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ABSTRACT. This article investigates some new connections between the Hilbert and Hardy
integral inequalities. In particular, two general theorems are established, both based on in-
tegral terms derived from those used in these two famous inequalities. They have the
property of depending on two functions and one modulable parameter. Applications and
examples are given to specific cases combining Hilbert and Hardy type integral inequali-
ties. Emphasis is placed on a particular weighted integral term, showing how our results
can be used to improve what can be obtained with some classical integral inequalities in
the literature.

1. INTRODUCTION

The study of integral inequalities is a central area of mathematical research. It is impor-
tant in both theory and in applications. In fact, integral inequalities serve as fundamental
tools in various branches of mathematics, facilitating the analysis of functions, operators,
and systems. They also allow the modeling of physical phenomena. Among the well-
known results, the Hilbert and Hardy integral inequalities stand out as key contributions.
In addition to providing essential bounds for integrals, they have served developments in
fields such as mathematical physics, functional analysis, optimization, and partial differ-
ential equations. More details on this topic, as well as comprehensive discussions, can be
found in [16} 16} 23 4} 27

For the purposes of this article, we will describe these two famous inequalities. For the
Hilbert integral inequality, we consider two functions f, g : (0,+00) +— (0,400). Then,
in its classical form, this inequality reads as follows:

+oo +oo +°° Foo
/ / d dy<m / x)dx / x)dx, (1.1)

provided that the 1ntegrals introduced converge. Note that the factor 7 is the sharpest
possible constant; it cannot be improved without more knowledge of the nature of f and
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g. Among the notable studies that highlight the interest in this inequality, we refer to
[128L 250 264 13} 151 12} 11418}, 19, [10]]. For the Hardy integral inequality, we consider a parameter
€ (1,+00), a function f : (0,400) — (0,+00), and its primitive operator defined, for

any z € (0, +00), by
:/o f(t)dt

Then, in its classical form, this inequality reads as follows:

+o00 Fp( ) p P ptoo .
/0 por —=dx < (p—l) /0 fP(z)dz, (1.2)

provided that the integrals introduced converge. In this context, the factor [p/(p — 1)|?
the sharpest possible constant. The Hardy integral inequality and its variants have attracted
much attention, both in theory and in practice. We refer to the following notable studies:
[224 117, 21} 115, 241 18] 14, (1917}, 29} [11]).

The Hilbert and Hardy integral inequalities have some connections, beyond their role in
bounding integral operators and their sharp constants. This is also the case for all integral
inequalities of the Hilbert and Hardy type. Some of these connections have been studied in
[3]. In particular, general results have been established, of which the following is a special
consequence:

+oo oo +oo Foo
/ / fx—i—y dxdy < \// F2 \// G2 dx, (1.3)

where G denotes the primitive operator associated with g (as F' is associated with f), pro-
vided that the integrals introduced converge. More precisely, this simple integral inequality
follows from [3, Equation (1.11) with A = 1 and p = ¢ = 2]. Thus we see a way of ar-
ticulating the main terms of the Hilbert and Hardy type integral inequalities. The study
in [3] extends this aspect by considering weighted L, norms with p € (0, +00), not just

€ (1,400), and a variety of kernel functions, mainly of the form h(z, y) = u(z) +v(y),
where u, v : (0,+00) — (0,400). The motivation for investigating the further relations
between Hilbert and Hardy type integral inequalities is to unify their applications and to
understand deeper structural properties in analysis. Thus, the relation in Equation (T.3)
is undeniably important, but perhaps more can be done on this subject; we can think of
possible different directions, with innovative approaches or techniques.

In a sense, this article contributes to bridging the gap between Hilbert and Hardy type
integral inequalities. More precisely, we provide new integral inequalities depending on
their main terms. As an example, the following result is given as a special case:

T f@)g(y) L [T g(@)F(2) + f(2)G(x)
/0 /0 dedy > 5/0 - dz. (1.4)

Following the spirit of [3]], this is extended by considering weighted L,, norms with p €
(0,+00), not just p € (1,400), and a variety of kernel functions, not necessarily of the
form h(z,y) = u(x) + v(y), where u,v : (0,+00) +— (0, 400); maximum or minimum
kernels can be used, for example. Other specific results are derived, all of possibly inde-
pendent interest. Numerous applications are also given, including bounds on the following
integral term:

[T,
O )

xP
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which remains an original subject of work. For this term, we show that our results provide
better bounds than those derived from classical integral inequalities. Since the optimality
of our bounds is not established, some open problems are formulated, offering new and
fresh perspectives of work on such a classical subject.

