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THEORETICAL RESULTS ON NEW HARDY-HILBERT-TYPE INEQUALITIES

CHRISTOPHE CHESNEAU

ABSTRACT. Hardy-Hilbert-type integral inequalities lie at the heart of mathematical anal-
ysis. They have been the subject of much research. In this article, we make a contribution
to the field by examining two new two-parameter modifications of the classical Hardy-
Hilbert integral inequality. We derive the closed-form expression of the optimal constant
for each modification. We also present supplementary results, including one-function and
primitive variants. All proofs are provided in full, with each step justified, to ensure the
article is self-contained.

1. INTRODUCTION

The Hardy-Hilbert integral inequality, first introduced by G. H. Hardy in [11]], is consid-
ered a classic of mathematical analysis. It provides an upper bound on the weighted double
integral of the product of two functions in terms of their unweighted integral norms. This
inequality is particularly useful in the fields of Fourier analysis, operator theory and inte-
gral inequality theory. Its formal statement is given below. Letp > 1, =p/(p — 1) (i.e.,
the Holder conjugate of p), and f, g : [0,00) +— [0,00) be two (non-negative) functions
such that

/OO fP(z)dx < oo, /OO 94(y)dy < .
0 0

Then we have

[ [ s s o7 [ rwa] | [ owa) 1/:1.'1)

By identification, the kernel function associated with the double integral is given by k(z,y) =
1/(xz 4+ y). It exhibits a symmetric decay that plays a central role in the inequality. The
constant 7/ sin(7/p) is optimal, i.e., the inequality cannot hold with a smaller constant for
two functions f and ¢ satisfying the integrability conditions. In the particular case when
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p = 2, the inequality reduces to the classical Hilbert integral inequality, with the constant
simplified to 7, as follows:

//Hy ()dwdy<7f[/ [ dxr/z[/omgz(y)dy}

Over the years, the Hardy-Hilbert integral inequality has inspired substantial research,
leading to a multitude of improvements and extensions. Key contributions can be found in
(120117, 1214 (19, 116} 20, [13), 114} 9 115, 2, 13} 4L [11 15, 16, [7]. A selection of these advances are
highlighted in the reference book [22].

In particular, a significant generalization was proposed in [[18]. This involves introduc-
ing a power parameter o > 0 into the kernel function. A formal statement is given below.
Letp, g, and f, g : [0,00) — [0, 00) be as before, with the same integrability assumptions,
and @ > 2 — min(p, ¢). Then we have

/OOO /0°° le)af(x)g(y)dxdy
= Hte <1 - ; - ; a) Uooo fp(x)dx} " [/000 gq(y)dy} 1/q7 (1.2)

where Be:,(a, b) denotes the classical beta function at a,b > 0, defined by

1
Betala,b) = / 2271 — z)P L.
0

The kernel function associated with the double integral is thus given by k(z,y) = 1/(z +
y)®. Setting o = 1 in Equation (T.2)) yields the classical inequality in Equation (T.1), since

1 1
Beta (1—,1—) S —
p q sin(7/p)

using the well-known identity for the beta function in terms of the sine function.

The study of Hardy-Hilbert-type integral inequalities is a dynamic field of research,
driven by continuous advancements in analysis. To illustrate this, we present two recent
results from [§]]. Let p, ¢ and f, g : [0,00) — [0, 00) be as before, with the same integra-
bility assumptions, and 8 > 0. The first main result in [8]] is then given by

x A1
/ / 2Py g lz—yl”" +y|)ﬂ+1f( )g(y)dzdy

<3 f?’(x)dx} [/Omg%wdyr/q.

This one-parameter inequality can be viewed as a modified Hardy-Hilbert integral inequal-
ity. The kernel function associated with the double integral is thus given by k(x,y) =
/Pyt ez — y|B=1/(x + y)P*L. It is asymmetric except for the case p = 2. A notable
feature of this result is the optimality and simplicity of the constant 1/, which makes it
particularly useful for obtaining sharp estimates and norm inequalities.

In [8]], this result is complemented by a multiplicative analogue, in which the kernel
function involves products rather than sums. A formal statement is presented below. Let
p,qand f,g:[0,00) — [0,00) be as before, with the same integrability assumptions, and

1/2
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[ > 0. Then we have

B—1
21/pg L/ 11—yl
[ [t s f@atdsy

< 5 M) f"’(x)dw] v [/Ooo g"(y)dy} Uq-

Once again, 1/ is optimal, and its simplicity makes it suitable for a variety of analytical
applications.

