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SUBEXPONENTIAL COMPUTATION OF TRUNCATED THETA SERIES

FRANCESCO SICA

ABSTRACT. We describe an algorithm to compute in Opec
?
k log kq binary operations,

for some absolute constant c ¡ 0, expressions like
¸

1¤n¤2α
e

2πin2

2k na

and ¸

1¤n¤2α

1¤m¤2β

e
2πinm

2k namb

where α, β � Opkq and a, b are fixed (small) nonnegative integers. The error terms in
these computations are Ope�ckq.

Keywords. Theta series, partial sums, integer factorisation.

1. INTRODUCTION

The problem of factoring large integers is central in cryptography and computational
number theory. The current state of the art in factoring large integers N is the Number Field
Sieve algorithm [2, 3], a continuation of the efforts started with the Quadratic Sieve [8]
and Continued Fraction [6] algorithms. We should also mention the Elliptic Curve Method
(ECM) by H. Lenstra [4], which is particularly useful when N has a small prime factor
p. They are all probabilistic factoring algorithms. These algorithms have heuristic run-
ning times O

�
exppcplogNq1{3plog logNq2{3q�, O�exppcplogNq1{2plog logNq1{2q� and

O
�
exppcplog pq1{2plog log pq1{2q� respectively, for some constant c (not always the same).

The first two strive to find nontrivial arithmetical relations of the form x2 � y2 pmod Nq
(which lead to a nontrivial factor by computing gcdpN, x � yq), whereas the third is a
generalisation of Pollard’s p�1 method [7], involving computations in some elliptic curve
group instead of Z{N . We should note, however, that there exist probabilistic algorithms
with proved running time O

�
exppp1 � op1qqplogNq1{2plog logNq1{2q� [5]. As far as the

author is aware, no such rigorous bound exists in the form O
�
exp pplogNqcq� for c   1{2.
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In contrast, deterministic factoring algorithms are still exponential, with the best re-
sult requiring O

�
N1{5plogNq16{5{plog logNq3{5� bit operations [1]. The deterministic

approach introduced in [9] is different. It essentially tries to compute the sum of divisors
function σpnq � °

d|n d through successive averages (i.e., Cesaro means) via computa-
tions of series arising from the Riemann zeta function. In our researches, a crucial role is
played by the evaluation of double series like¸

1¤n1¤x
1¤n2¤y

e2πippn1,n2qnλ
1n

µ
2 (1.1)

to a fixed precision1 Opmaxpx, yq�c1q in subexponential time, that is, performing
Opmaxpx, yqϵq binary computations for an arbitrary ϵ ¡ 0. Here, p P RrX,Y s and
λ, µ ¥ 0 are fixed (small) integers. If ppX,Y q � a1X � a2Y � a3, then (1.1) splits
into the product

e2πia3

¸
1¤n1¤x

e2πia1n1nλ
1

¸
1¤n2¤y

e2πia2n2nµ
2 .

Using ¸
n¤x

e2πiunnk � 1

p2πiqk
dk

duk

¸
n¤x

e2πiun � 1

p2πiqk
dk

duk

�
e2πiurxs � 1

e2πiu � 1



,

one can then achieve the computation to the required precision (say Opmaxpx, yq�c1q) in
subexponential time. The present work can be viewed as a first nontrivial follow-up.

1.1. Remarks on notation. We are concerned with (1.1), with ppX,Y q � X2{2k, Y 2{2k
or XY {2k. In the following, ekpxq is a shorthand for e

2πix

2k and epxq � e0pxq, so that (1.1)
becomes ¸

1¤n1¤x
1¤n2¤y

e
�
ppn1, n2q

�
nλ
1n

µ
2 .

We will also write a finite sum in j¸
1¤n¤x
1¤m¤y

e
�
ppn,mq�nλmµ

�
¸
j

¸
1¤n1¤xj

1¤n2¤yj

e
�
ppn1, n2q

�
n
αj

1 n
βj

2

¸
1¤m1¤x1

j

1¤m2¤y1j

e
�
ppm1,m2q

�
m

γj

1 m
δj
2

to denote¸
1¤n¤x
1¤m¤y

e
�
ppn,mq�nλmµ

�
¸
j

Cj

¸
1¤n1¤xj

1¤n2¤yj

e
�
ppn1, n2q

�
n
αj

1 n
βj

2

¸
1¤m1¤x1

j

1¤m2¤y1j

e
�
ppm1,m2q

�
m

γj

1 m
δj
2

and ¸
j

Cj

¸
1¤n1¤xj

1¤n2¤yj

n
αj

1 n
βj

2

¸
1¤m1¤x1

j

1¤m2¤y1j

m
γj

1 m
δj
2 ¤ c2

¸
1¤n¤x
1¤m¤y

nλmµ ,

1Positive absolute constants – independent of x, y, u, v, k – will be denoted c1, c2, . . . .
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with the involved constant being absolute.

