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ON FIVE ORIGINAL INTEGRAL INEQUALITIES OF THE HARDY-HILBERT
TYPE

CHRISTOPHE CHESNEAU

ABSTRACT. This article is devoted to five integral inequalities of the Hardy-Hilbert type.
Each one has its own unique features. In particular, we present new trigonometric Hardy-
Hilbert-type integral inequalities that yield precise upper bounds involving weighted inte-
gral norms of the main functions. Complete and rigorous proofs are provided.

1. INTRODUCTION

The study of inequalities has always played a central role in mathematical analysis. It
has been both a subject in its own right and a powerful tool in areas such as harmonic
analysis, functional analysis and differential equations. One of the most notable results in
this field is the Hardy-Hilbert integral inequality. It is renowned for its elegance, versatility,
and wide range of applications. The inequality, in its most celebrated form, is described
below. Letp > 1, ¢ = p/(p— 1) and f, g : [0,400) — [0,400) be two functions such
that

400 +oo
/ fP(x)dx < 400, / 9%(y)dy < +o0.
0 0

/0+°°/0+°° L f()g(y)dzdy

Then we have

T+

Yy
<o (| ” f%:)dx)l/p (/ +Oog%y)dy)l/q. (1)

This inequality is known to be particularly sharp. It can be traced back to the pioneering
work of G.H. Hardy and D. Hilbert. It is a natural extension of the classical Hilbert double
series inequality to the framework of integral operators. Further details may be found in
the monographs [5, 13} [14], the comprehensive survey [1]], and in recent contributions such
as [6, [7, 110} [114 12} 9L 18] 121 3, 14].
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This article advances this line of research by establishing five new integral inequali-
ties of the Hardy-Hilbert type. Adopting standard notations (to be specified later), these
inequalities are associated with the integrals described below.

First double integral:

/2 1
/0 /0 cos?(x) cos?(y) + sin’(z) sin”(y) F(@)g(y)dwdy.

Second double integral:

T T 1
T dxdy.
/0 /0 1+ cos(z) cos(y) f(x)g(y)dzdy

Third double integral:

Foo 1 Isin(x + y)|
/ / zty ——— f(@)g(y)dzdy.

Fourth double integral:

+oo +oo 1
/0 /0 WF(x)G(y)dxdy.

First triple integral:

/o1 /01 /01 1 _lxyzf(x)g(y)h(Z)dxdydz.

Each inequality preserves the spirit of the classical Hardy-Hilbert integral inequality while
introducing new refinements. In particular, the trigonometric variants derived from the
first three double integrals expand the theory by incorporating sine and cosine functions.
These lead to original upper bounds involving weighted integral norms with trigonometric
weight functions. The variant associated with the fourth integral innovates through its use
of primitives of the main functions. The three-dimensional variant derived from the first
triple integral introduces an original integrand with a singularity at zyz = 1. Detailed
proofs are included for clarity and accessibility.

The rest of the article is organized as follows: The main results are presented in Section
followed by concluding remarks in Section 3]

2. MAIN RESULTS

The main results are presented as theorems, each with its own subsection containing the
statement and proof.

2.1. First theorem. The first integral inequality of the Hardy-Hilbert type, presented in
the theorem below, is of a trigonometric nature and involves a sharp constant equal to 7.

Theorem 2.1. Letp > 1, g =p/(p—1) and f,g : [0,7/2] = [0, +00) be two functions
such that

w/2
/0 sm( )f (x)dx < 400, / n2 g U(y)dy < +oo.
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Then we have

/2 1
/0 /o cos?(z) cos?(y) + sin?(z) sin?(y) f(x)g(y)dzdy

/2 1 ) 1/p /2 1 . 1/q
=7 </0 sin(2x) ! (a:)dx) (/0 sin(2y)g (y)dy) '

Proof. 1tis clear that, for any z,y € (0,7/2),
cos?(z) cos?(y) + sin?(z) sin?(y) > 0.

