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THEORETICAL RESULTS ON NEW HARDY-HILBERT-TYPE INEQUALITIES

CHRISTOPHE CHESNEAU

ABSTRACT. Hardy-Hilbert-type integral inequalities lie at the heart of mathematical anal-
ysis. They have been the subject of much research. In this article, we make a contribution
to the field by examining two new two-parameter modifications of the classical Hardy-
Hilbert integral inequality. We derive the closed-form expression of the optimal constant
for each modification. We also present supplementary results, including one-function and
primitive variants. All proofs are provided in full, with each step justified, to ensure the
article is self-contained.

1. INTRODUCTION

The Hardy-Hilbert integral inequality, first introduced by G. H. Hardy in [11], is consid-
ered a classic of mathematical analysis. It provides an upper bound on the weighted double
integral of the product of two functions in terms of their unweighted integral norms. This
inequality is particularly useful in the fields of Fourier analysis, operator theory and inte-
gral inequality theory. Its formal statement is given below. Let p > 1, q = p/(p− 1) (i.e.,
the Hölder conjugate of p), and f, g : [0,∞) 7→ [0,∞) be two (non-negative) functions
such that ∫ ∞

0

fp(x)dx < ∞,

∫ ∞

0

gq(y)dy < ∞.

Then we have∫ ∞

0

∫ ∞

0

1

x+ y
f(x)g(y)dxdy ≤ π

sin(π/p)

[∫ ∞

0

fp(x)dx

]1/p [∫ ∞

0

gq(y)dy

]1/q
.

(1.1)

By identification, the kernel function associated with the double integral is given by k(x, y) =
1/(x + y). It exhibits a symmetric decay that plays a central role in the inequality. The
constant π/ sin(π/p) is optimal, i.e., the inequality cannot hold with a smaller constant for
two functions f and g satisfying the integrability conditions. In the particular case when
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p = 2, the inequality reduces to the classical Hilbert integral inequality, with the constant
simplified to π, as follows:∫ ∞

0

∫ ∞

0

1

x+ y
f(x)g(y)dxdy ≤ π

[∫ ∞

0

f2(x)dx

]1/2 [∫ ∞

0

g2(y)dy

]1/2
.

Over the years, the Hardy-Hilbert integral inequality has inspired substantial research,
leading to a multitude of improvements and extensions. Key contributions can be found in
[12, 17, 21, 19, 16, 20, 13, 14, 9, 15, 2, 3, 4, 1, 5, 6, 7]. A selection of these advances are
highlighted in the reference book [22].

In particular, a significant generalization was proposed in [18]. This involves introduc-
ing a power parameter α > 0 into the kernel function. A formal statement is given below.
Let p, q, and f, g : [0,∞) 7→ [0,∞) be as before, with the same integrability assumptions,
and α > 2−min(p, q). Then we have∫ ∞

0

∫ ∞

0

1

(x+ y)α
f(x)g(y)dxdy

≤ Beta

(
1− 2− α

p
, 1− 2− α

q

)[∫ ∞

0

fp(x)dx

]1/p [∫ ∞

0

gq(y)dy

]1/q
, (1.2)

where Beta(a, b) denotes the classical beta function at a, b > 0, defined by

Beta(a, b) =

∫ 1

0

xa−1(1− x)b−1dx.

The kernel function associated with the double integral is thus given by k(x, y) = 1/(x+
y)α. Setting α = 1 in Equation (1.2) yields the classical inequality in Equation (1.1), since

Beta

(
1− 1

p
, 1− 1

q

)
=

π

sin(π/p)
,

using the well-known identity for the beta function in terms of the sine function.
The study of Hardy-Hilbert-type integral inequalities is a dynamic field of research,

driven by continuous advancements in analysis. To illustrate this, we present two recent
results from [8]. Let p, q and f, g : [0,∞) 7→ [0,∞) be as before, with the same integra-
bility assumptions, and β > 0. The first main result in [8] is then given by∫ ∞

0

∫ ∞

0

x1/py1/q
|x− y|β−1

(x+ y)β+1
f(x)g(y)dxdy

≤ 1

β

[∫ ∞

0

fp(x)dx

]1/p [∫ ∞

0

gq(y)dy

]1/q
.

This one-parameter inequality can be viewed as a modified Hardy-Hilbert integral inequal-
ity. The kernel function associated with the double integral is thus given by k(x, y) =
x1/py1/q|x − y|β−1/(x + y)β+1. It is asymmetric except for the case p = 2. A notable
feature of this result is the optimality and simplicity of the constant 1/β, which makes it
particularly useful for obtaining sharp estimates and norm inequalities.

In [8], this result is complemented by a multiplicative analogue, in which the kernel
function involves products rather than sums. A formal statement is presented below. Let
p, q and f, g : [0,∞) 7→ [0,∞) be as before, with the same integrability assumptions, and
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β > 0. Then we have∫ ∞

0

∫ ∞

0

x1/py1/q
|1− xy|β−1

(1 + xy)β+1
f(x)g(y)dxdy

≤ 1

β

[∫ ∞

0

fp(x)dx

]1/p [∫ ∞

0

gq(y)dy

]1/q
.

Once again, 1/β is optimal, and its simplicity makes it suitable for a variety of analytical
applications.

In this article, we draw inspiration from these results to explore new Hardy-Hilbert-type
integral inequalities, considering original two-parameter kernel functions. Specifically, we
aim to determine a sharp constant σ in the framework described below. Let p, q and
f, g : [0,∞) 7→ [0,∞) be as before, with the same integrability assumptions. Then we
have ∫ ∞

0

∫ ∞

0

x1/py1/q
(x+ y)β−1

(αx+ y)β+1
f(x)g(y)dxdy

≤ σ

[∫ ∞

0

fp(x)dx

]1/p [∫ ∞

0

gq(y)dy

]1/q
.

The main novelty of this inequality lies in its consideration of a special two-parameter
asymmetric kernel function, i.e., k(x, y) = x1/py1/q(x+y)β−1/(αx+y)β+1. In particular,
the parameter α modulates the asymmetry of the ratio function. Furthermore, the constant
σ we derive is optimal and expressed in closed form, making it practical for applications.

Following the spirit in [8], we also study the multiplicative analogue of this inequal-
ity. It features a two-parameter kernel function based on the product xy, i.e., k(x, y) =
x1/py1/q(1+ xy)β−1/(α+ xy)β+1. This inequality is stated formally below. Let p, q and
f, g : [0,∞) 7→ [0,∞) be as before, with the same integrability assumptions. Then we
have ∫ ∞

0

∫ ∞

0

x1/py1/q
(1 + xy)β−1

(α+ xy)β+1
f(x)g(y)dxdy

≤ σ

[∫ ∞

0

fp(x)dx

]1/p [∫ ∞

0

gq(y)dy

]1/q
.

The constant σ is the same as in the previous inequality and is again shown to be optimal.
In addition to these inequalities, we present several auxiliary results, including variants

involving only a single function, or the primitives of the functions f and g. Complete
proofs containing all the technical details are provided. These results extend the classi-
cal theory and could be useful in various areas of analysis, particularly in the study of
weighted inequalities, convolution-type estimates and integral operators with asymmetric
or multiplicative kernel functions.

