)

}
dt.

Applying the Hölder integral inequality with the exponent p/(p− 1) > 1 and recognizing
J , we obtain

K ≤
{∫ +∞

0

g′(t)

[g(t)]p
[F (t)]pdt

}1−1/p {∫ +∞

0

1

[g′(t)]p−1
[f(t)]pdt

}1/p

= J1−1/p

{∫ +∞

0

1

[g′(t)]p−1
[f(t)]pdt

}1/p

. (2.2)

It follows from Equations (2.1) and (2.2) that

J ≤ p

p− 1
J1−1/p

{∫ +∞

0

1

[g′(t)]p−1
[f(t)]pdt

}1/p

,

so

J1/p ≤ p

p− 1

{∫ +∞

0

1

[g′(t)]p−1
[f(t)]pdt

}1/p
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and

J ≤
(

p

p− 1

)p ∫ +∞

0

1

[g′(t)]p−1
[f(t)]pdt.

Taking into account the definition of J , we get∫ +∞

0

g′(t)

[g(t)]p
[F (t)]pdt ≤

(
p

p− 1

)p ∫ +∞

0

1

[g′(t)]p−1
[f(t)]pdt.

The desired inequality is established, ending the proof. □

As an immediate example of Proposition 2.1, we can consider g(t) = t, satisfying
g′(t) = 1, g is non-decreasing, limt→0 t

p/[g(t)]p−1 = limt→0 t = 0 and limt→+∞ g(t) =
limt→+∞ t = +∞ ≠ 0. Then Proposition 2.1 gives∫ +∞

0

g′(t)

[g(t)]p
[F (t)]pdt ≤

(
p

p− 1

)p ∫ +∞

0

1

[g′(t)]p−1
[f(t)]pdt,

so that ∫ +∞

0

1

tp
[F (t)]pdt ≤

(
p

p− 1

)p ∫ +∞

0

[f(t)]pdt.

We recognize the original Hardy integral inequality. Proposition 2.1 is a generalization in
this sense, and also, an alternative to that in [16, Theorem 2.2], recalled in Equation (1.2).
Thus, it is able to offer new variants of the Hardy integral inequalities, depending on the
choice of g. To illustrate this claim, some examples are given in the next section.

3. EXAMPLES

Seven examples of integral inequalities based on Proposition 2.1 are now presented,
using the same notation. Each of them is based on a specific one-parameter function g.
The inequalities obtained can be used independently in different mathematical scenarios.

Example 1: We consider g(t) = tα, t ∈ (0,+∞), with α ∈ (0, p/(p−1)). We have
g′(t) = αtα−1, g is non-decreasing, and, since α ∈ (0, p/(p− 1)), we have

lim
t→0

tp

[g(t)]p−1
= lim

t→0
tp−α(p−1) = 0

and
lim

t→+∞
g(t) = lim

t→+∞
tα = +∞ ≠ 0.

Proposition 2.1 gives∫ +∞

0

g′(t)

[g(t)]p
[F (t)]pdt ≤

(
p

p− 1

)p ∫ +∞

0

1

[g′(t)]p−1
[f(t)]pdt,

so that∫ +∞

0

αtα−1

tαp
[F (t)]pdt ≤

(
p

p− 1

)p ∫ +∞

0

1

(αtα−1)p−1
[f(t)]pdt,

which is equivalent to∫ +∞

0

1

tα(p−1)+1
[F (t)]pdt ≤

[
p

α(p− 1)

]p ∫ +∞

0

1

t(α−1)(p−1)
[f(t)]pdt.

Setting α = 1 gives the original Hardy integral inequality, as expected. The other
values of α, i.e., α ∈ (0, p/(p− 1))/{1}, give manageable integral inequalities.
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Example 2: We consider g(t) = ln(1 + αt), t ∈ (0,+∞), with α > 0. We have
g′(t) = α/(1 + αt), g is non-decreasing,

lim
t→0

tp

[g(t)]p−1
= lim

t→0

tp

[ln(1 + αt)]p−1
= α1−p lim

t→0
t = 0

and
lim

t→+∞
g(t) = lim

t→+∞
ln(1 + αt) = +∞ ≠ 0.