A suitable decomposition of the integrand and the Holder integral inequality give

w/2 1
/ / C082 COSQ( )+Sin2( )SiHQ( )f(x)g(y)dxdy

/2 1
/ / Cos2 ) cos2(y) + sin?(x) sin?(y ))1/Pf( ?)
(y)dzdy

(0052( ) cos?(y )+s1n () sin?(y))Y/a g\

w/2 /2 1 ) 1/p
- </0 /0 cos” (@) co2(y) + sin(@) si?() (x)dxdy>

/2 /2 1 . . 1/q .
’ /0 /0 cos? (x) cos? (y) + sin’(z) sin”(y) Wdedy | @1

We recall the following integral result:

t—m/2
/ 71'

~/2 1 o [ 3
/0 o () T a2 (D) t = L/a arctan [\/atan(t)]] L T

Using the Fubini-Tonelli integral theorem, the above integral result under a suitable config-
uration and the standard trigonometric formula sin(2a) = 2 cos(a) sin(a) for any a € R,
we get

w/2 1 ,
L oo s
w/2 /2 1 )
=), </ cos?(z) cos?(y) + sin® (@) sin? () dy) s
m/2 1 /2 1 )
/o cos?(x) (/o cos2(y) + tan?(z) sin?(y) dy) Fole)d
w/2 1 - ) ]
/o COSQ(x) x 2 tang(x)f (z)dx
/0 2sin(z cos( )fp(m)dw

= / fP(x)dx. (2.2)
0 SlIl

Il
3
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Similarly, we have
/2 pm/2 1
9(y)dxd
L o (@) cost(y) + sl () sl ()| W

0
m/2 /2 1 q
) </ cos? () cos?(y) + sin® () sin (3) dx) i

/2 1 w/2 1 ;
B A cos?(y) (A cos?(x) + tan?(y) sin®(z) dx) 9*(w)dy

/2 T
/ X 9 (y)dy
0

cos?(y)  2y/tan?(y)

/2 1 .
7r/0 2sin(y) cos(y) 9*(y)dy

/2 1
= (y)dy.
m /O sy W)W
Joining Equations (2.1)), (2.2) and 2.3)), we derive

/2 w/2 1
/o /0 cos?(z) cos?(y) + sin?(z) sin?(y) f(x)g(y)dzdy

/2 1 ) 1/p /2 1 , 1/q
= (W/O sin(2x)f (x)d:v) (W/O sin(2y)g (y)dy)

/2 1 . 1/p /2 1 .
-7 (/0 sin(2x) ! (m)dm) (/0 sin(2y)g (y)dy)

The desired inequality is obtained.

2.3)

O

The result seems to be a new contribution to the Hardy-Hilbert-type integral inequalities,

characterized by its involvement of trigonometric functions

Note that the ratio term cos?(x) cos?(y) + sin?(z) sin?(y) can be expressed in several

ways. In particular, we have

cos?(z) cos?(y) + sin?(z) sin?(y) = 1 — cos®(x) — cos?(y) + 2 cos?(z) cos?(y),

cos?(z) cos?(y) + sin?(z) sin?(y) = 1 — sin?(z) — sin®(y) + 2sin?(z) sin®(y)

and
cos?(z) cos?(y) + sin?(z) sin?(y) = % (1 + cos(2z) cos(2y)) .

This last concise expression has inspired the second theorem formulated below.

2.2. Second theorem. The second integral inequality of the Hardy-Hilbert type, presented
in the theorem below, is of a trigonometric nature and involves a sharp constant equal to 7.

Theorem 2.2. Letp > 1, q = p/(p — 1) and f,g : [0,7] — [0,+00) be two functions

such that
T 1

o sin(z)

1
sin(y)

fP(x)dx < o0, / 94(y)dy < +o0.
0
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Then we have

T pmw 1
/0 /0 15 cos(a) cos(y) | 9w drdy

o[ atronm)” ([ o)

Proof. We obviously have, for any z,y € (0, 7),
1+ cos(z) cos(y) > 0.

A suitable decomposition of the integrand and the Holder integral inequality give

/07r /07r 1+ cos(gl,;) cos(y) f(@)g(y)dxdy
- /0 /o (1+ COS(J’J;COS(Z/))l/p f(z) x 1 j_ cos(a:;cos(y))l/qg(y)
= (/0 /o 1+ cos(i‘) cos(y) fp(x)dxdy>

T 1 , 1/q
) </0 /o 1+ cos(z) cos(y)g (y)dxdy) ' (2.4)

We recall the following integral result:

/oﬁ @ [sin2<a> aretan [ta“ @ e (‘;)H: = o)

Using the Fubini-Tonelli integral theorem and the above integral result under a suitable
configuration, we get

[ e et = [ ([ rresremgy) e
— /07r sinﬂéx) fP(x)dx = W/Oﬂ Sinl(x) FP(2)da. 25

Similarly, we have

/07r /; 1+ cos(;) cos(y) 9" (y)dudy = /07r (/OTr 1+ cos(:glv) cos(y) dff) 9% (y)dy