The rest of the article is divided into the following sections: Section 2 lists all the results
in full generality, and emphasizes some special cases. The proofs are given in Section 3.
Section 4 provides a conclusion.

2. RESULTS

2.1. An intermediary proposition. The proposition below is an integral result involving
two parameters. The first identity is stated in [10, Formula 3.195] but without proof. This
gap is filled, along with another integral identity, in the second part of the proposition.
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Proposition 2.1. For any β ∈ R and α > 0, we have

∫ ∞

0

(1 + x)β−1

(α+ x)β+1
dx =



1− α−β

β(α− 1)
if β ̸= 0, α ∈ (0,∞)\{1},

log(α)

α− 1
if β = 0, α ∈ (0,∞)\{1},

1 if α = 1,

which is also equal to the following modified integral:∫ ∞

0

(1 + x)β−1

(αx+ 1)β+1
dx.

We recall that, for all the results in this article, the proofs are given in Section 3 .
To highlight a one-parameter example, let us consider the case β = 0 and α ∈ (0,∞)\{1}.

Then Proposition 2.1 gives∫ ∞

0

1

(α+ x)(1 + x)
dx =

∫ ∞

0

1

(αx+ 1)(1 + x)
dx =

log(α)

α− 1
.

This example will be reused throughout the study, primarily due to its originality and sim-
plicity.

2.2. First main results. We are now ready to present our first main result. It can be
viewed as a new, two-parameter, Hardy-Hilbert-type integral inequality with a tractable
constant. We will discuss the nature of this constant after the statement.

Theorem 2.2. Let p > 1, q = p/(p− 1), and f, g : [0,∞) 7→ [0,∞) such that∫ ∞

0

fp(x)dx < ∞,

∫ ∞

0

gq(y)dy < ∞.

Then, for any β ∈ R and α > 0, we have∫ ∞

0

∫ ∞

0

x1/py1/q
(x+ y)β−1

(αx+ y)β+1
f(x)g(y)dxdy

≤ Cα,β

[∫ ∞

0

fp(x)dx

]1/p [∫ ∞

0

gq(y)dy

]1/q
,

where

Cα,β =



1− α−β

β(α− 1)
if β ̸= 0, α ∈ (0,∞)\{1},

log(α)

α− 1
if β = 0, α ∈ (0,∞)\{1},

1 if α = 1.

(2.1)

The proof is based on suitably decomposing the double integral, applying the Hölder
integral inequality, making an adapted change of variables, and using Proposition 2.1. This
last argument also explains the expression of the constant Cα,β .
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As a one-parameter special case, for β = 0 and α ∈ (0,∞)\{1}, Theorem 2.2 gives∫ ∞

0

∫ ∞

0

x1/py1/q
1

(αx+ y)(x+ y)
f(x)g(y)dxdy

≤ log(α)

α− 1

[∫ ∞

0

fp(x)dx

]1/p [∫ ∞

0

gq(y)dy

]1/q
.

An important feature of our result is the optimality of the constant Cα,β , which plays a
central role in the inequality. This optimality is formalized in the proposition below.

Proposition 2.3. The constant Cα,β in Equation (2.1) is the optimal one for the inequality
in Theorem 2.2.

The proof is based on choosing suitable functions that allow us to use a process of
reasoning by contradiction.

Theorem 2.2 thus provides a generalized Hardy–Hilbert-type integral inequality with
the kernel function

k(x, y) = x1/py1/q
(x+ y)β−1

(αx+ y)β+1
,

along with an explicit, optimal constant Cα,β . It is worth noting that this kernel function is
homogeneous with degree −1; for any λ > 0, using 1/p+ 1/q = 1, we have

k(λx, λy) = (λx)1/p(λy)1/q
(λx+ λy)β−1

(αλx+ λy)β+1

=
λ1/p+1/qλβ−1

λβ+1
x1/py1/q

(x+ y)β−1

(αx+ y)β+1

=
1

λ
k(x, y).

However, it is the asymmetric nature of the kernel function that primarily offers greater
flexibility in applications. Furthermore, the closed-form expression of the sharp constant
renders the result theoretically significant and practically tractable. The next subsection
illustrates these points by presenting further results.

2.3. Additional results. The proposition below presents a reformulation of Theorem 2.2
without the presence of p (and q) in the double integral.

Proposition 2.4. Let p > 1, q = p/(p− 1), and f, g : [0,∞) 7→ [0,∞) such that∫ ∞

0

1

x
fp(x)dx < ∞,

∫ ∞

0

1

y
gq(y)dy < ∞.

Then, for any β ∈ R and α > 0, we have∫ ∞

0

∫ ∞

0

(x+ y)β−1

(αx+ y)β+1
f(x)g(y)dxdy

≤ Cα,β

[∫ ∞

0

1

x
fp(x)dx

]1/p [∫ ∞

0

1

y
gq(y)dy

]1/q
,

where Cα,β is given by Equation (2.1).

Note that the associated kernel function is simply given by

k(x, y) =
(x+ y)β−1

(αx+ y)β+1
,
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without the presence of p. It is asymmetric for α ̸= 1 and homogeneous with degree −2.
Weighted integral norms of f and g are considered in the upper bound, which explains the
modified integrability conditions.

As a one-parameter special case, for β = 0 and α ∈ (0,∞)\{1}, Proposition 2.4
implies that ∫ ∞

0

∫ ∞

0

1

(αx+ y)(x+ y)
f(x)g(y)dxdy

≤ log(α)

α− 1

[∫ ∞

0

1

x
fp(x)dx

]1/p [∫ ∞

0

1

y
gq(y)dy

]1/q
.

The result below can be seen as a primitive modification of Theorem 2.2. In a sense, it
combines the features of Theorem 2.2 and the classical Hardy integral inequality.

Proposition 2.5. Let p > 1, q = p/(p− 1), f, g : [0,∞) 7→ [0,∞) such that∫ ∞

0

fp(x)dx < ∞,

∫ ∞

0

gq(y)dy < ∞,

and F,G : [0,∞) 7→ [0,∞) defined by

F (x) =

∫ x

0

f(t)dt, G(y) =

∫ y

0

g(t)dt.

Then, for any β ∈ R and α > 0, we have∫ ∞

0

∫ ∞

0

x1/p−1y1/q−1 (x+ y)β−1

(αx+ y)β+1
F (x)G(y)dxdy

≤ Cα,β

(
p

p− 1

)(
q

q − 1

)[∫ ∞

0

fp(x)dx

]1/p [∫ ∞

0

gq(y)dy

]1/q
,

where Cα,β is given by Equation (2.1).

The proof is primarily based on the thorough application of Theorem 2.2 and the Hardy
integral inequality.

Noting that q/(q − 1) = p, the main constant can in fact be expressed in a more con-
densed form, as follows:

Cα,β

(
p

p− 1

)(
q

q − 1

)
= Cα,β

p2

p− 1
.

Furthermore, as this constant is based on the product of three optimal constants, it can be
argued that it is sharp. However, its optimality is not fully demonstrated here.

