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SOME NEW COINCIDENCE POINT RESULTS IN B-METRIC SPACES USING
A SIMULATION FUNCTION

ABDERRAHMANE BOUDRAA AND TAIEB HAMAIZIA∗

ABSTRACT. In this paper, we prove a coincidence point theorem in the context of b-
metric spaces. The result is achieved by extending the known conditions of existence and
uniqueness through the use of simulation functions. An example is also provided to support
the obtained result.

1. INTRODUCTION AND PRELIMINARIES

The fixed point theory in metric spaces is located at the crossroads of nonlinear func-
tional analysis and topology. It has its roots in Liouville (1837) when it was applied for
solving differential equations and further developed in Picards work in 1890. A turn-
ing point was Banach’s celebrated principle of contraction (1922) of complete normed
spaces—subsequently called Banach spaces—which created an abstract basis for Picard’s
method of iteration. Afterward, Caccioppoli (1931) gave a first generalization of Banach’s
theorem which has motivated a great deal of research related to extension and generaliza-
tion of fixed point-theorems.
Informed by recent findings, notably the works of E. Karapinar and others (see [3], [4], [5],
[6], and [8]), In this study we intent to apply some well-known results concerning Metric
spaces via simulation function. These results can have useful applications based from the
following novel proofs of existence, and uniqueness of fixed points on b-metric spaces.
Using pre-existing results we can combine and then extend the results to b-metric spaces
and thereby obtain other fixed-point and coincidence point theorems.

Definition 1.1. [2] Let X be a nonempty set and let s ≥ 1 be a given real number. A
function d : X × X → [0,+∞[ is said to be a b-metric if and only if for all x, y, z ∈ X
the following conditions are satisfied
(1) d(x, y) = 0 if and only if x = y
(2) d(x, y) = d(y, x)
(3) d(x, z) ≤ s[d(x, y) + d(y, z)].
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A triplet (X, d, s), is called a b-metric space. We observe that a metric space is in-
cluded in the class of b-metric spaces. In fact, the notions of convergent sequence, Cauchy
sequence and complete space are defined as in metric spaces.

Next, we give some examples of b-metric spaces.

Example 1.2. [7]
Let X = [0, 1] and d : X ×X → [0,+∞[ be defined by

d(x, y) = (x− y)2,

for all x, y ∈ X .

Example 1.3. [7]
Let Cb(X) = {f : X → R : ∥f∥∞ = supx∈X |f(x)| < +∞} and let

∥f∥ = 3

√
∥f3∥∞.

The function d : Cb(X)× Cb(X) → [0,+∞[ defined by

d(f, g) = ∥f − g∥, for all f, g ∈ Cb(X)

is a b-metric with constant s = 3
√
4 .

Definition 1.4. [8] A simulation function is a mapping ζ : [0,∞)× [0,∞) → R satisfying
the following conditions
(ζ1) ζ(0, 0) = 0;
(ζ2) ζ(t, s) < s− t for all t, s > 0;
(ζ3) if {tn} , {sn} are sequences in (0,∞) such that limn→∞ tn = limn→∞ sn > 0, then

lim sup
n→∞

ζ (tn, sn) < 0.

Let Z denote the family of all simulation functions ζ : [0,∞)× [0,∞) → R. Due to the
axiom (ζ2), we have ζ(t, t) < 0 for all t > 0.

Example 1.5. [6] Let ϕi : [0,∞) → [0,∞) be continuous functions with ϕi(t) = 0 if and
only if, t = 0. For i = 1, 2, we define the mapping ζ1:
ζ1(t, s) = ϕ1(s)− ϕ2(t) for all t, s ∈ [0,∞), where ϕ1(t) < t ≤ ϕ2(t) for all t > 0.
ζ1 is a simulation function.

Example 1.6. [8] The functions f, g : [0,∞)2 → (0,∞) are two continuous functions
with respect to each variable such that f(t, s) > g(t, s) for all t, s > 0 .
We define the mapping ζ2: ζ2(t, s) = s − f(t,s)

g(t,s) t for all t, s ∈ [0,∞), which is also a
simulation function .