2. GENESIS OF THE PROBLEM

In [9], it is mentioned that the bottleneck in the analytic factorization approach is the
computation in Opx�c3q of such series as¸

n1,n2¥1

ep2?xn1n2q
n
3{2
1 n2

2

, (2.1)

where x is close to the integer to be factored. The first step in calculating (2.1) within the
required precision is to consider the sum of terms

pn1, n2q P r2k1 , 2k1�1q � r2k2 , 2k2�1q (2.2)

over boxes of size 2k1 � 2k2 , for maxp2k1 , 2k2q ¤ xc4 . There are Oplog2 xq such boxes.
Each box is then subdivided into x2ϵ boxes by equal subdivision of its sides into xϵ inter-
vals. We are thus reduced to considering sums over a subexponential number of boxes of
type

pn1, n2q P ry1, y1 � 2uq � ry2, y2 � 2vq , (2.3)
where 2k1 ¤ y1   2k1�1, 2k2 ¤ y2   2k2�1 are integers and maxp2u{y1, 2v{y2q   x�ϵ.
Summing over these boxes allows to develop n

�3{2
1 and n�2

2 , as well as
?
n1n2 in the

exponential, into Taylor series truncated after a finite number of terms. This will work
as long as the box vertices in (2.2) have coordinates at least xϵ. If this is not the case, it
suffices to sum over the coordinates   xϵ trivially and reason in the way described if the
other coordinate is ¡ xϵ.

For example, we can write, for 0 ¤ r   2u and 0 ¤ s   2v ,

2
a
xpy1 � rqpy2 � sq � 2

?
xy1y2 �

c
xy2
y1

r �
c

xy1
y2

s

� 1

2

c
xy2
y31

r2 � 1

2

c
xy1
y32

s2 � 1

2

c
x

y1y2
rs� � � � (2.4)

with the error becoming smaller and smaller in absolute value, a finite number of terms
sufficing to reduce it below Opx�c5q if y1, y2 are larger than xϵ (but in any case less than
xc1 ). Similar expansions are derived for py1 � rq�3{2py2 � sq�2. Since eϵ � 1 � Opϵq,
we can approximate (2.1) in a box (2.3) by considering only truncated Taylor expansions
in r, s, to arrive to sums of type ¸

0¤r 2u

¸
0¤s 2v

e
�
ppr, sq�rasb (2.5)

for a, b � Op1q and where p P RrX,Y s is a polynomial with coefficients in r0, 1s, us-
ing periodicity. Another approximation of a diophantine nature is then performed by
approximating ppX,Y q with ppX,Y q coefficient-wise to the nearest rational coefficient
with denominator 2k for k large enough that |ppr, sq � ppr, sq|   x�ϵ for all pr, sq P
r0, 2uq � r0, 2vq. We then obtain a final approximation¸

0¤r 2u

¸
0¤s 2v

ek
�
fpr, sq�rasb , (2.6)

where f P ZrX,Y s and again a, b � Op1q, albeit with a larger constant involved. It is
these expressions that we will show how to compute recursively. In the following, we
will suppose that a, b � Oplog xq and will focus on the simplest nontrivial case when
fpX,Y q � X2, Y 2 or XY .
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3. THE CASE OF SECOND-DEGREE WITH SMALL COEFFICIENTS

We consider the following sums (for maxp2u, 2vq � Opxc6q and natural numbers a, b �
Oplog xq): ¸

0¤r 2u

¸
0¤s 2v

ekprsqrasb �
¸

0¤r 2u

¸
0¤s 2v

e
2πirs

2k rasb (3.1)

Note that in (3.1), one can suppose that maxpu, vq ¤ k, since, after integer division by 2k,
we have r � ρ2k � r1 with 0 ¤ ρ   2u�k and s � σ2k � s1 with 0 ¤ σ   2v�k, and the
previous equation becomes¸

0¤r1 minp2u,2kq

¸
0¤s1 minp2v,2kq

ekpr1s1q
¸

0¤ρ 2u�k

¸
0¤σ 2v�k

pρ2k � r1qapσ2k � s1qb

and the inner double sums on ρ and σ can be calculated explicitly after expanding the
products, thereby reducing the computation of (3.1) to the evaluation of similar sums for
smaller values of a, b and u, v ¤ k. Note also that, in the trivial case when u � v ¤ k, a
Maclaurin expansion of ekp�q with Oplog xq terms will reduce the sum to a computation of
Bernoulli polynomials of degree bounded by Oplog xq. In particular, in the nontrivial case
we have 2k � Opxc7q.

Let now k1 � rk{2s and perform integer divisions by 2k1 to write in (3.1)#
r � r02

k1 � r1 p0 ¤ r1   minp2u, 2k1q, p0 ¤ r0   2u�k1q ,

s � s02
k1 � s1 p0 ¤ s1   minp2v, 2k1q, p0 ¤ s0   2v�k1q .

(3.2)

Then, after noticing that ekp22k1r0s0q � 1, we obtain¸
0¤r 2u

¸
0¤s 2v

ekprsqrasb �
¸

0¤r0 2u�k1

0¤r1 minp2u,2k1 q

¸
0¤s0 2v�k1

0¤s1 minp2v,2k1 q

ek�k1
pr0s1qek�k1

pr1s0qekpr1s1qpr02k1 � r1qaps02k1 � s1qb .