Proposition 2.1 gives∫ +∞

0

g′(t)

[g(t)]p
[F (t)]pdt ≤

(
p

p− 1

)p ∫ +∞

0

1

[g′(t)]p−1
[f(t)]pdt,

so that∫ +∞

0

α

(1 + αt)[ln(1 + αt)]p
[F (t)]pdt ≤

(
p

p− 1

)p ∫ +∞

0

1

[α/(1 + αt)]p−1
[f(t)]pdt,

which is equivalent to∫ +∞

0

1

(1 + αt)[ln(1 + αt)]p
[F (t)]pdt ≤

[
p

α(p− 1)

]p ∫ +∞

0

(1 + αt)p−1[f(t)]pdt.

(3.1)

Example 3: We consider g(t) = arctan(αt), t ∈ (0,+∞), with α > 0. We have
g′(t) = α/(1 + α2t2), g is non-decreasing,

lim
t→0

tp

[g(t)]p−1
= lim

t→0

tp

[arctan(αt)]p−1
= α1−p lim

t→0
t = 0

and
lim

t→+∞
g(t) = lim

t→+∞
arctan(αt) =

π

2
̸= 0.

Proposition 2.1 gives∫ +∞

0

g′(t)

[g(t)]p
[F (t)]pdt ≤

(
p

p− 1

)p ∫ +∞

0

1

[g′(t)]p−1
[f(t)]pdt,

so that ∫ +∞

0

α

(1 + α2t2)[arctan(αt)]p
[F (t)]pdt

≤
(

p

p− 1

)p ∫ +∞

0

1

[α/(1 + α2t2)]p−1
[f(t)]pdt,

which is equivalent to∫ +∞

0

1

(1 + α2t2)[arctan(αt)]p
[F (t)]pdt ≤

[
p

α(p− 1)

]p ∫ +∞

0

(1 + α2t2)p−1[f(t)]pdt.

Example 4: We consider g(t) = eαt, t ∈ (0,+∞), with α > 0. We have g′(t) =
αeαt, g is non-decreasing,

lim
t→0

tp

[g(t)]p−1
= lim

t→0

tp

eα(p−1)t
= lim

t→0
tp = 0

and
lim

t→+∞
g(t) = lim

t→+∞
eαt = +∞ ≠ 0.



ON A GENERALIZED HARDY INTEGRAL INEQUALITY 491

Proposition 2.1 gives∫ +∞

0

g′(t)

[g(t)]p
[F (t)]pdt ≤

(
p

p− 1

)p ∫ +∞

0

1

[g′(t)]p−1
[f(t)]pdt,

so that∫ +∞

0

αeαt

etp
[F (t)]pdt ≤

(
p

p− 1

)p ∫ +∞

0

1

(αeαt)p−1
[f(t)]pdt,

which is equivalent to∫ +∞

0

e−(p−α)t[F (t)]pdt ≤
[

p

α(p− 1)

]p ∫ +∞

0

e−α(p−1)t[f(t)]pdt.

In terms of the Laplace transform, i.e., for an integrable function h : (0,+∞) →
(0,+∞), L(h)(λ) =

∫ +∞
0

e−λth(t)dt, with λ > 0, we have

L(F p)(p− α) ≤
[

p

α(p− 1)

]p
L(fp)[α(p− 1)],

with p > α. This Laplace transform inequality is new to our knowledge.
Example 5: We consider g(t) = e−1/(1+αt), t ∈ (0,+∞), with α > 0. We have

g′(t) = [α/(1 + αt)2]e−1/(1+αt), g is non-decreasing,

lim
t→0

tp

[g(t)]p−1
= lim

t→0

tp

e−(p−1)/(1+αt)
= ep−1 lim

t→0
tp = 0

and
lim

t→+∞
g(t) = lim

t→+∞
e−1/(1+αt) = 1 ̸= 0.