As a one-parameter special case, for β = 0 and α ∈ (0,∞)\{1}, Proposition 2.5
implies that∫ ∞

0

∫ ∞

0

x1/p−1y1/q−1 1

(αx+ y)(x+ y)
F (x)G(y)dxdy

≤ log(α)

α− 1

(
p

p− 1

)(
q

q − 1

)[∫ ∞

0

fp(x)dx

]1/p [∫ ∞

0

gq(y)dy

]1/q
.

The proposition below is an integral inequality based on Theorem 2.2, but it depends on
only one function.

Proposition 2.6. Let p > 1, q = p/(p− 1), and f : [0,∞) 7→ [0,∞) such that∫ ∞

0

fp(x)dx < ∞.
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Then, for any β ∈ R and α > 0, we have∫ ∞

0

[∫ ∞

0

x1/py1/q
(x+ y)β−1

(αx+ y)β+1
f(x)dx

]p
dy ≤ Cp

α,β

∫ ∞

0

fp(x)dx,

where Cα,β is given by Equation (2.1).

As a one-parameter special case, for β = 0 and α ∈ (0,∞)\{1}, Proposition 2.6 gives∫ ∞

0

[∫ ∞

0

x1/py1/q
1

(αx+ y)(x+ y)
f(x)dx

]p
dy ≤

[
log(α)

α− 1

]p ∫ ∞

0

fp(x)dx.

We can interpret this result by the boundedness of the following integral operator:

O(f)(y) =

∫ ∞

0

x1/py1/q
1

(αx+ y)(x+ y)
f(x)dx

from Lp([0,∞)) to itself, with

∥O∥Lp→Lp
= sup

f∈Lp([0,∞))

1

∥f∥p
∥O(f)∥p ≤ log(α)

α− 1
,

where Lp([0,∞)) = {h : [0,∞) 7→ [0,∞); ∥h∥p < ∞} and ∥ · ∥p denotes that the

standard Lp norm, i.e., ∥h∥p =
[∫∞

0
|h(x)|pdx

]1/p
.

2.4. Second main results. A multiplicative version of Theorem 2.2 is proposed in the
theorem below.

Theorem 2.7. Let p > 1, q = p/(p− 1), and f, g : [0,∞) 7→ [0,∞) such that∫ ∞

0

fp(x)dx < ∞,

∫ ∞

0

gq(y)dy < ∞.

Then, for any β ∈ R and α > 0, we have∫ ∞

0

∫ ∞

0

x1/py1/q
(1 + xy)β−1

(α+ xy)β+1
f(x)g(y)dxdy

≤ Cα,β

[∫ ∞

0

fp(x)dx

]1/p [∫ ∞

0

gq(y)dy

]1/q
,

where Cα,β is given by Equation (2.1).

The proof is based on suitably decomposing the double integral, applying the Hölder
integral inequality, performing a change of variables, and using Proposition 2.1.

The upper bound is the same as in Theorem 2.2, including the constant Cα,β . The
double integral now deals with the following kernel function:

k(x, y) = x1/py1/q
(1 + xy)β−1

(α+ xy)β+1
.

It is clearly asymmetric due to the product x1/py1/q , but the parameter α does not modulate
the asymmetry anymore. We can remark that this kernel function is not homogeneous; we
can not find a ϵ ∈ R such that, for any λ > 0, we have k(λx, λy) = λϵk(x, y).
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As a one-parameter special case, for β = 0 and α ∈ (0,∞)\{1}, Theorem 2.7 implies
that ∫ ∞

0

∫ ∞

0

x1/py1/q
1

(α+ xy)(1 + xy)
f(x)g(y)dxdy

≤ log(α)

α− 1

[∫ ∞

0

fp(x)dx

]1/p [∫ ∞

0

gq(y)dy

]1/q
.

An important feature of our result is the optimality of the constant Cα,β . This is formal-
ized in the proposition below.

Proposition 2.8. The constant Cα,β in Equation (2.1) is the optimal one for the inequality
in Theorem 2.7.

The proof is based on choosing suitable functions that allow us to use a process of
reasoning by contradiction.

Remark. A variant of Theorem 2.7 cane be proved, as follows: Let p > 1, q = p/(p− 1),
and f, g : [0,∞) 7→ [0,∞) such that∫ ∞

0

fp(x)dx < ∞,

∫ ∞

0

gq(y)dy < ∞.

Then, for any β ∈ R and α > 0, we have∫ ∞

0

∫ ∞

0

x1/py1/q
(1 + xy)β−1

(1 + αxy)β+1
f(x)g(y)dxdy

≤ Cα,β

[∫ ∞

0

fp(x)dx

]1/p [∫ ∞

0

gq(y)dy

]1/q
,

where Cα,β is given by Equation (2.1), and this constant is optimal.
The parameter α now modulates the product xy, without change on the upper bound.

2.5. Additional results. Some additional results to Theorem 2.7 are given in this subsec-
tion, beginning with a reformulation in the proposition below.

Proposition 2.9. Let p > 1, q = p/(p− 1), and f, g : [0,∞) 7→ [0,∞) such that∫ ∞

0

1

x
fp(x)dx < ∞,

∫ ∞

0

1

y
gq(y)dy < ∞.

Then, for any β ∈ R and α > 0, we have∫ ∞

0

∫ ∞

0

(1 + xy)β−1

(α+ xy)β+1
f(x)g(y)dxdy

≤ Cα,β

[∫ ∞

0

1

x
fp(x)dx

]1/p [∫ ∞

0

1

y
gq(y)dy

]1/q
,

where Cα,β is given by Equation (2.1).

This proposition can also be seen as the multiplicative version of Proposition 2.4.
Note that the double integral is now independent of p, and the associated kernel function

is given by

k(x, y) =
(1 + xy)β−1

(α+ xy)β+1
,

Although it is now symmetric, it is still non-homogeneous.
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Weighted integral norms of f and g define the upper bound of the inequality, which is
one of its main interests.

As a one-parameter special case, for β = 0 and α ∈ (0,∞)\{1}, Proposition 2.9
implies that ∫ ∞

0

∫ ∞

0

1

(α+ xy)(1 + xy)
f(x)g(y)dxdy

≤ log(α)

α− 1

[∫ ∞

0

1

x
fp(x)dx

]1/p [∫ ∞

0

1

y
gq(y)dy

]1/q
.

The result below can be seen as a primitive version of Theorem 2.7. In a sense, it
combines the features of Theorem 2.7 and the classical Hardy integral inequality.

Proposition 2.10. Let p > 1, q = p/(p− 1), f, g : [0,∞) 7→ [0,∞) such that∫ ∞

0

fp(x)dx < ∞,

∫ ∞

0

gq(y)dy < ∞,

and F,G : [0,∞) 7→ [0,∞) defined by

F (x) =

∫ x

0

f(t)dt, G(y) =

∫ y

0

g(t)dt.