Definition 1.7. [10] A mapping G : [0,+∞)2 → R has the property CG, if there exists an
CG ≥ 0 such that
(1) G(s, t) > CG implies s > t;
(2) G(t, t) ≤ CG, for all t ∈ [0,+∞).

Definition 1.8. [10] A CG-simulation function is a mapping ζ : [0,+∞)2 → R satisfying
the following
(a) For all t, s > 0 we have ζ(t, s) < G(s, t), where G : [0,+∞)2 → R is a function that
has the property CG;
(b) If {tn} , {sn} are sequences in (0,+∞) such that

lim
n→∞

tn = lim
n→∞

sn > 0,
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then
lim sup
n→∞

ζ (tn, sn) < CG.

Let ZG be the family of all CG-simulation functions ζ : [0,+∞)2 → R.

Remark. Each simulation function as in Definition 1.4 is also a CG-simulation function
as in Definition 1.8, but the converse is not true. For this claim we can use the Example of
the function G(s, t) = s− t (see [6]).

Lemma 1.1. [9] Let (X, d) be a complete b-metric space and let {un} be a sequence in
X .Assume that there exist r ∈ [0, 1) satisfying

d (un+1, un+2) ≤ rd (un, un+1)

for any n ∈ N . Then {un} is Cauchy sequence in X.

For the following, Let f and g be self maps of a b-metric space (X, d).

Definition 1.9. [6] If w = fx = gx for some x ∈ X , then x is called a coincidence point
of f and g, and w is called a point of coincidence of f and g.
if also x = w, then x is called a common fixed point of f and g.

Definition 1.10. [1] The mappings f and g are compatible if and only if
whenever {xn} is a sequence in x such that

lim
n→∞

f (xn) = lim
n→∞

g (xn) = t

for some t ∈ X , we have

lim
n→∞

d (gf (xn) , fg (xn)) = 0.

Definition 1.11. [1] The pair (f, g) is weakly compatible if f and g commute at their
coincidence points, meaning
for all x ∈ X such that w = fx = gx we have

gfx = fgx.

Remark. [1] If the pair (f, g) is compatible, then it is also weakly compatible, but the
converse is not true.

Definition 1.12. [10] A sequence {xn}n∈N∪{0} ⊆ X is a Picard-Jungck sequence of the
pair (f, g)(based on x0 ∈ X) if yn = fxn = gxn+1 for all n ∈ N ∪ {0}.

Remark. [9] If we have f(X) ⊂ g(X) or g(X) ⊂ f(X), then it is certain that a Picard-
Jungck sequence exists for the pair (f, g), but the converse is not true.

Theorem 1.2. [10] Let f and g be weakly compatible self maps of a set X . If f and g have
a unique point of coincidence w = fx = gx, then w is a unique common fixed point of f
and g.

Definition 1.13. [10] A mapping f is called a (ZG, g)-contraction if there exists ζ ∈ ZG

such that
ζ(d(fx, fy), d(gx, gy)) ≥ CG (1.1)

for all x, y ∈ X with gx ̸= gy.
In the case, g = iX (identity mapping on X ) and CG = 0 we get what is called a Z-
contraction.
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2. MAIN RESULTS

Now in this section, we prove some results on the existence and uniqueness of the
common fixed point by using simulation functions in the framework of b-metric spaces.

Let us consider F the family of mappings H : [0,+∞) → [0,+∞) that satisfies the
following conditions

∃r ∈ [0, 1) so that 0 < H(t) ≤ r.t for all t ∈ (0,+∞) and H(0) = 0. (2.1)

Theorem 2.1. Let (X, d, s) be a b-metric space, f, g : X → X be self-mappings, assum-
ing that there exists ζ ∈ ZG and H ∈ F such that

ζ(d(fx, fy), H(d(gx, gy))) ≥ CG (2.2)

for all x, y ∈ X with gx ̸= gy.
Suppose also that there exists a Picard-Jungck sequence {xn}n∈N∪{0} of (f, g).
Also assume that at least one of the following conditions hold
(i) (g(X), d) is complete and f and g are weakly compatible;
(ii) (X, d) is complete, g is continuous and (f, g) is compatible.
Then f and g have a unique common fixed point.