Proposition 2.1 gives∫ +∞

0

g′(t)

[g(t)]p
[F (t)]pdt ≤

(
p

p− 1

)p ∫ +∞

0

1

[g′(t)]p−1
[f(t)]pdt,

so that∫ +∞

0

αe−1/(1+αt)

(1 + αt)2e−p/(1+αt)
[F (t)]pdt

≤
(

p

p− 1

)p ∫ +∞

0

1

[αe−1/(1+αt)/(1 + αt)2]p−1
[f(t)]pdt,

which is equivalent to∫ +∞

0

1

(1 + αt)2
e(p−1)/(1+αt)[F (t)]pdt

≤
[

p

α(p− 1)

]p ∫ +∞

0

(1 + αt)2(p−1)e(p−1)/(1+αt)[f(t)]pdt. (3.2)

Example 6: We consider g(t) = 1 − e−αt, t ∈ (0,+∞), with α > 0. We have
g′(t) = αe−αt, g is non-decreasing,

lim
t→0

tp

[g(t)]p−1
= lim

t→0

tp

(1− e−αt)p−1
= α1−p lim

t→0
t = 0

and
lim

t→+∞
g(t) = lim

t→+∞
(1− e−αt) = 1 ̸= 0.
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Proposition 2.1 gives∫ +∞

0

g′(t)

[g(t)]p
[F (t)]pdt ≤

(
p

p− 1

)p ∫ +∞

0

1

[g′(t)]p−1
[f(t)]pdt,

so that∫ +∞

0

αe−αt

(1− e−αt)p
[F (t)]pdt ≤

(
p

p− 1

)p ∫ +∞

0

1

(αe−αt)p−1
[f(t)]pdt,

which is equivalent to∫ +∞

0

e−αt

(1− e−αt)p
[F (t)]pdt ≤

[
p

α(p− 1)

]p ∫ +∞

0

eα(p−1)t[f(t)]pdt. (3.3)

Example 7: We consider g(t) =
√
t+ α, t ∈ (0,+∞), with α > 0. We have

g′(t) = 1/
[
2
√
t+ α

]
, g is non-decreasing,

lim
t→0

tp

[g(t)]p−1
= lim

t→0

tp

(t+ α)(p−1)/2
= α(1−p)/2 lim

t→0
tp = 0

and
lim

t→+∞
g(t) = lim

t→+∞

√
t+ α = +∞ ≠ 0.

Proposition 2.1 gives∫ +∞

0

g′(t)

[g(t)]p
[F (t)]pdt ≤

(
p

p− 1

)p ∫ +∞

0

1

[g′(t)]p−1
[f(t)]pdt,

so that ∫ +∞

0

1

2
√
t+ α[

√
t+ α]p

[F (t)]pdt

≤
(

p

p− 1

)p ∫ +∞

0

1{
1/

[
2
√
t+ α

]}p−1 [f(t)]
pdt,

which is equivalent to∫ +∞

0

1

(t+ α)(p+1)/2
[F (t)]pdt ≤

(
2p

p− 1

)p ∫ +∞

0

(t+ α)(p−1)/2[f(t)]pdt. (3.4)

Other examples can be presented in a similar way. These include multi-parameter functions
and special functions.

4. COMPLEMENTARY RESULTS

This section is devoted to some complementary results of Proposition 2.1.
The result below makes a simple connection between Proposition 2.1 and [16, Theorem

2.2], with an additional assumption on g′.

Proposition 4.1. Let p > 1, f, g : (0,+∞) → (0,+∞) be two functions such that
f is continuous and integrable, and g is differentiable, non-decreasing and satisfies the
following limit properties:

lim
t→0

tp

[g(t)]p−1
= 0, lim

t→+∞
g(t) ̸= 0, inf

t∈(0,+∞)
g′(t) > 0.

