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SOLUTION OF THE MILLENNIUM PROBLEM FOR THE NAVIER-STOKES
EQUATIONS

ALEXANDER G. RAMM

ABSTRACT. One of the millennium problems can be stated as follows: can there be
smooth, not vanishing identically initial data for the Navier-Stokes equations in R3 such
that the corresponding solution to the NSP (Navier-Stokes problem) exists for all times
t ≥ 0? We prove that such a solution does not exist.

1. INTRODUCTION

Consider the Navier-Stokes problem (NSP) in R3:

v′ + (v · ∇)v = −∇p+ ν∆v + f, x ∈ R3, t ≥ 0, (1.1)

∇ · v = 0, (1.2)

v(x, 0) = v0(x), (1.3)
(see, for example, books [4] and [5]). Here v = v(x, t) is the velocity of incompressible
viscous fluid, a vector function, v′ := vt, p = p(x, t) is the pressure, a scalar function,
f = f(x, t) is the exterior force, ν = const > 0 is the viscosity coefficient, v0 = v0(x) =
v(x, 0) is the initial velocity,

∇ · v0 = 0. (1.4)
The data v0(x) and f(x, t) are given, the v and p are to be found. The fluid’s density ρ is
assumed to be constant, namely ρ = 1. We assume, for simplicity only, that f(x, t) = 0.
We also assume that v(x, 0) ̸≡ 0 is a smooth rapidly decaying function.

Let us assume that the solution to NSP (1.1)-(1.3) exists for all t > 0..
Theorem 1. Under these assumptions v(x, 0) = 0.
The statement of Theorem 1 (the NSP paradox, see [1]–[5]) contradicts the assumption

v(x, 0) ̸≡ 0. Therefore the solution v(x, t) to NSP cannot exist for all t > 0 under our
assumptions.
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The millennium problem concerning the Navier-Stokes equations can be formulated as
follows:

A millennium problem:
Assuming that the data f and v(x, 0) are smooth and rapidly decaying, can a solution

to NSP exist for all times t > 0?
Theorem 1 gives a negative answer to the above millennium problem.

2. PROOF

This millennium problem was solved in monographs [1], [2]. This solution is sketched
in papers [3], [4]. The NSP paradox is stated in paper [5].

The aim of this short paper is to outline the steps of the proof of Theorem 1.
Step 1. Equivalence of the NSP to the integral equation:

ṽ = F̃ − (2π)3
∫ t

0

G̃(ξ, t− s)ṽ ⋆ (iξṽ)ds. (2.1)

This equivalence was proved in [2], p.18.
Step 2. Derivation of an integral inequality for the solution to NSP:

b(t) ≤ b0(t) + c

∫ t

0

(t− s)−
5
4 b(s)q(s)ds, (2.2)

where c > 0 is a constant, and

b0(t) := ∥|ξ|F̃ (ξ, t)∥, b(t) := ∥|ξ|ṽ(ξ, t)∥. (2.3)

The norm is L2(R3) norm. A derivation of integral inequality (2.2) is given in [2] and in
[4], p. 3730.

The integral in (2.2) diverges from the classical point of view. We have to define this
integral (see [7] and [8]).

Together with inequality (2.2) we study integral equation

q(t) = b0(t) + c

∫ t

0

(t− s)−
5
4 q(s)ds. (2.4)

The reason to consider (2.2) and (2.4) together is this: we prove that

0 < b(t) ≤ q(t), (2.5)

and
sup
t≥0

|q(t)| < ∞, q(0) = 0. (2.6)

From (2.5) and (2.6) it follows that b(t) = 0.
This implies ṽ(x, 0) = 0 even if we assume that v(x, 0) is not equal to zero identically,

smooth, rapidly decaying, and the solution to (1.1)–(1.3) exists for all t > 0. This is the
NSP paradox discovered in [5]. It solves the millennium problem related to the Navier-
Stokes problem.

It is also proved in [2], p. 33, that

sup
t≥0

[∥v(x, t)∥+ ∥∇v(x, t)∥] < ∞. (2.7)

Step 3. Theory of some divergent integrals.
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Let us define Φ(t) := tλ−1

Γ(λ) , where tλ−1 := 0 if t < 0, and Γ(λ) is the Gamma-function.
Consider the Laplace transform of Φ(t):

LΦ =

∫ ∞

0

e−ptΦ(t)dt. (2.8)

One checks that for Rep > 0 and for any complex λ:

LΦ =
1

pλ
. (2.9)

For λ > 0 the LΦ is defined classically, and for Reλ < 0 it is defined by analytic continu-
ation (see [6] and [7]).

Let us solve analytically equation (2.4). Take the Laplace transform of equation (2.4)
and get

Lq = Lb0 + cΓ(−1

4
)p

1
4Lq, (2.10)

so
Lq =

Lb0

1 + 4cΓ( 34 )p
1
4

. (2.11)

One has c > 0 and Γ(− 1
4 ) = −4Γ( 34 ), where we have used the well-known formula

Γ(z) = Γ(z+1)
z for z = − 1

4 .
Since b0(t) > 0, b(t) > 0, c > 0, Γ( 34 ) > 0, formula (2.11) implies that Lq > 0.

We have assumed that v(x, 0) ̸≡ 0 is smooth and rapidly decaying at infinity together
with its derivatives. Therefore, its Fourier transform is smooth and rapidly decaying at
infinity. Consequently, Lb0 = O( 1p ) as p → ∞, and Lq = O( 1

|p|
5
4
) as p → ∞.

This implies (see [6], p.271, Lemma 1) that q(0) = 0.
This proves the NSP paradox and Theorem 1.

3. CONCLUSION

Author’s solution to the millennium problem related to the Navier-Stokes equations
is discussed. It is proved that the Navier-Stokes problem in R3 with a smooth rapidly
decaying not identically zero initial data does not have a solution defined for all t > 0. The
NSP paradox is formulated. An outline of the author’s proof is given so that the reader can
see the basic steps.
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