The remainder of the article is divided into four sections: Section [2| presents the main
results, formally in the form of two theorems. Section [3|is devoted to the applications and
examples. The proof of the first theorem is given in Section [} the proof of the second
theorem is omitted due to redundancy. The article concludes with some final remarks in
Section

2. TWO THEOREMS

2.1. First theorem. Our first main result is given in the theorem below, which is the inte-
gral inequality from which the simple example in Equation is derived. Note that the
parameter p satisfies p € (1, +o00)U{1}; the case p € (0, 1) will be considered in the other
theorem.

Theorem 2.1. Let p € (1,400), f,g : (0,+00) — (0,400) be functions and h :
(0,+00)? +— (0,+00) be a bi-increasing function, i.e., for any z,y,z € (0,+00) such
that x <y, we have h(x,z) < h(y, z) and h(z,z) < h(z,y). We set

+oo “+o0
ap ::/0 fP(x)dx, Bp ::/0 g°(x)dx

and, for any x € (0, 400), we consider the following primitive operators:

x x
Flz) = / fOdt, Gx) = / o(t)dt,
0 0
provided that the integrals introduced converge.
(1) Then the following inequality holds:
+o00 400 pp D +oco p P 14 P
[T g, s [P PG,
0 0 h(z,y) 0

xP~1h(z, )

provided that the integrals introduced converge.
(2) Then the following inequality holds:

oo e 1P (2)gP (y) .
/o / Wy W

T B[P (x) + apg” () T gP(2) FP () 4 fP(x)GP (x)
= /0 h(zx,x) dv = /0 aP~Ih(x, x)

provided that the integrals introduced converge.

dx,

For the case p = 1, these inequalities still hold, and the corresponding proofs are simpli-

fied.

The detailed proof of Theorem [2.1]is given in Sectiond] So, this theorem mainly shows
how the following two integrals compare:
/+°° /+°° fP(x)g" (y) dudy, /+°° 9P (x)FP(x) + fP(x)GP(x) dz,

0 0 h(z,y) 0 zP~1h(z, x)
where the first is related to a Hilbert type integral inequality and the second to a Hardy
type integral inequality. This is of particular interest because several studies in the litera-
ture have already proposed bounds on these terms, often independently and under specific
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conditions. Bounds that we can use to evaluate one of the terms with a new perspective.
In particular, based on the points 1 and 2 of Theorem [2.1] using an upper bound for the
double integral term implies an upper bound for the simple integral term, and using a lower
bound for the double integral term implies a lower bound for the simple integral term. The
first aspect will be developed in Section 3] with various applications and examples.

We conclude this section with some remarks, mainly on special cases or extensions of
Theorem 2.11

e Taking f = g, the points 1 and 2 are reduced to

oo e 1o (2) fP(y) e fr(a)FP(x)
/ / 7w, 1) dxdy > 2/0 dx

aP~Ih(x, x)

[ s [ o [ £

Even in this case, there does not seem to be an exact equivalent of these inequali-
ties in the literature.

e Analyzing the proof of Theorem 2.I] we can extend points 1 and 2 with little
efforts, as, for any p1,p2 € (1, +00),

(z,y) 20 abr-t b=l

/+oo /+oo fPl g:"2( )dxdy < /+oo /Bp2fp1 (x)+05plgp2(x) "
0 h

(z, )

7/ h( ) {g“( o) F7 () f”l(I)G”"’(I)}dI.
0 T, x

gjpl_l 331)2—1

e Another almost immediate extension is to consider a bounded integration interval,
say of the form (a, b), with a, b € R, where a < b. Redefining

/ e g [ ' ()

and, for any z € (a, b),

0= [ st G = [ g

with a little mathematical effort, we can establish that

/ / P o, [Leres e,

(x — a)P~th(z,x)
//f” x)g"(y )dxdy

" Bpf? + apg P(x) " 9P (@) FP(2) + [P (2)GP(x)
dr — dz
a (xia)pilh(xﬂr)
The detalls are omltted for brevity; the proof is almost identical to that of Theorem
[2.1] except that the use of the Hélder integral inequality had to be adapted. This
explains the presence of (x — a)P~! in some denominator terms.
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The next subsection is devoted to our second general theorem.