Then, for any β ∈ R and α > 0, we have∫ ∞

0

∫ ∞

0

x1/p−1y1/q−1 (1 + xy)β−1

(α+ xy)β+1
F (x)G(y)dxdy

≤ Cα,β

(
p

p− 1

)(
q

q − 1

)[∫ ∞

0

fp(x)dx

]1/p [∫ ∞

0

gq(y)dy

]1/q
,

where Cα,β is given by Equation (2.1).

This result can also be viewed as the multiplicative version of Proposition 2.5.
The proposition below offers an integral inequality based on Theorem 2.7, but which

depends on only one function.

Proposition 2.11. Let p > 1, q = p/(p− 1), and f : [0,∞) 7→ [0,∞) such that∫ ∞

0

fp(x)dx < ∞.

Then, for any β ∈ R and α > 0, we have∫ ∞

0

[∫ ∞

0

x1/py1/q
(1 + xy)β−1

(α+ xy)β+1
f(x)dx

]p
dy ≤ Cp

α,β

∫ ∞

0

fp(x)dx,

where Cα,β is given by Equation (2.1).

This proposition can also be seen as the multiplicative version of Proposition 2.6. Typi-
cally, we can interpret this result in terms of the boundedness of a specific integral operator
from Lp([0,∞)) to itself.

As a one-parameter special case, for β = 0 and α ∈ (0,∞)\{1}, Proposition 2.6 gives∫ ∞

0

[∫ ∞

0

x1/py1/q
1

(α+ xy)(1 + xy)
f(x)dx

]p
dy ≤

[
log(α)

α− 1

]p ∫ ∞

0

fp(x)dx.

Last but not least, to the best of our knowledge, all of the integral inequalities presented
in this section are new additions to the literature.
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3. PROOFS

This section provides detailed proofs of all the stated propositions and theorems.

3.1. Proofs associated of the main integral formula.

Proof of Proposition 2.1. Let us first prove the main formula by distinguishing the indi-
cated parameter cases.

• Let us consider the case β ̸= 0 and α ∈ (0,∞)\{1}. Making the change of
variables y = (1 + x)/(α + x), so that x = (1 − αy)/(y − 1) and dy = [(α −
1)/(α+ x)2]dx, and using standard power primitives, we get∫ ∞

0

(1 + x)β−1

(α+ x)β+1
dx =

1

α− 1

∫ ∞

0

(
1 + x

α+ x

)β−1 [
α− 1

(α+ x)2
dx

]
=

1

α− 1

∫ 1

1/α

yβ−1dy =
1

α− 1

[
1

β
yβ

]y=1

y=1/α

=
1

β(α− 1)

(
1− 1

αβ

)
=

1− α−β

β(α− 1)
.

• Let us consider the case β = 0 and α ∈ (0,∞)\{1}. Using standard fractional
decomposition and logarithmic primitives, we get∫ ∞

0

(1 + x)β−1

(α+ x)β+1
dx =

∫ ∞

0

1

(1 + x)(α+ x)
dx =

1

α− 1

∫ ∞

0

(
1

1 + x
− 1

α+ x

)
dx

=
1

α− 1
[log(1 + x)− log(α+ x)]

x→∞
x=0 =

1

α− 1

[
log

(
1 + x

α+ x

)]x→∞

x=0

=
1

α− 1

[
log(1)− log

(
1

α

)]
=

log(α)

α− 1
.

• Let us consider the case α = 1. We have∫ ∞

0

(1 + x)β−1

(α+ x)β+1
dx =

∫ ∞

0

1

(1 + x)2
dx =

[
− 1

1 + x

]x→∞

x=0

= 0− (−1) = 1.

For the second part on the integral equality, making the change of variables x = 1/y, we
get ∫ ∞

0

(1 + x)β−1

(αx+ 1)β+1
dx =

∫ 0

∞

(1 + 1/y)β−1

(α/y + 1)β+1

(
− 1

y2
dy

)
=

∫ 0

∞

(y + 1)β−1

(α+ y)β+1
× yβ+1

yβ−1
×

(
− 1

y2
dy

)
=

∫ ∞

0

(1 + y)β−1

(α+ y)β+1
dy,

which corresponds to the first integral considered. This concludes the proof of Proposition
2.1. □

3.2. Proofs associated to Theorem 2.2.
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Proof of Theorem 2.2. Decomposing the integrand of the double integral in a suitable way
and using the Hölder integral inequality, we derive∫ ∞

0

∫ ∞

0

x1/py1/q
(x+ y)β−1

(αx+ y)β+1
f(x)g(y)dxdy

=

∫ ∞

0

∫ ∞

0

x1/p (x+ y)(β−1)/p

(αx+ y)(β+1)/p
f(x)× y1/q

(x+ y)(β−1)/q

(αx+ y)(β+1)/q
g(y)dxdy

≤
[∫ ∞

0

∫ ∞

0

x
(x+ y)β−1

(αx+ y)β+1
fp(x)dxdy

]1/p
×
[∫ ∞

0

∫ ∞

0

y
(x+ y)β−1

(αx+ y)β+1
gq(y)dxdy

]1/q
. (3.1)

Using the Fubini-Tonelli integral theorem, making the change of variables u = y/x and
applying Proposition 2.1, we get∫ ∞

0

∫ ∞

0

x
(x+ y)β−1

(αx+ y)β+1
fp(x)dxdy

=

∫ ∞

0

fp(x)

[∫ ∞

0

(1 + y/x)β−1

(α+ y/x)β+1
×
(
1

x
dy

)]
dx

=

∫ ∞

0

fp(x)

[∫ ∞

0

(1 + u)β−1

(α+ u)β+1
du

]
dx = Cα,β

∫ ∞

0

fp(x)dx. (3.2)

In a similar way, but with the change of variables v = x/y and the second part of Proposi-
tion 2.1, we obtain∫ ∞

0

∫ ∞

0

y
(x+ y)β−1

(αx+ y)β+1
gq(y)dxdy

=

∫ ∞

0

gq(y)

[∫ ∞

0

(1 + x/y)β−1

(αx/y + 1)β+1
×
(
1

y
dx

)]
dy

=

∫ ∞

0

gq(y)

[∫ ∞

0

(1 + v)β−1

(αv + 1)β+1
dv

]
dy = Cα,β

∫ ∞

0

gq(y)dy. (3.3)

Using Equations (3.1), (3.2) and (3.3), and 1/p+ 1/q = 1, we obtain∫ ∞

0

∫ ∞

0

x1/py1/q
(x+ y)β−1

(αx+ y)β+1
f(x)g(y)dxdy

≤
[
Cα,β

∫ ∞

0

fp(x)dx

]1/p [
Cα,β

∫ ∞

0

gq(y)dy

]1/q
= Cα,β

[∫ ∞

0

fp(x)dx

]1/p [∫ ∞

0

gq(y)dy

]1/q
.