For any t ∈ (0,+∞), let us consider the primitive of f defined by

F (t) =

∫ t

0

f(x)dx.
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Then we have∫ +∞

0

1

[g(t)]p
[F (t)]pdt ≤ 1

inft∈(0,+∞) g′(t)

(
p

p− 1

)p ∫ +∞

0

1

[g′(t)]p−1
[f(t)]pdt,

provided that the integrals considered converge.

Proof. Since inft∈(0,+∞) g
′(t) > 0, then we have g′(t)/ inft∈(0,+∞) g

′(t) ≥ 1 for any
t ∈ (0,+∞). Proposition 2.1 directly implies that∫ +∞

0

1

[g(t)]p
[F (t)]pdt ≤ 1

inft∈(0,+∞) g′(t)

∫ +∞

0

g′(t)

[g(t)]p
[F (t)]pdt

≤ 1

inft∈(0,+∞) g′(t)

(
p

p− 1

)p ∫ +∞

0

1

[g′(t)]p−1
[f(t)]pdt.

This ends the proof. □

Proposition 4.1 provides a simple alternative to [16, Theorem 2.2] under the assump-
tions considered.

Under new assumptions on g, an alternative result to Proposition 2.1 as a direct conse-
quence of the Hardy integral inequality is proposed below.

Proposition 4.2. Let p > 1, f, g : (0,+∞) → (0,+∞) be two functions such that
f is continuous and integrable, and g is differentiable, non-decreasing and satisfies the
following limit properties:

lim
t→0

g(t) = 0, lim
t→+∞

g(t) = +∞.

For any t ∈ (0,+∞), let us consider the primitive of f defined by

F (t) =

∫ t

0

f(x)dx.

Then the Hardy integral inequality implies the result to Proposition 2.1, i.e.,∫ +∞

0

g′(t)

[g(t)]p
[F (t)]pdt ≤

(
p

p− 1

)p ∫ +∞

0

1

[g′(t)]p−1
[f(t)]pdt,

provided that the integrals considered converge.

Proof. Doing the change of variables u = g(t), which incorporates limt→0 g(t) = 0 and
limt→+∞ g(t) = +∞, we obtain∫ +∞

0

g′(t)

[g(t)]p
[F (t)]pdt =

∫ +∞

0

1

up

{
F [g−1(u)

}p
du, (4.1)

where g−1 denotes the inverse function of g and, by the definition of F ,

F [g−1(u)] =

∫ g−1(u)

0

f(x)dx.

Applying the change of variables x = g−1(v) into this integral (using again the limit
assumptions on g), we get

F [g−1(u)] =

∫ u

0

1

g′[g−1(v)]
f [g−1(v)]dv =

∫ u

0

k(v)dv, (4.2)

where k(v) = {1/g′[g−1(v)]}f [g−1(v)].
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It follows from Equations (4.1) and (4.2), and the Hardy integral inequality (as recalled
in Equation (1.1)) applied to the function k, that∫ +∞

0

g′(t)

[g(t)]p
[F (t)]pdt =

∫ +∞

0

1

up

[∫ u

0

k(v)dv

]p
du

≤
(

p

p− 1

)p ∫ +∞

0

[k(u)]pdu =

(
p

p− 1

)p ∫ +∞

0

1

{g′[g−1(u)]}p
{
f [g−1(u)]

}p
du.

(4.3)

Doing the change of variables u = g(w), we have∫ +∞

0

1

{g′[g−1(u)]}p
{
f [g−1(u)]

}p
du =

∫ +∞

0

1

[g′(w)]p
g′(w)[f(w)]pdw

=

∫ +∞

0

1

[g′(w)]p−1
[f(w)]pdw. (4.4)

Combining Equations (4.3) and (4.4), and standardizing the notation, we obtain∫ +∞

0

g′(t)

[g(t)]p
[F (t)]pdt ≤

(
p

p− 1

)p ∫ +∞

0

1

[g′(t)]p−1
[f(t)]pdt,

which is the stated inequality. This concludes the proof. □

Some examples of this proposition are presented below.