2.2. Second result. The case p € (0, 1), omitted in Theorem is considered in the
theorem below. The only change in the framework is the assumption that h is bi-decreasing
instead of bi-increasing in Theorem [2.1]

Theorem 2.2. Letp € (0,1), f, g : (0,+00) — (0, +00) be functions and h : (0, +00)?
(0, +00) be a bi-decreasing function, i.e., for any x,y,z € (0,+00) such that x < y, we
have h(y, z) < h(x, z) and h(z,y) < h(z,z). We set

+o0 +oo
ayp ::/0 fP(x)dx, Bp ::/O P (x)dx

and, for any x € (0, 400), we consider the following primitive operators:

= /0m f(t)dt, G(z) := /Ozg(t)dt’

provided that the integrals introduced converge.
(1) Then the following inequality holds:
+oo  pdoo rp +oo p P P P
[T L) gy, ¢ [ AP PG,
0

2P~ h(x, x)

provided that the mtegrals introduced converge.
(2) Then the following inequality holds:

oo T fP(2)gP (y) .
A A Wy W

T B[P (x) + apg” () T gP () FP (2) + [P (2)GP (x)
= /0 h(zx,x) dv = /0 aP~Ih(z, x) dz,

provided that the integrals introduced converge.

The proof follows the same lines as that of Theorem but instead of using con-
vexity arguments and the Holder inequality, concavity arguments and the reversed Holder
inequality are used. The details are thus omitted.

Thus, in comparison to Theorem Theorem [2.2] considers the case p € (0,1) by
adapting only the bi-monotonicity of /, and the inequalities in the points 1 and 2 in Theo-
rem[2.T] are reversed.

Some remarks, mainly on special cases or extensions of Theorem [2.2] conclude this
section.

e Taking f = g, the points 1 and 2 are reduced to

v ) = )P
/\ / Wz, v) ddyg?l I

aP~1h(x, x)

[T o [ A [ ]

Again, there seems to be no exact equivalent of these inequalities in the literature.
e Analyzing the proof of Theorem [2.2] we can extend points 1 and 2 with little
efforts, as, for any p1,ps € (1, +00),

0

;L"x) mPl_l $P2—1
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/+oo /+oo fri(x gm( )dxdy - /+oo Bpy [P (x)+ap19p2(x)dx
0 h

(z,x)

e S sz( D) | PG,

ijl_l xp2—1

e Another almost immediate extension is to consider a bounded integration interval,
say of the form (a, b), with a, b € R, where a < b. Redefining

/ e g | )

and, for any z € (a,b),

/ fod, G = [ “g(tyat,

with a minor adaptation, we can see that

S @), [P+ @)
/H Wz, v) ddyg/a (@ —aypthz.z)

and

//f” x)g"(y )dmdy

" Bpf” + apg” (x) PP () FP(x) + 7 (2)GP(x)
dx — dx
) a (J:—a)P—lh(x,a:)
Agam, except for revmting the use of the Holder integral inequality, the proof is
almost identical to that of Theorem 2.2

Selected applications and examples of our main results are given in the next section.

3. APPLICATIONS AND EXAMPLES

This section considers some general integral inequalities, provides examples, and stud-
ies an original integral inequality. For brevity, we focus only on the applications of Theo-
rem[2.1] that is, for the case p € (1, +o00) U {1} and h bi-increasing.

3.1. General integral inequalities. For p € (1, +o00) U {1}, using the convexity inequal-
ity, i.e., |[a + b|P < 2P71(|al? + |b|P), a,b € R, with a = g(z)F(z) and b = f(x)G(z),
we have

P @)F? (@) + @G @) > 5 Lo Fle) + f@) G

Based on this, the point 1 of Theorem [2.1| gives the following original integral inequality:

+oo +oo £p ) 1 400 p
/ / 1@ W) 4a > 1/ x {g(:v)F(w) + f(:v)G(w)] .
0 0 h(z,y) 2=t Jo  Nh(z,z) x
On the other hand, the point 2 of Theorem [2.T]implies that