This ends the proof of Theorem 2.2. □

Proof of Proposition 2.3. We use an argument by contradiction, supposing that there is a
constant γ ∈ (0, Cα,β) such that, for any f, g : [0,∞) 7→ [0,∞) satisfying∫ ∞

0

fp(x)dx < ∞,

∫ ∞

0

gq(y)dy < ∞,
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we have ∫ ∞

0

∫ ∞

0

x1/py1/q
(x+ y)β−1

(αx+ y)β+1
f(x)g(y)dxdy

≤ γ

[∫ ∞

0

fp(x)dx

]1/p [∫ ∞

0

gq(y)dy

]1/q
. (3.4)

For any n ∈ N\{0}, we define two functions fn, gn : [0,∞) 7→ [0,∞), as follows:

fn(x) =

{
0 if x ∈ [0, 1),

x−(1+1/n)/p if x ∈ [1,∞),

and

gn(y) =

{
0 if y ∈ [0, 1),

y−(1+1/n)/q if y ∈ [1,∞).

We then determine∫ ∞

0

fp
n(x)dx =

∫ ∞

1

(x−(1+1/n)/p)pdx =
[
−nx−1/n

]x→∞

x=1
= n

and, similarly,∫ ∞

0

gqn(y)dy =

∫ ∞

1

(y−(1+1/n)/q)qdy =
[
−ny−1/n

]y→∞

y=1
= n.

Using this, 1/p+ 1/q = 1 and Equation (3.4), we get

γ = γ
1

n
n1/pn1/q =

1

n

{
γ

[∫ ∞

0

fp
n(x)dx

]1/p [∫ ∞

0

gqn(y)dy

]1/q}

≥ 1

n

∫ ∞

0

∫ ∞

0

x1/py1/q
(x+ y)β−1

(αx+ y)β+1
fn(x)gn(y)dxdy. (3.5)

Now, let us focus on this double integral. Expressing fn and gn, making the change of
variables x = uy, applying the Fubini-Tonelli integral theorem and using 1/p+ 1/q = 1,
we obtain∫ ∞

0

∫ ∞

0

x1/py1/q
(x+ y)β−1

(αx+ y)β+1
fn(x)gn(y)dxdy

=

∫ ∞

1

∫ ∞

1

x1/py1/q
(x+ y)β−1

(αx+ y)β+1
x−(1+1/n)/py−(1+1/n)/qdxdy

=

∫ ∞

1

[∫ ∞

1

(x+ y)β−1

(αx+ y)β+1
x−1/(np)dx

]
y−1/(nq)dy

=

∫ ∞

1

[∫ ∞

1/y

(1 + u)β−1

(αu+ 1)β+1
× 1

y2
u−1/(np)y−1/(np)(ydu)

]
y−1/(nq)dy

=

∫ ∞

1

[∫ ∞

1/y

(1 + u)β−1

(αu+ 1)β+1
u−1/(np)du

]
y−(1+1/n)dy. (3.6)
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Using the Chasles integral relation with the splitting value u = 1, the Fubini-Tonelli inte-
gral theorem, simple integral calculus and 1/p+ 1/q = 1, we get∫ ∞

1

[∫ ∞

1/y

(1 + u)β−1

(αu+ 1)β+1
u−1/(np)du

]
y−(1+1/n)dy

=

∫ ∞

1

[∫ 1

1/y

(1 + u)β−1

(αu+ 1)β+1
u−1/(np)du

]
y−(1+1/n)dy

+

∫ ∞

1

[∫ ∞

1

(1 + u)β−1

(αu+ 1)β+1
u−1/(np)du

]
y−(1+1/n)dy

=

∫ 1

0

[∫ ∞

1/u

y−(1+1/n)dy

]
(1 + u)β−1

(αu+ 1)β+1
u−1/(np)du

+

[∫ ∞

1

(1 + u)β−1

(αu+ 1)β+1
u−1/(np)du

] [∫ ∞

1

y−(1+1/n)dy

]
=

∫ 1

0

(nu1/n)
(1 + u)β−1

(αu+ 1)β+1
u−1/(np)du+ n

[∫ ∞

1

(1 + u)β−1

(αu+ 1)β+1
u−1/(np)du

]
= n

[∫ 1

0

(1 + u)β−1

(αu+ 1)β+1
u1/(nq)du+

∫ ∞

1

(1 + u)β−1

(αu+ 1)β+1
u−1/(np)du

]
. (3.7)

Joining Equations (3.5), (3.6) and (3.7), we establish that

γ ≥
∫ 1

0

(1 + u)β−1

(αu+ 1)β+1
u1/(nq)du+

∫ ∞

1

(1 + u)β−1

(αu+ 1)β+1
u−1/(np)du.

Applying the inferior limit with respect to n denoted lim infn→∞, the Fatou integral
lemma, lim infn→∞ u1/(nq) = 1 for u ∈ (0, 1), lim infn→∞ u−1/(np) = 1 for u ∈ [1,∞),
the Chasles integral relation and the second part of Proposition 2.1, we obtain

γ ≥ lim inf
n→∞

∫ 1

0

(1 + u)β−1

(αu+ 1)β+1
u1/(nq)du+ lim inf

n→∞

∫ ∞

1

(1 + u)β−1

(αu+ 1)β+1
u−1/(np)du

≥
∫ 1

0

(1 + u)β−1

(αu+ 1)β+1

[
lim inf

n→∞
u1/(nq)

]
du+

∫ ∞

1

(1 + u)β−1

(αu+ 1)β+1

[
lim inf

n→∞
u−1/(np)

]
du

=

∫ 1

0

(1 + u)β−1

(αu+ 1)β+1
du+

∫ ∞

1

(1 + u)β−1

(αu+ 1)β+1
du =

∫ ∞

0

(1 + u)β−1

(αu+ 1)β+1
du = Cα,β .

A contradiction is with the assumption γ ∈ (0, Cα,β). Consequently, the constant Cα,β is
optimal. This ends the proof of Proposition 2.3. □

Proof of Proposition 2.4. We can write∫ ∞

0

∫ ∞

0

(x+ y)β−1

(αx+ y)β+1
f(x)g(y)dxdy

=

∫ ∞

0

∫ ∞

0

x1/py1/q
(x+ y)β−1

(αx+ y)β+1
[x−1/pf(x)][y−1/qg(y)]dxdy

=

∫ ∞

0

∫ ∞

0

x1/py1/q
(x+ y)β−1

(αx+ y)β+1
f⋆(x)g⋆(y)dxdy, (3.8)

where f⋆(x) = x−1/pf(x) and g⋆(y) = y−1/qg(y).
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Applying Theorem 2.2 to f⋆ and g⋆, we get∫ ∞

0

∫ ∞

0

x1/py1/q
(x+ y)β−1

(αx+ y)β+1
f⋆(x)g⋆(y)dxdy

≤ Cα,β

[∫ ∞

0

fp
⋆ (x)dx

]1/p [∫ ∞

0

gq⋆(y)dy

]1/q
, (3.9)

where Cα,β is given by Equation (2.1),∫ ∞

0

fp
⋆ (x)dx =

∫ ∞

0

[x−1/pf(x)]pdx =

∫ ∞

0

1

x
fp(x)dx (3.10)

and ∫ ∞

0

gq⋆(y)dy =

∫ ∞

0

[y−1/qg(y)]qdy =

∫ ∞

0

1

y
gq(y)dy. (3.11)

Joining Equations (3.8), (3.9), (3.10) and (3.11), we get∫ ∞

0

∫ ∞

0

(x+ y)β−1

(αx+ y)β+1
f(x)g(y)dxdy

≤ Cα,β

[∫ ∞

0

1

x
fp(x)dx

]1/p [∫ ∞

0

1

y
gq(y)dy

]1/q
.