Example 1: We consider g(t) = tα, t ∈ (0,+∞), with α > 0. We have g′(t) =
αtα−1, g is non-decreasing,

lim
t→0

g(t) = lim
t→0

tα = 0

and
lim

t→+∞
g(t) = lim

t→+∞
tα = +∞.

Proposition 4.2 gives∫ +∞

0

g′(t)

[g(t)]p
[F (t)]pdt ≤

(
p

p− 1

)p ∫ +∞

0

1

[g′(t)]p−1
[f(t)]pdt,

so that∫ +∞

0

αtα−1

tαp
[F (t)]pdt ≤

(
p

p− 1

)p ∫ +∞

0

1

(αtα−1)p−1
[f(t)]pdt,

which is equivalent to∫ +∞

0

1

tα(p−1)+1
[F (t)]pdt ≤

[
p

α(p− 1)

]p ∫ +∞

0

1

t(α−1)(p−1)
[f(t)]pdt.

We see that, in this special case, the restriction of α ∈ (0, p/(p − 1)) imposed in
Example 1 illustrating Proposition 2.1 is relaxed.

Example 2: We consider g(t) = ln(1 + αt), t ∈ (0,+∞), with α > 0. We have
g′(t) = α/(1 + αt), g is non-decreasing,

lim
t→0

g(t) = lim
t→0

ln(1 + αt) = ln(1) = 0

and
lim

t→+∞
g(t) = lim

t→+∞
ln(1 + αt) = +∞.
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Proposition 4.2 gives∫ +∞

0

g′(t)

[g(t)]p
[F (t)]pdt ≤

(
p

p− 1

)p ∫ +∞

0

1

[g′(t)]p−1
[f(t)]pdt,

so that∫ +∞

0

α

(1 + αt)[ln(1 + αt)]p
[F (t)]pdt ≤

(
p

p− 1

)p ∫ +∞

0

1

[α/(1 + αt)]p−1
[f(t)]pdt,

which is equivalent to∫ +∞

0

1

(1 + αt)[ln(1 + αt)]p
[F (t)]pdt ≤

[
p

α(p− 1)

]p ∫ +∞

0

(1 + αt)p−1[f(t)]pdt.

This example is identical to Example 2, which illustrates Proposition 2.1.
Note that some of the examples presented in Section 3 cannot be derived from Proposition
4.2 because the limit conditions on g are not satisfied.

The result below shows that, under some additional assumptions on f and g, the in-
equality of Proposition 2.1 can be refined.

Proposition 4.3. Let p > 1, f, g : (0,+∞) → (0,+∞) be two functions such that f
is continuous, non-decreasing and integrable, and g is differentiable, non-decreasing and
there exists a K > 0 such that, for any t ∈ (0,+∞),

tg′(t) ≤ Kg(t).

For any t ∈ (0,+∞), let us consider the primitive of f defined by

F (t) =

∫ t

0

f(x)dx.

Then we have ∫ +∞

0

g′(t)

[g(t)]p
[F (t)]pdt ≤ Kp

∫ +∞

0

1

[g′(t)]p−1
[f(t)]pdt,

provided that the integrals considered converge. If K < p/(p− 1), this inequality is better
than that of Proposition 2.1.

Proof. Since f is non-decreasing, we obviously have

F (t) =

∫ t

0

f(x)dx ≤ f(t)

∫ t

0

dx = tf(t).

This combined with the fact that g is differentiable and non-decreasing implies that g′(t) ≥
0 for any t ∈ (0,+∞), and tg′(t) ≤ Kg(t) so that tpg′(t)/[g(t)]p ≤ Kp/[g′(t)]p−1 for
any t ∈ (0,+∞), gives∫ +∞

0

g′(t)

[g(t)]p
[F (t)]pdt ≤

∫ +∞

0

g′(t)

[g(t)]p
[tf(t)]pdt =

∫ +∞

0

tp
g′(t)

[g(t)]p
[f(t)]pdt

≤ Kp

∫ +∞

0

1

[g′(t)]p−1
[f(t)]pdt.