/+°°/+°°f” gp Y) 4o dy

<[ 6pfp(x)+apg() g [T [ELEELED]

h(z,x) RS x, T) x
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Other possible approaches in the same vein are possible. For instance, using the simple
polynomial inequality 2|ab| < a® + %, a,b € R, with a = ¢?/?(x)F?/?(z) and b =
fP2(2)GP/2(x), we get

9P () FP(x) + [P ()G (x) > 292 (@) FP/? (2) 712 (2) G2 (x).
Based on this, the point 1 of Theorem [2.1] gives the following original integral inequality:

—+oo ‘oo rp D +oo 1 F p/2

[T W gy o [T L [dF @G,

0 h(z,y) o aP/*lh(z, ) x

On the other hand, the point 2 of Theorem implies that

oo (oo fr(x)gP (y)
/0 /0 h(z,y) dady

0 Byl () + apg” () e 9(@)F (2)f(2)G(x)]""?

< dr — 2 P dx.
0 h(x, ) o aP/271h(z, x) x

Some examples of more direct connections between Hilbert and Hardy type integral in-

equalities are given in the next subsection.

3.2. Examples. Several variants of the Hilbert integral inequalities have been established
in recent decades. The most important of these are proved and discussed in the book
[27]. These bounds can be combined with our results in Theorem [2.1] (or Theorem [2.2))
to produce innovative integral inequalities. This is explained below with some examples,
working only with the Ly norm for the bounds of the famous variants of the Hilbert integral
inequalities considered, to simplify the situation.

Example 1: Applying the point 1 of Theorem[2.1]with the function h(z,y) = z +y,
which is obviously bi-increasing, and the classical Hilbert integral inequality in
Equation (I.T) with f? instead of f and ¢? instead of g, we get

1 /*°° PP+ PO, /+°° 9P () PP (@) + [7()GP(x) |

2P~ 1h(z, )

/+Oo /+OQ G dwdy = /+OC /—M<> G >dxdy
< M / - fQP(x)dx\/ / (),

so that

oo gp (1) FP(2) + fP(2)GP(x) = =
/0 poe dr < 2%\//0 f (x)dx\//o g% (x)dz. (3.1)

As far as we know, this is a new integral inequality in the literature. It can be
seen as a variant of the Hardy integral inequality. However, it is not optimal; the
constant 27 can be improved, as we will see in the next point.

T
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On the other hand, using the point 2 of Theorem [2.1] we obtain

/+oo /+oo fpx+y - dy/+oo /+oo #P(z )d:rdy

T BpfP(x) + apgPla) ()F”()+fp() P(z)
7/0 h(z,x) dx /0 2P~ Th(x, x) d

[T A ), [ ) S0,
0 0

x xP

This provides an alternative to the Hilbert integral inequality. No equivalent in this
form has been found in the literature.

Example 2: The following maximum variant of the Hilbert integral inequality is
well-known:

/;m /;00 mcixdy < 4\//;00 fz(x)dx\//0+oo g*(x)dz. (3.2

It is proved that 4 is the best constant. See [16, [27]. Applying the point 1 of
Theorem [2.1| with the function h(z,y) = max(x,y), which is bi-increasing, and
Equation (3.2) with f? instead of f and ¢? instead of g, we get

/+°° 9" (x) F7(x )+f”( )G*(2) x_/ = 9P @)FP(z) + fP(2)GP(z) |

P~ h(x, x)

/+OO /+OO fp da:dy = /+OO /+O0 max(z )) dxdy
< 4\//0+OO fQP(x)dx\//OJroo %P (x)dx. (3.3)

Since, obviously, 4 < 2, we have improved the precision of the inequality in
Equation (3.T). On the other hand, using the point 2 of Theorem [2.1] we obtain

/+oo /+oc fp /+oo /+oo fp gp )d a0
max(z,y)
3 /+°° o] +a)pgp< ), / g >Fp< >1Z(fp<)> "),
0 xz,T 0 xP T, T

L [T BLE ), [T PE + P0),
0 0 .

X

x P
This provides an alternative to the maximum variant of the Hilbert integral in-
equality. To the best of our knowledge, it is new.