T 1
= . gqydy:ﬂ/ —— 9" (y)dy. (2.6)
/0 sin(y) ) o sin(y) )
Joining Equations (2.4)), (2.3)) and 2.6)), we derive

/07r /07r 1+ cos(lx) cos(y) f(@)g(y)dedy

™ 1/p ™ 1/q
= <7T/0 sinl(x) fp(x)dx>1/ (W/o sinl(y) gq(y)dy?/
([ @m@ren) ([ sgron)

This concludes the proof. (]

dxdy
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This appears to be a new Hardy-Hilbert-type integral inequality in the literature, which
combines simplicity with the use of trigonometric functions. The associated weighted in-
tegral norms are also original. These, when combined, may lead to further extensions
and applications in the study of related inequalities. We also note that alternative repre-
sentations of the trigonometric integrand are possible, highlighting the versatility of the
inequality.

2.3. Third theorem. The third integral inequality of the Hardy-Hilbert type, presented in
the theorem below, is of a trigonometric nature and involves an original upper bound.

Theorem 2.3. Letp > 1, q=p/(p— 1) and f,g : [0,+00) — [0, +00) be two functions
such that

+o0 +oo
/ P (@) cos(x) Pz < +oo, / P ()| sin(2)[Pdz < +o0,
0 0

+o0 +oo
/ 49(y)| cos(y)|*dy < +oo, / 49(y) | sin(y)|%dy < +oo.
0 0

Then we have

/+oo /+oo | sin(z + y)|f(m>g(y)da:dy

Tty

< St [( [ st ) v ([ swismra)
([ penseps)” ([ swlsra) 1/‘1] |

Proof. Using the standard trigonometric formula sin(a+b) = cos(a) sin(b)+cos(b) sin(a)
for any a, b € R and the triangle inequality, we get

/+Oo /+oo | sin(z + y)\f(x)g(y)dxdy

1/q

oo 1 | cos(x) sin cos(y) sin(x
:/ / | (ygiy Wsint)l (z)g(y)dady
/+oo /+oo | cos(z) sin(y )|f($)g(y)dxdy
r+y

+f - / " LeosW @ ¢ o)y

T+y
—+oo —+oo
|

where

—+oo +oo 1
- +yfr(x)gf(y)dxdy+ /O /O . +yfo(fv)g<>(y)dfvdy7 (2.7

fi(@) = f(x)|cos(@)], gi(y) = g(y)|sin(y)|

and

fo(x) = f(2)]sin(z)],  go(y) = g(y)| cos(y)].
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Applying the Hardy-Hilbert integral inequality in Equation (1.1 twice to the functions
fTa gt and fo, o ylelds

[T e [ A @y
< st (o) ([ o)
+ @ ( /0 - ffi(a:)dx) " ( /0 - gg(y)dy) .
- =07 [( [ retemtra) ([ o)

([ ) sin<x>|de) " (/ " ) cos(y) l/q] . 28)

Joining Equations (2.7) and (2.8}, we derive
+oo —+o0
/ / | Snie + y)| — . f(@)g(y)dedy

r+vy

) </0+OC e Sin(x”pdx) N (/;OO 9'(y)l cos(y)lqdy> l/q] .

The desired inequality is established. (I

1/q

1/q

This result should be regarded as a trigonometric variant of the Hardy-Hilbert integral
inequality, yielding an original upper bound involving various weighted integral norms of

fand g.

2.4. Fourth theorem. The fourth integral inequality of the Hardy-Hilbert type, presented
in the theorem below, is of a primitive nature and involves a sharp constant.

Theorem 2.4. Letp > 1, g=p/(p—1)and f,g : [0,+00) — [0, +00) be two functions

such that
“+oo

+oo
/ fP(z)dr < 400, 99(y)dz < 400,

0 0
and F,G : [0,400) — [0, +00) be the corresponding primitives, i.e., for any t > 0,
provided that they exist.

t
G(t) = dy,
/ f(x (t) /0 9(y)dy

Then we have

+o0 +o0 1
/o /O WF(ﬂf)G(y)dxdy

<5 " f%m)dx)l/p (/ ” oy

1/q
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Proof. The proof relies on a careful manipulation of the main double integral. Applying
the Fubini-Tonelli integral theorem and performing two well-chosen integrations by parts

based on lim, o F(z) = 0, lim,— 4 o0 F(z)/(z+y)? = 0forany y > 0, lim,_,0 G(y) =
0 and limy_, ;o G(y)/(z +y) = 0 for any 2 > 0, we obtain

[ [ ey
/m </+mx+1y> Fla Wﬂf) Gly)dy

([ 2(a:+y (x)E::W - /O+<>o (—Wiy)z) f(w)d$> G(y)dy

;;m A o F(@)G(y)drdy
5[ ([ chpcwm) s
i/om (5 E: E /foo (<53 ot st

It follows from the Hardy-Hilbert integral inequality in Equation (I.I)) applied to f and g

that
+oo +oo
dxd
[ st

< m (/ fP(x )dﬂf)l/p (/Om gq(y)dy)l/q- (2.10)

Joining Equations (2.9) and (2.10)), we derive
+oo —+oo
7F )G (y)dzdy
A

<5 (| ” f%)dx)l/p (/ ” g%y)dy)l/q.