This concludes the proof of Proposition 2.4. □

Proof of Proposition 2.5. We can write∫ ∞

0

∫ ∞

0

x1/p−1y1/q−1 (x+ y)β−1

(αx+ y)β+1
F (x)G(y)dxdy

=

∫ ∞

0

∫ ∞

0

x1/py1/q
(x+ y)β−1

(αx+ y)β+1
[x−1F (x)][y−1G(y)]dxdy

=

∫ ∞

0

∫ ∞

0

x1/py1/q
(x+ y)β−1

(αx+ y)β+1
f†(x)g†(y)dxdy, (3.12)

where f†(x) = x−1F (x) and g†(y) = y−1G(y).
Applying Theorem 2.2 to f† and g†, we get∫ ∞

0

∫ ∞

0

x1/py1/q
(x+ y)β−1

(αx+ y)β+1
f†(x)g†(y)dxdy

≤ Cα,β

[∫ ∞

0

fp
† (x)dx

]1/p [∫ ∞

0

gq†(y)dy

]1/q
, (3.13)

where Cα,β is given by Equation (2.1). Using the Hardy integral inequality, we obtain∫ ∞

0

fp
† (x)dx =

∫ ∞

0

[x−1F (x)]pdx =

∫ ∞

0

1

xp
F p(x)dx

≤
(

p

p− 1

)p ∫ ∞

0

fp(x)dx (3.14)

and ∫ ∞

0

gq†(y)dy =

∫ ∞

0

[y−1G(y)]qdy =

∫ ∞

0

1

yq
Gq(y)dy

≤
(

q

q − 1

)q ∫ ∞

0

gq(y)dy. (3.15)
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Joining Equations (3.12), (3.13), (3.14) and (3.15), we have∫ ∞

0

∫ ∞

0

(x+ y)β−1

(αx+ y)β+1
f(x)g(y)dxdy

≤ Cα,β

[(
p

p− 1

)p ∫ ∞

0

fp(x)dx

]1/p [(
q

q − 1

)q ∫ ∞

0

gq(y)dy

]1/q
= Cα,β

(
p

p− 1

)(
q

q − 1

)[∫ ∞

0

fp(x)dx

]1/p [∫ ∞

0

gq(y)dy

]1/q
.

This concludes the proof of Proposition 2.5. □

Proof of Proposition 2.6. Using the Fubini-Tonelli integral theorem, we can write∫ ∞

0

[∫ ∞

0

x1/py1/q
(x+ y)β−1

(αx+ y)β+1
f(x)dx

]p
dy

=

∫ ∞

0

[∫ ∞

0

x1/py1/q
(x+ y)β−1

(αx+ y)β+1
f(x)dx

]
×[∫ ∞

0

x1/py1/q
(x+ y)β−1

(αx+ y)β+1
f(x)dx

]p−1

dy

=

∫ ∞

0

∫ ∞

0

x1/py1/q
(x+ y)β−1

(αx+ y)β+1
f(x)g⋄(y)dxdy, (3.16)

where

g⋄(y) =

[∫ ∞

0

x1/py1/q
(x+ y)β−1

(αx+ y)β+1
f(x)dx

]p−1

.

Applying Theorem 2.2 to the functions f and g⋄, we get∫ ∞

0

∫ ∞

0

x1/py1/q
(x+ y)β−1

(αx+ y)β+1
f(x)g⋄(y)dxdy

≤ Cα,β

[∫ ∞

0

fp(x)dx

]1/p [∫ ∞

0

gq⋄(y)dy

]1/q
, (3.17)

where Cα,β is given by Equation (2.1).
Furthermore, since q(p− 1) = p, we have∫ ∞

0

gq⋄(y)dy =

∫ ∞

0

[∫ ∞

0

x1/py1/q
(x+ y)β−1

(αx+ y)β+1
f(x)dx

]q(p−1)

dy

=

∫ ∞

0

[∫ ∞

0

x1/py1/q
(x+ y)β−1

(αx+ y)β+1
f(x)dx

]p
dy. (3.18)

Joining Equations (3.16), (3.17) and (3.18), we get∫ ∞

0

[∫ ∞

0

x1/py1/q
(x+ y)β−1

(αx+ y)β+1
f(x)dx

]p
dy

≤ Cα,β

[∫ ∞

0

fp(x)dx

]1/p {∫ ∞

0

[∫ ∞

0

x1/py1/q
(x+ y)β−1

(αx+ y)β+1
f(x)dx

]p
dy

}1/q

.
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This and 1− 1/q = 1/p give{∫ ∞

0

[∫ ∞

0

x1/py1/q
(x+ y)β−1

(αx+ y)β+1
f(x)dx

]p
dy

}1/p

≤ Cα,β

[∫ ∞

0

fp(x)dx

]1/p
,

so that ∫ ∞

0

[∫ ∞

0

x1/py1/q
(x+ y)β−1

(αx+ y)β+1
f(x)dx

]p
dy ≤ Cp

α,β

∫ ∞

0

fp(x)dx.

This concludes the proof of Proposition 2.6. □

3.3. Proofs associated to Theorem 2.7.

Proof of Theorem 2.7. Decomposing the integrand of the double integral in a suitable way
and using the Hölder integral inequality, we derive∫ ∞

0

∫ ∞

0

x1/py1/q
(1 + xy)β−1

(α+ xy)β+1
f(x)g(y)dxdy

=

∫ ∞

0

∫ ∞

0

x1/p (1 + xy)(β−1)/p

(α+ xy)(β+1)/p
f(x)× y1/q

(1 + xy)(β−1)/q

(α+ xy)(β+1)/q
g(y)dxdy

≤
[∫ ∞

0

∫ ∞

0

x
(1 + xy)β−1

(α+ xy)β+1
fp(x)dxdy

]1/p
×
[∫ ∞

0

∫ ∞

0

y
(1 + xy)β−1

(α+ xy)β+1
gq(y)dxdy

]1/q
. (3.19)

Using the Fubini-Tonelli integral theorem, making the change of variables u = xy and
applying Proposition 2.1, we get∫ ∞

0

∫ ∞

0

x
(1 + xy)β−1

(α+ xy)β+1
fp(x)dxdy =

∫ ∞

0

fp(x)

[∫ ∞

0

(1 + xy)β−1

(α+ xy)β+1
× (xdy)

]
dx

=

∫ ∞

0

fp(x)

[∫ ∞

0

(1 + u)β−1

(α+ u)β+1
du

]
dx = Cα,β

∫ ∞

0

fp(x)dx. (3.20)

In a similar way, but with the change of variables v = xy, we obtain∫ ∞

0

∫ ∞

0

y
(1 + xy)β−1

(α+ xy)β+1
gq(y)dxdy =

∫ ∞

0

gq(y)

[∫ ∞

0

(1 + xy)β−1

(α+ xy)β+1
× (ydx)

]
dy

=

∫ ∞

0

gq(y)

[∫ ∞

0

(1 + v)β−1

(α+ v)β+1
dv

]
dy = Cα,β

∫ ∞

0

gq(y)dy. (3.21)

Using Equations (3.19), (3.20) and (3.21), and 1/p+ 1/q = 1, we get∫ ∞

0

∫ ∞

0

x1/py1/q
(1 + xy)β−1

(α+ xy)β+1
f(x)g(y)dxdy

≤
[
Cα,β

∫ ∞

0

fp(x)dx

]1/p [
Cα,β

∫ ∞

0

gq(y)dy

]1/q
= Cα,β

[∫ ∞

0

fp(x)dx

]1/p [∫ ∞

0

gq(y)dy

]1/q
.