Example 3: The final example considers a function & of a different kind, such that

h(z,x) is not proportional to z. The starting point is the following exponential
variant of the Hilbert integral inequality:

/O+OO /O+OO e " f(x)g(y)dwdy < \/7?\//;roo f2(gc)dx\//0+oo P(@)dr. (G4

It was established in [28]], with the proof that /7 is the best constant in this frame-
work. See also [27]. Applying the point 1 of Theorem with the function
h(z,y) = €Y, which is bi-increasing by the composition of increasing functions,
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and Equation (3.4) with f? instead of f and ¢” instead of g, we get
/+°° @ FP () + )G /+°° 9@ (a) + PG )

ap~1 aP~1h(x, x)

/ +°° / " fp @) gy, / m / " e o () (y)dady
< ﬁ\/ / m fQP(:c)dz\/ / ()

On the other hand, using the point 2 of Theorem [2.1] we obtain

[ e [ [ T,

5 1@) +opg @) [T @) + PE)EE)
*/0 h(zx,x) dx /0 aP~Ih(x, x) d

_ oo —x? P(2) - . gP ()] do — +Ooe—z29p(x)Fp($)+fp(x)Gp(33) "
[ e e g de - [ .

Pt
This provides an alternative to the exponential variant of the Hilbert integral in-
equality.

3.3. Some comments. During our investigations, we also have considered other functions
h such that h(x, z) = x, including
Ty
h(l‘, y) =1 N
log(z/y)
for x # y, and h(z,y) = z for x = y, with 2,y € (0,400). We can prove that it is
bi-increasing. Indeed, by fixing y and differentiating with respect to x, we obtain

(%h(ﬂ%y) = :clong(x/y) {xlog (y) +y—x] :

It is clear that z log?(z/y) > 0. Now, using the well-known logarithmic inequality log(1+
a) > af/(1+a),witha > —1, takinga = z/y — 1 > 0, we get

1+z/y—1

So we have Oh(z, y)/(0x) > 0, which means that / is increasing with respect to . Notic-
ing that h(z,y) = h(y,x), the bi-increasing property follows. On the other hand, the
following logarithmic variant of the Hardy integral inequality holds:

/+oc /+o<> log x/y f(x)g(y)dxdy < 7T2\//+<>° f2(x)dx\//+oo g?(xz)dxz. (3.5)
o 0

It is discussed in [16 27 8]]. The factor 72 cannot be improved. The application of Theo-
rem[2.1]and Equation (3.5) give

o g (@) FP () + [ (2)GP () e T e
/0 > dx < 772\//0 12 (ac)d:q//o 9?P(z)dz

The obtained constant 72 is far from being as sharp as the one obtained in Equation (3.3).
This illustrates the importance of the choice of the function h in determining sharp in-
tegral inequalities based on Theorem [2.1] There is also an open problem: In the exact

-1
xlog(x>—|—y—x x/yi—i—y—x:x—y—!—y—xzo.
Y
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mathematical setting of the following inequality:

o0 gP () FP(x) + fP(x)GP(x) = =
/0 o dx < m\//o 12 (x)dx\//o g% (2)dz,

is K = 4 the optimal constant? This deserves further investigation, which we leave for
future work.

3.4. Study of an original integral inequality. Sharp upper bounds for the following in-
tegral are the aim of this subsection:

+o0 £p(4)FP
[T Lare),
0 xP
It can be thought of as a weighted version of the main term in the Hardy integral inequality,
with the weight function fP. It is thus related to the function of interest f, modifying the

standards. We examine the use of the existing results and that in the point 1 of Theorem
We thus consider p € (1, +00).

e As a first approach, assuming that f is bounded, i.e., SUp,¢ (g, o0) f(¥) < +00,
the Hardy integral inequality, as recalled in Equation (1.2}, implies that

/M fp(awmwdxgl - f%)] /m Fra)
0 0

P z€(0,+00) xP

R
<L) L) o

This yields a comprehensive bound depending on the L, norm of f.
e The second approach uses an upper bound for F'. Since f is positive, we clearly

have sup,¢ (9 4o0) £'(%) = SUP,e (0,100 Jo f@)dt = O+°o f(t)dt, so that

/0+°° f?(@)F7 (@) ’ /0+°° e,

P (0,400) zP

_ [ /O +OO f(x)dx]p /0 i D

A simple bound is thus determined. It depends on the L, norm and the weighted
L, norm of f.

e As a third, more elaborate approach, the Cauchy-Schwarz integral inequality, fol-
lowed by the Hardy integral inequality applied with the parameter 2p, implies that