The desired inequality is established. Clearly, if K < p/(p− 1), we get∫ +∞

0

g′(t)

[g(t)]p
[F (t)]pdt ≤ Kp

∫ +∞

0

1

[g′(t)]p−1
[f(t)]pdt

≤
(

p

p− 1

)p ∫ +∞

0

1

[g′(t)]p−1
[f(t)]pdt.
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The obtained inequality is thus better than that of Proposition 2.1. This ends the proof. □

Example 1: We consider g(t) = ln(1 + αt), t ∈ (0,+∞), with α > 0. Then
g is differentiable and non-decreasing. Furthermore, the following inequality is
well-known: ln(1 + u) ≥ u/(1 + u) for any u ∈ (0,+∞), and we obtain

tg′(t) = t
α

1 + αt
=

αt

1 + αt
≤ ln(1 + αt) = Kg(t),

with K = 1. Therefore, in this case, if f is continuous, non-decreasing and
integrable, Proposition 4.3 gives∫ +∞

0

g′(t)

[g(t)]p
[F (t)]pdt ≤ Kp

∫ +∞

0

1

[g′(t)]p−1
[f(t)]pdt,

so that∫ +∞

0

α

(1 + αt)[ln(1 + αt)]p
[F (t)]pdt ≤

∫ +∞

0

1

[α/(1 + αt)]p−1
[f(t)]pdt,

which is equivalent to∫ +∞

0

1

(1 + αt)[ln(1 + αt)]p
[F (t)]pdt ≤ 1

αp

∫ +∞

0

(1 + αt)p−1[f(t)]pdt.

Since K = 1 < p/(p − 1), this improves the inequality given in Equation (3.1),
but under the assumption that f is non-decreasing.

Example 2: We consider g(t) = e−1/(1+αt), t ∈ (0,+∞), with α > 0. Then g is
differentiable and non-decreasing. Furthermore, using (1 + αt)2 = 1 + 2αt +
α2t2 ≥ 2αt, we have

tg′(t) = t
α

(1 + αt)2
e−1/(1+αt) =

αt

(1 + αt)2
e−1/(1+αt)

≤ αt

2αt
e−1/(1+αt) =

1

2
e−1/(1+αt) = Kg(t),

with K = 1/2. Therefore, in this case, if f is continuous, non-decreasing and
integrable, Proposition 4.3 gives∫ +∞

0

g′(t)

[g(t)]p
[F (t)]pdt ≤ Kp

∫ +∞

0

1

[g′(t)]p−1
[f(t)]pdt,

so that∫ +∞

0

αe−1/(1+αt)

(1 + αt)2e−p/(1+αt)
[F (t)]pdt ≤ 1

2p

∫ +∞

0

1

[αe−1/(1+αt)/(1 + αt)2]p−1
[f(t)]pdt,

which is equivalent to∫ +∞

0

1

(1 + αt)2
e(p−1)/(1+αt)[F (t)]pdt

≤ 1

(2α)p

∫ +∞

0

(1 + αt)2(p−1)e(p−1)/(1+αt)[f(t)]pdt.

Since K = 1/2 < 1 < p/(p − 1), this improves the inequality obtained in
Equation (3.2), but under the assumption that f is non-decreasing.

Example 3: We consider g(t) =
√
t+ α, t ∈ (0,+∞), with α > 0. Then g

is differentiable and non-decreasing. Furthermore, since t + α ≥ t, we have
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√
t+ α ≥ t/

√
t+ α, and

tg′(t) = t
1

2
√
t+ α

=
t

2
√
t+ α

≤ 1

2

√
t+ α = Kg(t),

with K = 1/2. Therefore, in this case, if f is continuous, non-decreasing and
integrable, Proposition 4.3 gives∫ +∞

0

g′(t)

[g(t)]p
[F (t)]pdt ≤ Kp

∫ +∞

0

1

[g′(t)]p−1
[f(t)]pdt,

so that∫ +∞

0

1

2
√
t+ α[

√
t+ α]p

[F (t)]pdt ≤ 1

2p

∫ +∞

0

1{
1/

[
2
√
t+ α

]}p−1 [f(t)]
pdt,

which is equivalent to∫ +∞

0

1

(t+ α)(p+1)/2
[F (t)]pdt ≤

∫ +∞

0

(t+ α)(p−1)/2[f(t)]pdt.