This ends the proof of Theorem 2.7. □
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Proof of Proposition 2.8. We use an argument by contradiction, supposing that there is a
constant µ ∈ (0, Cα,β) such that, for any f, g : [0,∞) 7→ [0,∞) satisfying∫ ∞

0

fp(x)dx < ∞,

∫ ∞

0

gq(y)dy < ∞,

we have ∫ ∞

0

∫ ∞

0

x1/py1/q
(1 + xy)β−1

(α+ xy)β+1
f(x)g(y)dxdy

≤ µ

[∫ ∞

0

fp(x)dx

]1/p [∫ ∞

0

gq(y)dy

]1/q
. (3.22)

For any n ∈ N\{0}, we define two functions fn, gn : [0,∞) 7→ [0,∞), as follows:

fn(x) =

{
x(1/n−1)/p if x ∈ (0, 1),

0 if x ∈ [1,∞),

from wich we can add the value fn(x) = 0 if x = 0 to cover the domain [0,∞), and

gn(y) =

{
0 if y ∈ [0, 1),

y−(1+1/n)/q if y ∈ [1,∞).

We then calculate∫ ∞

0

fp
n(x)dx =

∫ 1

0

(x(1/n−1)/p)pdx =
[
nx1/n

]x=1

x=0
= n

and, similarly,∫ ∞

0

gqn(y)dy =

∫ ∞

1

(y−(1+1/n)/q)qdy =
[
−ny−1/n

]y→∞

y=1
= n.

Using this, 1/p+ 1/q = 1 and Equation (3.22), we obtain

µ = µ
1

n
n1/pn1/q =

1

n

{
µ

[∫ ∞

0

fp
n(x)dx

]1/p [∫ ∞

0

gqn(y)dy

]1/q}

≥ 1

n

∫ ∞

0

∫ ∞

0

x1/py1/q
(1 + xy)β−1

(α+ xy)β+1
fn(x)gn(y)dxdy. (3.23)

Now, let us concentrate on this double integral. Expressing fn and gn, making the change
of variables x = u/y, applying the Fubini-Tonelli integral theorem and using 1/p+1/q =
1, we get ∫ ∞

0

∫ ∞

0

x1/py1/q
(1 + xy)β−1

(α+ xy)β+1
fn(x)gn(y)dxdy

=

∫ ∞

1

∫ 1

0

x1/py1/q
(1 + xy)β−1

(α+ xy)β+1
x(1/n−1)/py−(1+1/n)/qdxdy

=

∫ ∞

1

[∫ 1

0

(1 + xy)β−1

(α+ xy)β+1
x1/(np)dx

]
y−1/(nq)dy

=

∫ ∞

1

[∫ y

0

(1 + u)β−1

(α+ u)β+1
u1/(np)y−1/(np) 1

y
du

]
y−1/(nq)dy

=

∫ ∞

1

[∫ y

0

(1 + u)β−1

(α+ u)β+1
u1/(np)du

]
y−(1+1/n)dy. (3.24)
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Using the Chasles integral relation with the splitting value u = 1, the Fubini-Tonelli inte-
gral theorem and 1/p+ 1/q = 1, we obtain∫ ∞

1

[∫ y

0

(1 + u)β−1

(α+ u)β+1
u1/(np)du

]
y−(1+1/n)dy

=

∫ ∞

1

[∫ 1

0

(1 + u)β−1

(α+ u)β+1
u1/(np)du

]
y−(1+1/n)dy

+

∫ ∞

1

[∫ y

1

(1 + u)β−1

(α+ u)β+1
u1/(np)du

]
y−(1+1/n)dy

=

[∫ 1

0

(1 + u)β−1

(α+ u)β+1
u1/(np)du

] [∫ ∞

1

y−(1+1/n)dy

]
+

∫ ∞

1

[∫ ∞

u

y−(1+1/n)dy

]
(1 + u)β−1

(α+ u)β+1
u1/(np)du

= n

[∫ 1

0

(1 + u)β−1

(α+ u)β+1
u1/(np)du

]
+

∫ ∞

1

(nu−1/n)
(1 + u)β−1

(α+ u)β+1
u1/(np)du

= n

[∫ 1

0

(1 + u)β−1

(α+ u)β+1
u1/(np)du+

∫ ∞

1

(1 + u)β−1

(α+ u)β+1
u−1/(nq)du

]
. (3.25)

Joining Equations (3.23), (3.24) and (3.25), we find that

µ ≥
∫ 1

0

(1 + u)β−1

(α+ u)β+1
u1/(np)du+

∫ ∞

1

(1 + u)β−1

(α+ u)β+1
u−1/(nq)du.

Applying the inferior limit with respect to n, the Fatou integral lemma, lim infn→∞ u1/(np) =
1 for u ∈ (0, 1), lim infn→∞ u−1/(nq) = 1 for u ∈ [1,∞), the Chasles integral relation
and Proposition 2.1, we obtain

µ ≥ lim inf
n→∞

∫ 1

0

(1 + u)β−1

(α+ u)β+1
u1/(np)du+ lim inf

n→∞

∫ ∞

1

(1 + u)β−1

(α+ u)β+1
u−1/(nq)du

≥
∫ 1

0

(1 + u)β−1

(α+ u)β+1

[
lim inf

n→∞
u1/(np)

]
du+

∫ ∞

1

(1 + u)β−1

(α+ u)β+1

[
lim inf

n→∞
u−1/(nq)

]
du

=

∫ 1

0

(1 + u)β−1

(α+ u)β+1
du+

∫ ∞

1

(1 + u)β−1

(α+ u)β+1
du =

∫ ∞

0

(1 + u)β−1

(α+ u)β+1
du = Cα,β .