In this article, we draw inspiration from these results to explore new Hardy-Hilbert-type
integral inequalities, considering original two-parameter kernel functions. Specifically, we
aim to determine a sharp constant ¢ in the framework described below. Let p, ¢ and
f,9 : [0,00) — [0,00) be as before, with the same integrability assumptions. Then we

have
-1
2Py 1/q (z+y)°
/ / (o + y)B+1 f(x)g(y)dxdy

<o [ I f%)dx} v [ s g%y)dy] "

The main novelty of this inequality lies in its consideration of a special two-parameter
asymmetric kernel function, i.e., k(z, y) = z'/Py/9(z4+y)? =1 /(az+y)?*'. In particular,
the parameter v modulates the asymmetry of the ratio function. Furthermore, the constant
o we derive is optimal and expressed in closed form, making it practical for applications.
Following the spirit in [8], we also study the multiplicative analogue of this inequal-
ity. It features a two-parameter kernel function based on the product zy, i.e., k(z,y) =
/Pyt 9(1 4 zy)P~1 /(o + zy) P+, This inequality is stated formally below. Let p, ¢ and
f,9 :[0,00) = [0,00) be as before, with the same integrability assumptions. Then we

have
(14 zy)s~1
/ / zl/Py 1/q (ot 2P0 f(z)g(y)dzdy

<o [/0 f”(x)dﬂsr/p UOOO gq(y)dy] Uq-

The constant o is the same as in the previous inequality and is again shown to be optimal.

In addition to these inequalities, we present several auxiliary results, including variants
involving only a single function, or the primitives of the functions f and g. Complete
proofs containing all the technical details are provided. These results extend the classi-
cal theory and could be useful in various areas of analysis, particularly in the study of
weighted inequalities, convolution-type estimates and integral operators with asymmetric
or multiplicative kernel functions.

The rest of the article is divided into the following sections: Section 2]lists all the results
in full generality, and emphasizes some special cases. The proofs are given in Section [3]
Section[d] provides a conclusion.

2. RESULTS

2.1. An intermediary proposition. The proposition below is an integral result involving
two parameters. The first identity is stated in [[10, Formula 3.195] but without proof. This
gap is filled, along with another integral identity, in the second part of the proposition.
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Proposition 2.1. For any € R and o > 0, we have

1l—a® |
m fB#0, aec(0,00\{1},
® (1+z)P! .
/0 lata)pa®= lff_(o‘l’ ifB=0, ac(0,00\{1},
1 fa=1,

which is also equal to the following modified integral:
o0 1 ,8_1
/ (A+2)"
o (az+1)s+1
We recall that, for all the results in this article, the proofs are given in Section[3].

To highlight a one-parameter example, let us consider the case 5 = 0 and a € (0, 00)\{1}.
Then Proposition [2.1] gives

/ o 1 d / ° 1 log(a)
— dx = xr = .
o (a+x)(1+2) o (az+1)(1+2) a—1
This example will be reused throughout the study, primarily due to its originality and sim-
plicity.

2.2. First main results. We are now ready to present our first main result. It can be
viewed as a new, two-parameter, Hardy-Hilbert-type integral inequality with a tractable
constant. We will discuss the nature of this constant after the statement.

Theorem 2.2. Letp > 1, ¢q=p/(p—1), and f,g : [0,00) — [0, 00) such that

/ fP(z)dx < oo, / 94(y)dy < .
0 0

Then, for any B € R and o > 0, we have

LC —1
// gt/Pyt/a tu” f(x)g(y)dady

(ax + y)PtL
1/p o 1/q
Ca 4 d q d 5
< Cap UO [P () fﬂ] UO 9% (y) y]
where

l—a? |
ICES] if #0, € (0,00)\{1},

Cop = lzgf“l) if 8=0, a € (0,00)\{1}, D
1 ifa=1.

The proof is based on suitably decomposing the double integral, applying the Holder
integral inequality, making an adapted change of variables, and using Proposition[2.1} This
last argument also explains the expression of the constant Cy, g.
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As a one-parameter special case, for # = 0 and a € (0, 00)\{1}, Theorem 2.2]gives
o0 oo 1
1/py1/a dxd
x x x
/ / y am+y)(x+y)f( )9(y)dwdy

< lzg_ : U fP(x dr] v UOOO gq(y)dy} Uq-

An important feature of our result is the optimality of the constant C,_g, which plays a
central role in the inequality. This optimality is formalized in the proposition below.

Proposition 2.3. The constant C,, g in Equation (2.1)) is the optimal one for the inequality
in Theorem[2.2]

The proof is based on choosing suitable functions that allow us to use a process of
reasoning by contradiction.