Since K = 1/2 < 1 < p/(p − 1), this improves the inequality established in
Equation (3.4), but under the assumption that f is non-decreasing.

Other examples could be described in a similar way.
The proposition below supplements Proposition 2.1 by giving a lower bound for the left

integral term, under some assumptions on g.

Proposition 4.4. Let p > 1, f, g : (0,+∞) → (0,+∞) be two functions such that
f is continuous and integrable, and g is differentiable, non-decreasing and satisfies the
following limit properties:

lim
t→0

g(t) = 0, lim
t→+∞

g(t) = 1.

For any t ∈ (0,+∞), let us consider the primitive of f defined by

F (t) =

∫ t

0

f(x)dx.

Then we have [∫ +∞

0

{− ln[g(t)]} f(t)dt
]p

≤
∫ +∞

0

g′(t)

[g(t)]p
[F (t)]pdt,

provided that the integrals considered converge.

Proof. Let us set

L =

∫ +∞

0

g′(t)

g(t)
F (t)dt.

Since g is differentiable, non-decreasing, with limt→0 g(t) = 0 and limt→+∞ g(t) = 1,
it is a valid cumulative distribution function. This implies that g′ is a valid probability
density function. Since the function h(t) = tp, t ∈ (0,+∞) is convex for p > 1, the
Jensen integral inequality implies that

Lp = h

[∫ +∞

0

g′(t)

g(t)
F (t)dt

]
≤

∫ +∞

0

g′(t)h

[
1

g(t)
F (t)

]
dt =

∫ +∞

0

g′(t)

[g(t)]p
[F (t)]pdt.

(4.5)
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Using the definition of F , applying an exchange of order of integration (possible because
all the functions involved are positive) and considering limt→+∞ g(t) = 1, we get

L =

∫ +∞

0

g′(t)

g(t)

∫ t

0

f(x)dxdt =

∫ +∞

0

∫ t

0

g′(t)

g(t)
f(x)dxdt

=

∫ +∞

0

∫ +∞

x

g′(t)

g(t)
f(x)dtdx =

∫ +∞

0

f(x)

∫ +∞

x

g′(t)

g(t)
dtdx

=

∫ +∞

0

f(x) {ln[g(t)]}+∞
x dx =

∫ +∞

0

f(x)

{
ln[ lim

t→+∞
g(t)]− ln[g(x)]

}
dx

=

∫ +∞

0

f(x) {− ln[g(x)]} dx. (4.6)

It follows from Equations (4.5) and (4.6), and a standardization of the notations, that[∫ +∞

0

{− ln[g(t)]} f(t)dt
]p

≤
∫ +∞

0

g′(t)

[g(t)]p
[F (t)]pdt,

which is the desired inequality. This ends the proof. □

Example 1: We consider g(t) = 1 − e−αt, t ∈ (0,+∞), with α > 0. Then g is
differentiable, non-decreasing, with limt→0 g(t) = 0 and limt→+∞ g(t) = 1 (in
fact, it is the cumulative distribution function of the exponential distribution with
parameter α). Proposition 4.4 gives[∫ +∞

0

{− ln[g(t)]} f(t)dt
]p

≤
∫ +∞

0

g′(t)

[g(t)]p
[F (t)]pdt,

which is equivalent to{∫ +∞

0

[
− ln(1− e−αt)

]
f(t)dt

}p

≤ α

∫ +∞

0

e−αt

(1− e−αt)p
[F (t)]pdt.

If we combine this result with Equation (3.3), we get the following inequalities:

1

α

{∫ +∞

0

[
− ln(1− e−αt)

]
f(t)dt

}p

≤
∫ +∞

0

e−αt

(1− e−αt)p
[F (t)]pdt ≤

[
p

α(p− 1)

]p ∫ +∞

0

eα(p−1)t[f(t)]pdt.