A contradiction appears with the assumption µ ∈ (0, Cα,β). Consequently, the constant
Cα,β is optimal. This completes the proof of Proposition 2.8. □

Proof of Proposition 2.9. We can write∫ ∞

0

∫ ∞

0

(1 + xy)β−1

(α+ xy)β+1
f(x)g(y)dxdy

=

∫ ∞

0

∫ ∞

0

x1/py1/q
(1 + xy)β−1

(α+ xy)β+1
[x−1/pf(x)][y−1/qg(y)]dxdy

=

∫ ∞

0

∫ ∞

0

x1/py1/q
(1 + xy)β−1

(α+ xy)β+1
f∗(x)g∗(y)dxdy, (3.26)

where f∗(x) = x−1/pf(x) and g∗(y) = y−1/qg(y).
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Applying Theorem 2.7 to f∗ and g∗, we get∫ ∞

0

∫ ∞

0

x1/py1/q
(1 + xy)β−1

(α+ xy)β+1
f∗(x)g∗(y)dxdy

≤ Cα,β

[∫ ∞

0

fp
∗ (x)dx

]1/p [∫ ∞

0

gq∗(y)dy

]1/q
, (3.27)

where Cα,β is given by Equation (2.1),∫ ∞

0

fp
∗ (x)dx =

∫ ∞

0

[x−1/pf(x)]pdx =

∫ ∞

0

1

x
fp(x)dx (3.28)

and ∫ ∞

0

gq∗(y)dy =

∫ ∞

0

[y−1/qg(y)]qdy =

∫ ∞

0

1

y
gq(y)dy. (3.29)

Joining Equations (3.26), (3.27), (3.28) and (3.29), we obtain∫ ∞

0

∫ ∞

0

(1 + xy)β−1

(α+ xy)β+1
f(x)g(y)dxdy

≤ Cα,β

[∫ ∞

0

1

x
fp(x)dx

]1/p [∫ ∞

0

1

y
gq(y)dy

]1/q
.

This concludes the proof of Proposition 2.9. □

Proof of Proposition 2.10. We can write∫ ∞

0

∫ ∞

0

x1/p−1y1/q−1 (1 + xy)β−1

(α+ xy)β+1
F (x)G(y)dxdy

=

∫ ∞

0

∫ ∞

0

x1/py1/q
(1 + xy)β−1

(α+ xy)β+1
[x−1F (x)][y−1G(y)]dxdy

=

∫ ∞

0

∫ ∞

0

x1/py1/q
(1 + xy)β−1

(α+ xy)β+1
f‡(x)g‡(y)dxdy (3.30)

where f‡(x) = x−1F (x) and g‡(y) = y−1G(y).
Applying Theorem 2.7 to f‡ and g‡, we get∫ ∞

0

∫ ∞

0

x1/py1/q
(1 + xy)β−1

(α+ xy)β+1
f‡(x)g‡(y)dxdy

≤ Cα,β

[∫ ∞

0

fp
‡ (x)dx

]1/p [∫ ∞

0

gq‡(y)dy

]1/q
, (3.31)

where Cα,β is given by Equation (2.1). Using the Hardy integral inequality, we obtain∫ ∞

0

fp
‡ (x)dx =

∫ ∞

0

[x−1F (x)]pdx =

∫ ∞

0

1

xp
F p(x)dx

≤
(

p

p− 1

)p ∫ ∞

0

fp(x)dx (3.32)

and ∫ ∞

0

gq‡(y)dy =

∫ ∞

0

[y−1G(y)]qdy =

∫ ∞

0

1

yq
Gq(y)dy

≤
(

q

q − 1

)q ∫ ∞

0

gq(y)dy. (3.33)
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Joining Equations (3.30), (3.31), (3.32) and (3.33), we have∫ ∞

0

∫ ∞

0

(1 + xy)β−1

(α+ xy)β+1
f(x)g(y)dxdy

≤ Cα,β

[(
p

p− 1

)p ∫ ∞

0

fp(x)dx

]1/p [(
q

q − 1

)q ∫ ∞

0

gq(y)dy

]1/q
= Cα,β

(
p

p− 1

)(
q

q − 1

)[∫ ∞

0

fp(x)dx

]1/p [∫ ∞

0

gq(y)dy

]1/q
.

This concludes the proof of Proposition 2.10. □

Proof of Proposition 2.11. Using the Fubini-Tonelli integral theorem, we can write∫ ∞

0

[∫ ∞

0

x1/py1/q
(1 + xy)β−1

(α+ xy)β+1
f(x)dx

]p
dy

=

∫ ∞

0

[∫ ∞

0

x1/py1/q
(1 + xy)β−1

(α+ xy)β+1
f(x)dx

]
×[∫ ∞

0

x1/py1/q
(1 + xy)β−1

(α+ xy)β+1
f(x)dx

]p−1

dy

=

∫ ∞

0

∫ ∞

0

x1/py1/q
(1 + xy)β−1

(α+ xy)β+1
f(x)g△(y)dxdy, (3.34)

where

g△(y) =

[∫ ∞

0

x1/py1/q
(1 + xy)β−1

(α+ xy)β+1
f(x)dx

]p−1

.

Applying Theorem 2.7 to the functions f and g△, we get∫ ∞

0

∫ ∞

0

x1/py1/q
(1 + xy)β−1

(α+ xy)β+1
f(x)g△(y)dxdy

≤ Cα,β

[∫ ∞

0

fp(x)dx

]1/p [∫ ∞

0

gq△(y)dy

]1/q
, (3.35)

where Cα,β is given by Equation (2.1).
Furthermore, since q(p− 1) = p, we have∫ ∞

0

gq△(y)dy =

∫ ∞

0

[∫ ∞

0

x1/py1/q
(1 + xy)β−1

(α+ xy)β+1
f(x)dx

]q(p−1)

dy

=

∫ ∞

0

[∫ ∞

0

x1/py1/q
(1 + xy)β−1

(α+ xy)β+1
f(x)dx

]p
dy. (3.36)

Joining Equations (3.34), (3.35) and (3.36), we get∫ ∞

0

[∫ ∞

0

x1/py1/q
(1 + xy)β−1

(α+ xy)β+1
f(x)dx

]p
dy

≤ Cα,β

[∫ ∞

0

fp(x)dx

]1/p {∫ ∞

0

[∫ ∞

0

x1/py1/q
(1 + xy)β−1

(α+ xy)β+1
f(x)dx

]p
dy

}1/q

.
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This and 1− 1/q = 1/p give{∫ ∞

0

[∫ ∞

0

x1/py1/q
(1 + xy)β−1

(α+ xy)β+1
f(x)dx

]p
dy

}1/p

≤ Cα,β

[∫ ∞

0

fp(x)dx

]1/p
,

so that ∫ ∞

0

[∫ ∞

0

x1/py1/q
(1 + xy)β−1

(α+ xy)β+1
f(x)dx

]p
dy ≤ Cp

α,β

∫ ∞

0

fp(x)dx.

This concludes the proof of Proposition 2.11. □

4. CONCLUSION

Inspired by recent developments, we have derived two new two-parameter modifica-
tions of the classical Hardy-Hilbert integral inequality. We have determined a closed-form
expression for the optimal constants for each of them, which is necessary for theoretical
investigations and potential applications in analysis and related fields. We also obtained
supplementary results, including variants involving the primitives of the main functions.
Our article is self-contained and accessible to a broad mathematical audience thanks to the
detailed, step-by-step proofs that accompany all of our results.

This work suggests several natural directions for further research. For instance, one
could consider weighted extensions of the proposed inequalities, or analogous results in
higher dimensions or on different domains. Furthermore, as outlined in the article, the
application of these results to the boundedness of certain integral operators or convolution-
type inequalities warrants further exploration. We hope that these results will stimulate
further research into integral inequalities and their many applications in analysis and other
fields.
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