This ends the proof. (]

This integral inequality is original in that the main double integral involves primitives,
while the classical Hardy-Hilbert integral inequality is not employed in this case. Instead,
the strategy of working directly on the integrand of the double integral proves to be more
effective here.

2.5. Fifth theorem. The fifth integral inequality of the Hardy-Hilbert type, presented in
the theorem below, is of a three-dimensional nature and involves an original constant de-
fined as a series.

Theorem 2.5. Let f,g,h: [0,1] — [0, —|—oo) be three functions such that

/f )dx < +00, y)dy < 00, /h2 )dz < +o0.
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Then we have

/01 /01 /01 1 jxyzf (2)g(y)h(z)dzdydz

1 1/2 1 1/2 1 1/2
<q ( / f?(mdx) ( / g2<y>dy) ( / h%z)dz) ,
0 0 0
where
+oo 1
0= 7;) TR S 1.689. (2.11)

Proof. For any z,y, z € (0,1), it is clear that

! >0
1—ayz =
Moreover, the following geometric series expansion holds:
1 =
1—zyz nz:%(a:yz) '

Using this and the exchange between integral and series by uniform convergence, we get

/01 /01 /01 1 _lmyzf(m)g(y)h(z)dxdydz

- / 1 / 1 / 1 guyz)"f(w)g(y)h(z)dmdydz

- f / 1 / 1 / (ay2)" £ (@)g y)h(z)dadydz
+oo 1

:; ( /O 2 f(x)dx) ( /O 1y"g(y)dy> ( /O 1z”h(z)dz) R T

The Cauchy-Schwarz integral inequality gives, for any n € N,

1 1 1/2 1 1/2 1 1 1/2
z" f(x)dx < / x2"daj> (/ 2xda:> :(/ 2:1:da:>
| e ([ [P e ([ 2@
Similarly, we have
1 1 1/2 1 1/2 1 1 1/2
y”gydy§</ y2"dy> (/ gzydy) =(/ g2ydy)
| vratwar< ([ ) ([ 70
and
1/2 1/2 1/2

/Olz”h(z)dx < (/01 22"dz) (/Oth(z)dz) - ﬁ (/Oth(z)dz)
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Combining these inequalities, we obtain

f (/lenf(w)dff) (/01 y”g(y)dy> (/01 Z"h(z)dz)

n=0
1/2

<5 ater ([ #0w) " ([0

1 1 ) 1/2
— = ([ n2»a
X o1 (/0 (2) Z)
1/2

=0 </01 f2(:v)dx> . (/01 g2(y)dy> . (/01 h2(z)dz> : (2.13)

where (2 is given in Equation (2.11).
It follows from Equations (2.12)) and (2:13)) that

/01 /01 /01 1 jxyzf (z)g(y)h(z)dxdydz
! 1/2 1/2
SQ(/O f2(x)d:v> (/0 ) (/ (e )

We get the desired inequality. (]

1/2

1/2

3. CONCLUSION

In this article, we present five distinct Hardy-Hilbert-type integral inequalities, each
characterized by a specific integrand structure and a precise constant factor. These results
extend existing inequalities in the literature, providing fresh perspectives on their trigono-
metric and analytic formulations. Proposed areas for future research include exploring
multidimensional analogues. For instance, based on the framework of the trigonometric
integral inequalities and logical notation, one could consider the triple integrals

/2 pm/2 pw/2 1
/ / / cos?(z) cos?(y) cos2(z) + sin?(x) sin? (y) sin?(2)
z)dzxdydz,

A 1
/0 /0 /0 1+COS(I)COS(ZJ)cog(z)f(x)g(wh(z)da?dydz

/+°° /+°° /+<><> o w+y+Z)|f($)9(y)h(z)dxdydz.

rT+y+z
Other areas for investigation include connections with special functions and applying these
inequalities to problems in functional analysis and operator theory.
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