Proof. First of all we shall prove that the point of coincidence of f and g is unique (if it
exists). Suppose, on the contrary, that z1 and z2 are distinct points of coincidence of f and
g. Then, by definition of a point of coincidence, there exist two points v1 and v2 (v1 ̸= v2)
such that fv1 = gv1 = z1 and fv2 = gv2 = z2. Applying condition (2.2) we obtain

CG ≤ ζ (d (fv1, fv2) , H(d (gv1, gv2))) = ζ (d (z1, z2) , H(d (z1, z2)))

< G (H(d (z1, z2)), d (z1, z2)) .

According to definition 1.7 this would mean that

H(d (z1, z2)) > d (z1, z2)

which is a contradiction with the properties of H .
To prove that f and g have a point of coincidence, consider a Picard-Jungck sequence {xn}
such that yn = fxn = gxn+1 where n ∈ N ∪ {0}.
If yk = yk+1 for some k ∈ N∪ {0}, then gxk+1 = yk = yk+1 = fxk+1 and f and g have
a point of coincidence.
Otherwise, suppose that yn ̸= yn+1 for all n ∈ N ∪ {0}. By substituting x = xn+1, y =
xn+2 in (2.2) we obtain

CG ≤ ζ (d (fxn+1, fxn+2) , H(d (gxn+1, gxn+2)))

= ζ (d (yn+1, yn+2) , H(d (yn, yn+1)))

< G (H(d (yn, yn+1)), d (yn+1, yn+2)) .

Using Definition 1.7, we have H(d (yn, yn+1)) > d (yn+1, yn+2),
Hence, for all n ∈ N ∪ {0} we get

d (yn+1, yn+2) < r.d (yn, yn+1) .

Now, suppose that condition (i) holds, i.e., (g(X), d) is complete, then according to
Lemma 1.1 the sequence {yn} is a Cauchy sequence in (g(X), d) .Then there exists v ∈ X
such that gxn → gv as n → ∞. We shall prove that fv = gv.
It is clear that we can suppose yn ̸= fv, gv for all n ∈ N ∪ {0}. Therefore, by (2.2) we
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have

CG ≤ ζ (d (fxn, fv) , H(d (gxn, gv))) < G (H(d (gxn, gv)), d (fxn, fv)) .

By definition 1.7, we get

d (fxn, fv) < H(d (gxn, gv)) < d (gxn, gv) → 0 as n → ∞.

It follows that fxn → fv as n → ∞, hence, fv = gv is a (unique) point of coincidence
of f and g.
Furthermore, since f and g are weakly compatible , it follows from theorem 1.2 that they
possess a unique common fixed point.
Finally, suppose that condition (ii) holds. Since (X, d) is complete, Lemma 1.1 guarantees
that the sequence {yn} is a Cauchy sequence in (X, d) . which means that there exists
v ∈ X such that fxn → v as n → ∞. As g is continuous, g (fxn) → gv as n → ∞.
Consider

CG ≤ ζ (d (f (gxn) , fv) , H(d (g (gxn) , gv)))

< G (H(d (g (gxn) , gv)), d (f (gxn) , fv)) .

Using Definition (1.7) and continuity of g, we have

H(d (g (gxn) , gv)) > d (f (gxn) , fv)

this would mean that

d (f (gxn) , fv) < r.d (g (gxn) , gv) = r.d (g (fxn−1) , gv) → 0 as n → ∞.

It implies that d (f (gxn) , fv) → 0, as n → ∞. Further, as f and g are compatible, we
have

d(fv, gv) ≤ s
(
d
(
fv, f(gxn)

)
+ s2

(
d(f(gxn), g(fxn)) + d(g(fxn), gv)

))
and

s ·
(
d(fv, f(gxn)) + s2

(
d(f(gxn), g(fxn)) + d(g(fxn), gv)

))
→ s · 0 + s2(0 + 0)

= 0.