Example 2: We consider g(t) = tα/(1 + tα), t ∈ (0,+∞), with α > 0. Then g is
differentiable, non-decreasing, with limt→0 g(t) = 0 and limt→+∞ g(t) = 1 (in
fact, it is the cumulative distribution function of a simplified version of the Dagum
distribution with parameter α). Proposition 4.4 gives[∫ +∞

0

{− ln[g(t)]} f(t)dt
]p

≤
∫ +∞

0

g′(t)

[g(t)]p
[F (t)]pdt,

which is equivalent to{∫ +∞

0

[ln(1 + tα)− α ln(t)] f(t)dt

}p

≤ α

∫ +∞

0

(1 + tα)p−2t−α(p−1)−1[F (t)]pdt.

Example 3: We consider g(t) = e−t−α

, t ∈ (0,+∞), with α > 0. Then g is
differentiable, non-decreasing, with limt→0 g(t) = 0 and limt→+∞ g(t) = 1 (in
fact, it is the cumulative distribution function of the inverse Weibull distribution
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with parameter α). Proposition 4.4 gives[∫ +∞

0

{− ln[g(t)]} f(t)dt
]p

≤
∫ +∞

0

g′(t)

[g(t)]p
[F (t)]pdt,

which is equivalent to[∫ +∞

0

1

tα
f(t)dt

]p
≤ α

∫ +∞

0

1

tα+1
e(p−1)t−α

[F (t)]pdt.

These are just a few notable examples of the use of Proposition 4.4; other examples could
be presented in a similar way.

The result below shows that, under some assumptions on f and g, an improvement can
be made for the constant factor of Proposition 2.1.

Proposition 4.5. Let p > 1, f, g : (0,+∞) → (0,+∞) be two functions such that f is
continuous and integrable, and g is differentiable, non-decreasing, satisfying

lim
t→0

g(t) = 0

and such that f/g′ is non-decreasing. For any t ∈ (0,+∞), let us consider the primitive
of f defined by

F (t) =

∫ t

0

f(x)dx.

Then we have ∫ +∞

0

g′(t)

[g(t)]p
[F (t)]pdt ≤

∫ +∞

0

1

[g′(t)]p−1
[f(t)]pdt,

provided that the integrals considered converge.

Proof. Since g is differentiable and non-decreasing, we can write∫ +∞

0

g′(t)

[g(t)]p
[F (t)]pdt =

∫ +∞

0

g′(t)

[g(t)]p

[∫ t

0

f(x)dx

]p
dt

=

∫ +∞

0

g′(t)

[g(t)]p

[∫ t

0

f(x)

g′(x)
g′(x)dx

]p
dt. (4.7)

Using the facts that f/g′ is non-decreasing, g non-decreasing and limt→0 g(t) = 0, we
obtain ∫ t

0

f(x)

g′(x)
g′(x)dx ≤ f(t)

g′(t)

∫ t

0

g′(x)dx =
f(t)

g′(t)
g(t). (4.8)

It follows from Equations (4.7) and (4.8) that∫ +∞

0

g′(t)

[g(t)]p
[F (t)]pdt ≤

∫ +∞

0

g′(t)

[g(t)]p

[
f(t)

g′(t)
g(t)

]p
dt =

∫ +∞

0

1

[g′(t)]p−1
[f(t)]pdt,

which is the desired inequality. This ends the proof. □

Therefore, under the additional assumption that f/g′ is non-decreasing, the constant
factor [p/(p− 1)]p in Proposition 2.1 can be replaced by 1, which is a clear improvement.

5. CONCLUSION

In this article, we make several contributions to integral inequalities. We establish a
new generalization of the Hardy integral inequality and improve this generalization under
more stringent assumptions. We also derive a lower bound on the main integral term. We
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provide numerous examples to demonstrate how the theory can be applied in both simple
and general settings. Future work could include adapting our main integral inequality to
the multidimensional case and exploring its reversed version.
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