As mentioned previously, since r1s1 � Op2kq, we can develop ekpr1s1q into a Maclaurin
series using

ekpr1s1q �
¸

κ1¤log x

1

κ1!

�
2πir1s1

2k


κ1

�Opx�c8 log log xq

to get¸
0¤r 2u

¸
0¤s 2v

ekprsqrasb

�
¸

1¤j¤Oplog3 xq

¸
0¤r0 2u�k1

0¤s1 minp2v,2k1 q

ek�k1
pr0s1qrαj

0 s
βj

1

¸
0¤s0 2v�k1

0¤r1 minp2u,2k1 q

ek�k1
pr1s0qrγj

1 s
δj
0

with maxjpαj , βj , γj , δjq � Oplog xq (the constant in this upper bound is a priori larger
than the constant involved in the upper bound of a, b � Oplog xq, although with a minimum
of work it can be made practically the same). It should be noted at this point that each
term in j factors into the product of two independent sums, which allows to compute the
product by computing the factors individually and multiplying the results together. The
procedure can be iterated for each of the factors: since maxp2u�k1 , 2v�k1q ¤ 2k�k1 ¤
2k1 , defining k2 � rk1{2s and integer-dividing each variable by 2k2 , we are reduced to the
same computation as above, with k replaced by k1, k1 replaced by k2, u by u � k1 and v
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by minpv, k1q for the first factor – resp. u by v � k1 and v by minpu, k1q for the second
factor. Note also that k � k1 � k1 or k1 � 1, so that, for X P R,

ek�k1
pXq � ek1

pε1Xq ,

where ε1 � 1, 2. In particular, for each of¸
0¤r0 2u�k1�X1,1

0¤s1 minp2v,2k1 q�Y1,1

ek1
pε1r0s1qrαj

0 s
βj

1

and ¸
0¤s0 2v�k1�X1,2

0¤r1 minp2u,2k1 q�Y1,2

ek1
pε1r1s0qrγj

1 s
δj
0 ,

when splitting the variables as in (3.2) by integer division by 2k2 , we introduce Oplog3 xq
new terms, from the Maclaurin expansion of the exponential of the product of the remain-
ders which needs, by definition of �, to be expanded to the same log x terms.

When the two expansions are multiplied together, we will have a total of Oplog6 xq
terms, which needs to be multiplied by the number of j-terms to find a grand total of
Oplog3�6 xq terms. Each of these terms will be a product of 4 � 22 sums of type¸

1¤n1 X2,m

1¤n2 Y2,m

ek2
pε1ε2n1n2qnλ

1n
µ
2 ,

where εi P t1, 2u for i � 1, 2, and X2,m, Y2,m ¤ 2k2 for m � 1, 2, 3, 4.
In general, define kω � rkω�1{2s, for ω ¥ 3. Then¸
0¤r 2u

¸
0¤s 2v

ekprsqrasb

�
¸

1¤j¤Oplog3�2ω�3 xq

¹
1¤m¤2ω

¸
0¤rpmq Xω,m

0¤spmq Yω,m

ekω pε1 � � � εωrpmqspmqqrαj,m

pmq s
βj,m

pmq , (3.3)

where Xω,m, Yω,m ¤ 2kω and εi P t1, 2u. By induction, kω � k{2ω � ϵpωq, where
0 ¤ ϵpωq   2. At the ω-th step, the computation of¸

0¤rpmq Xω,m

0¤spmq Yω,m

ekω
pε1 � � � εωrpmqspmqqrαj,m

pmq s
βj,m

pmq

trivially takes Op22kω q operations; after finitely many ω steps this becomes Opxϵq. At that
point, the overall computation time of (3.3) will be bounded by Opxϵ log3�2

ω�3 xq.
In fact, in the previous analysis, the optimal choice of ω is such that 2ω � c9

a
k{ log k.

In that case, the number of j-summands increases to and the factors’ computation in (3.3)
can be reduced to the same order of magnitude O

�
ec10

?
k log k

� � O
�
ec11

?
log x log log x

�
.

Finally, notice that a truncated theta expression like¸
1¤n¤2α

e
2πin2

2κ na

can be transformed into the case just considered by writing the integer division n � r2k�s
as before, where k � rκ{2s, and using a Maclaurin expansion for eκps2q.
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4. CONCLUSION

Unfortunately, the previous method is very specialized and cannot readily be general-
ized to polynomials in more than two variables or degree higher than two. For instance,
considering, for even k, ¸

0¤r 2k

ekpr3q

and writing r � r02
k1 � r1 � r02

k{2 � r1 as above, the previous expression becomes¸
0¤r0,r1 2k1

ek1
p3r0r21qekpr31q

and doesn’t split into a nontrivial product. There may be other splittings that could lead to
a subexponential algorithm, but none seem as natural as what we described in this work.
Being able to generalize this approach to a polynomial exponential sum in two variables of
arbitrary degree would lead to a deterministic subexponential factoring algorithm.
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