Hence, the result is established in both cases, i.e. the mappings f and g have a unique point
of coincidence.
Since f and g are compatible then they are also weakly compatible which means that
according to theorem 1.2 fand g possess a unique common fixed point. This completes the
proof. □

Theorem 2.2. Let us consider the same hypotheses as theorem 2.1, this time assume that
at least one of the following conditions hold
(i) f(X) ⊂ g(X), (f(X), d) is complete and f and g are weakly compatible.
(ii) (X, d) is complete, g is continuous and (f, g) is compatible.
Then f and g have a unique common fixed point.

Proof. It is clear that we will use the same proof as theorem 2.1 to conclude that the
sequence {yn} is a Cauchy sequence in (f(X), d) , since (f(X), d) is complete (condition
(i)), then according to Lemma 1.1 the sequence {yn} is a Cauchy sequence in (f(X), d).
This means that there exists u ∈ X such that fxn → fu as n → ∞ , this would also mean
that

fxn−1 → fu as n → ∞
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therefore
gxn → fu as n → ∞

and we know that f(X) ⊂ g(X) so
There exists v ∈ X such that gxn → gv as n → ∞.
Now we can use a similar method as we did with condition (i) in theorem 2.1 to prove that
fv = gv is a (unique) point of coincidence of f and g.
Further, since f and g are weakly compatible, then according to theorem 1.2 they have a
unique common fixed point, the proof remains the same for condition (ii). □

Theorem 2.3. Let us consider the same hypotheses as theorems 2.1 and 2.2, also assume
that at least one of the following conditions hold
(i) f(X) ⊂ g(X) and (f(X), d) is complete.
(ii) (g(X), d) is complete.
Then f and g have a unique point of coincidence.

Proof. The proof of this theorem has already been established in the previous two theo-
rems, however, this theorem does not require the compatibility or weak compatibility of
the pair (f, g). □

Corollary 2.4. Any one of the theorems 2.1, 2.2 and 2.3, could be used to demonstrate
the existence and uniqueness of the fixed point of a single function f if we consider that
g = iX , it is sufficient to prove that the pair (f, g) has a unique point of coincidence to
conclude this result.

Remark. We can obtain the main result in [10] if we consider H = i[0,+∞) and s = 1 in
theorem 2.1 .
Also, we can obtain the main result in [9] if we consider s = 1 and CG = 0 in theorem
2.2.

Example 2.1. Let X = [0, 1] be endowed with the b-metric d(x, y) = (x − y)2 for all
x, y ∈ [0, 1] with s = 2. Define the mappings f, g : [0, 1] → [0,+∞) given, for all
x ∈ [0, 1], by

fx = x+ 2, gx = 4x+ e2x.

We want to solve the nonlinear equation

x+ 2 = 4x+ e2x.

To this end, we apply Theorem 2.3 using the simulation function ζ(t, s) = 9
10 (s− t)

for s, t ∈ [0,+∞), with the constant CF = 0, and the following mapping with the property
CF

F (s, t) = s− t,

and H is given by

H(t) =
1

2
t if t ∈ [0; +∞).

Now, we compute

ζ(d(fx, fy), H(d(gx, gy))) =
9

10
(H(d(gx, gy))− d(fx, fy))

=
9

10

(
1

2

(
4(x− y) +

(
e2x − e2y

))2 − (x− y)2
)

=
9

10

(
7(x− y)2 +

1

2

(
e2x − e2y

)2
+ 4(x− y)

(
e2x − e2y

))
≥ 0.
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Moreover, since g(X) = [1, 4 + e2], by theorem 2.3 (condition (ii)) the result follows.
Hence, the nonlinear equation

x+ 2 = 4x+ e2x.

has a unique solution, which corresponds to the common fixed point of f and g.

3. CONCLUSIONS

In this work, we combined and extended two previous results to the setting of a b-metric
space, thus we established new existence and uniqueness theorems for fixed and coinci-
dence points. These findings highlight the versatility of simulation methods in generalized
metric frameworks.
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