/0 @) F ) p(xif P 4 < \/ /O - f2p(a:)da:\/ /0 T :;Ef) do
/0 " () (;f 1>2p /O " ()

_ 2p 2p +oo )
_(2p1)/0 £2(2)da (3.6)

So we have a bound that depends on the L, norm of f. Note that it is difficult
to compare its precision with that of the bounds obtained in the previous points,
because different integral norms are considered for f.

dm<[ sup F(x)
BaS
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e We now present a more innovative approach based on Theorem and, more

precisely, Equation (3.3)). Indeed, taking f = g in this equation, we get
+oo rp ) +oo p P P P
[T, [T PGP G ),

xP 0

0 xP
< 4\//0+00 fQP(x)dx\//OJroo g?P(z)dr = 4/0+00 P (z)dz,

so that

/0 e fp(afilj P(x)

+o00
dr <2 / 2 (2)da. (3.7)
0

Now, using the well-known logarithmic inequality log(1 + a) > a/(1 + a), with
a > —1, takinga =1/(2p — 1) > 0, we get

2p
(2 2p 1) _ 2plogl1+1/(p-1)] 5 261/ (Gp-DI/[14+1/2p-1)] _ 2p/(28) _ ¢ 9,
-

We thus have
+oco rp D “+o0 2p +oo
/ de < 2/ 2 (x)dx < 2P / P (x)dx.
0 xP 0 2p—1 0

The inequality in Equation is thus sharper than that obtained by the classical
techniques used in Equation (3.6). This demonstrates how Theorem [2.1] can be
used to improve certain integral inequalities. This also applies to Theorem [2.2}
considering the less studied case of p € (0, 1).

3.5. Discussion. The last result raised the following question: What is the best constant 7
so that the following inequality holds?

+oo +oo
/ wdm < 7'/ fzp(x)dx.
0 xP 0
The found value of 2 seems sharp, but its possible optimality is not proved here. The
question is also of interest for p € (0,1).
On this subject, for p € (0, 400), if we restrict our study to a bounded interval of the
form (0,b), with b € (0, +00), to ensure the convergence of the integrals involved, and

assume that f is increasing, we obviously have

Py = [ s0ar < g(@) [ =ap(o),

0
so that

/ObJde < /Ob LT 4y = /Ob 127 (w)da.

In this particular case, the constant 1 is sharper than 2. Howeyver, it is obtained with a strong
assumption on f it is not theoretically guaranteed without knowing the monotonicity of f.

Another possible approach would be to investigate the problem through the framework
of the optimality theory developed in [[12}[13]]. However, this requires further investigation,
which we will address in the future.
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4. PROOF OF THEOREM [2.1]

This section contains the detailed proof of Theorems [2.1] (note that the proof of Theo-
rem[2.2]is omitted for the sake of brevity).

Proof. Let us prove the points 1 and 2, successively.

(1) It follows from the Chasles integral relation that

—+o0 —+o0
/ / wdxdy: A+ B, 4.1)
0 h($7 y)
where N
o0 P(
/ / @) 40,
and

/+00 /+00 G )da:dy

Let us work on the term A. Using the left 1ncreasmg property of h, for any z €
(0,y), we have h(x,y) < h(y,y). This implies that

S et A R

On the other hand, the Holder integral inequality (or the Jensen integral inequality
applied with the convex function ¢(x) = zP, x € (0,+00), with p € (1, 400),
see [20]), gives

o[ roa] <[ ][] [ ]

4.2)
y
| 1@
0
We therefore have

+oo D +oo D
9" (y) _ 9* (z)
A> /O yP1h(y,y) FP(y)dy = /0 xpflh(l.7 z) FP(z)dz, 4.4)

where the notation has been standardized in the last term.

Let us now consider the term B. Using the right increasing property of h, for
any x € (y,+00), we have h(z,y) < h(z,z). This, combined with a change in
the order of integration by the Fubini-Tonelli theorem (which is possible because
the integrand is positive, see [20]) gives

b [ [Ty [ [P0
i[mﬁdﬂl ”@P“

Using the Holder integral inequality as in Equation (&.2)), we find that
v 1
P P
/O 9y =z —=G"(x). 4.5)

so that

FP(y). (4.3)
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We therefore obtain
feo fP(x)
B> — 7 _GP(z)dx. 4.6
_/0 P~ 1h(z, z) (@)dz (46

It follows from Equations (1), #.4) and (.6) that

oo e 1P () gP (y) .
/0 /0 h(x,y) ity

@), @)
2/0 9 F (x)dx+/0 G (z)d

aP~h(x, x) 2P~ h(z, x)
_ /+°O g (@) FP(z) + fP(2)GP(z) ,
0 xP~1h(z, x)
The stated inequality is established.

(2) For the point 2, we use techniques similar to those in the previous point, but with a
different treatment in some key places. The Chasles integral relation implies that

tfm/wﬁmmﬂwm@:0+a w
0 h(fﬂ,y)

C:= /+°°/ fp dxdy
D:Am[%ﬁg@my

Let us work on the term C'. Using the right increasing property of &, for any
x € (0,y), we have h(z,y) > h(x,x). This, combined with a change in the order
of integration by the Fubini-Tonelli theorem, the Chasles integral relation and the
introduction of 3,, gives

C</+00/ e gp dd /+°°/+°°fp )dydx
—[ﬁﬂwé ]

= /0 +OO fi];(,xx)) _ /0 +OO 9" (y)dy — /0 ' gp(y)dy} dx

where

and

() ’
= ﬂ—/gpydy}dw-
/O h(.ﬁE,I) L g 0 ( )
It follows from the inequality in Equation (#.3) that

C< /0 - hf(l;(z)) {Bp - xpl_le(x)] dz

+oo P +oo P

- / Bpf?(@) 5 / fli(x)Gp(x)dx. 4.8)
0 h(z, x) o xP7lh(x,x)

Let us now consider the term D. Using the left increasing property of &, for any

x € (y,+00), we have h(z,y) > h(y,y). This, together with the Chasles integral
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relation and the consideration of o, gives

D < o /+OO e )dxdy = /0+Oo 9"(v) [/+OC fp(x)d:v] dy
+o0 gp !

h(y,y)

+oo Y

= fP(x)dx — fP(x dz] dy

/0 h(y,y) {/0 (@) 0 (@)

+oo p y
9" (y) { / » }

= - |ap — x)dx| dy.

/0 W) |y ST

It follows from the inequality in Equation (@.3) that

D< /0 it [ap— ypllF'%y)} dy

h(y,y)
ety (T ),
_/0 h(y,y) W /0 yp_lh(y,y)F (y)dy
= - M T — " L(x) P (2 )dx
_/0 h(z, z) d /0 xpflh(x,l.)F (z)dz, (4.9)

where the notation has been standardized in the last term.
Based on Equations ), (@-8) and @I) we obtain

+O<> P +oo P

apg? (x ) / 9 ( )

P ) e — _ 9 pp
+/o T R T T
_ [T BpfP(x) + apg?(x) 0 gP (@) FP(x) + fP(2)GP ()
= dr — dz.

o h(z, z) 0 2P~ 1h(z, x)
The stated inequality is established.

The two desired results are demonstrated.

Note that, for the case p = 1, the previous results hold; the only inequalities needed in
the proofs are the first ones at each point, i.e., those using the bi-increasing property of h,
the others become equalities (there is no need to use the Holder integral inequality).

This completes the proof of Theorem 2.1} (]

5. CONCLUSION

In this article, we have established two general theorems which present new integral
inequalities. Some connections between Hilbert and Hardy type integral inequalities have
been derived. This completes, in a sense, the results in [3]. Several applications and
examples have been described, showing how the new results can be applied to improve
what is obtained with the classical techniques. Some of them have raised open-problems,
mainly on the optimality of the constants involved in specific integral inequalities. We may
highlight this one: What is the best constant 7 so that the following inequality holds?

+oo sp D +oo
/o 7f (xif (z) dx < 7'/0 f2p(x)dx

We have found that the constant 2 is competitive for p € (1, +00), but there is no claim
to its optimality (we have artificially improved it under a monotonicity assumption on f to
illustrate the complexity of the problem).
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In conclusion, we have contributed to the field of integral inequalities in the spirit of
Hilbert and Hardy type integral inequalities, proving new theorems and raising some un-
explored research directions that deserve more attention for the future. This is important in
order to deepen our understanding of these useful tools and potentially give some elements
to unsolved complex problems using integrals in many areas beyond strict mathematical
theory.
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