Theorem [2.2] thus provides a generalized Hardy—Hilbert-type integral inequality with
the kernel function

1
k‘(.l? Z/) 1/p 1/q (x+y)ﬁ
’ (o +y)ott”

along with an explicit, optimal constant C, g. It is worth noting that this kernel function is
homogeneous with degree —1; for any A > 0, using 1/p + 1/q = 1, we have

1/¢1 ()\IE + )\Z/)Bil
(adx + Ay)B+1
)\1/p+1/q)\6 1 ROV (z +y)P~!

= %k(x,y)

However, it is the asymmetric nature of the kernel function that primarily offers greater
flexibility in applications. Furthermore, the closed-form expression of the sharp constant
renders the result theoretically significant and practically tractable. The next subsection
illustrates these points by presenting further results.

k(Az, Ay) = (Az)'P(\y)

2.3. Additional results. The proposition below presents a reformulation of Theorem [2.2]
without the presence of p (and ¢) in the double integral.

Proposition 2.4. Letp > 1, q=p/(p— 1), and f,g : [0,00) — [0, 00) such that
/ ffp( )dx < o0, / y)dy < oo.
0

Then, for any 5 € R and o > 0, we have

[ @D g (y)dedy

(ax + y)P+1

<Cos| [ 1101 ]l/p[/owl <>dy]1/q,

where C,, g is given by Equation (2.1).
Note that the associated kernel function is simply given by

(z+y)P?

k(xay) = <a$+y)ﬂ+17
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without the presence of p. It is asymmetric for & # 1 and homogeneous with degree —2.
Weighted integral norms of f and g are considered in the upper bound, which explains the
modified integrability conditions.

As a one-parameter special case, for 5 = 0 and o € (0,00)\{1}, Proposition
implies that

/ooc /0’“’0 mf(x)g(y)dxdy
b [ ][ o]

a—1 T Y
The result below can be seen as a primitive modification of Theorem [2.2] In a sense, it
combines the features of Theorem [2.2]and the classical Hardy integral inequality.

Proposition 2.5. Letp > 1, q=p/(p—1), f,g:[0,00) — [0, 00) such that

| r@ds<o [ gy <o,
0 0
and F,G : [0,00) — [0, 00) defined by

Fa) = [ fod. 6w = [ gt

Then, for any B € R and o > 0, we have

00 0O B—1
p—1.1/q-1 (T +Y) P
[ et e PGl dady

o 523) (=) [ o] [ o]

where C, g is given by Equation (2.1).

The proof is primarily based on the thorough application of Theorem[2.2]and the Hardy
integral inequality.

Noting that ¢/(¢ — 1) = p, the main constant can in fact be expressed in a more con-
densed form, as follows:

2
p a \ p
Cop (p—1> (q—1> _C“’Bp—l'

Furthermore, as this constant is based on the product of three optimal constants, it can be
argued that it is sharp. However, its optimality is not fully demonstrated here.

As a one-parameter special case, for 5 = 0 and o € (0,00)\{1}, Proposition
implies that

1

> Ooxl/pfl 1/¢q—1 T -
R s = L

sl (021) (o) ] o]

The proposition below is an integral inequality based on Theorem[2.2] but it depends on
only one function.

Proposition 2.6. Letp > 1, ¢ =p/(p — 1), and f : [0,00) — [0, 00) such that

/OO fP(x)dx < oo.
0
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Then, for any B € R and o > 0, we have

[e’s) B—1
gt EH0T 0T <cr / A
where C,, g is given by Equation 2.1).

As a one-parameter special case, for 3 = 0 and a € (0, 00)\{1}, Proposition gives

I ] s [E5] [ e

We can interpret this result by the boundedness of the following integral operator:

O :/Ooxl/p Ve~ f(z)dx
(N = [ a1 fa)
from L, ([0, 00)) to itself, with
log(c)
O su on, < —=——,
H ||Lp—>Lp [(I;)oo Hpr” ( )”P -~ a—-1

where L,([0,00)) = {h : [(),oo) — [0,00); ||h|l, < oo} and || - ||, denotes that the
standard L,, norm, i.e., |[hll, = [[>° |h(x)[Pdz] .

2.4. Second main results. A multiplicative version of Theorem [2.2] is proposed in the
theorem below.

Theorem 2.7. Letp > 1, q=p/(p — 1), and f,g : [0,00) — [0, 00) such that

/ fP(z)dz < oo, / y)dy < oo.

Then, for any B € R and o > 0, we have

1
/ / 1/17 1/q 1+xy)5+1f(a:)g(y)da:dy

(o + 29)

< Cap UO f”(fﬂ)dw] v UOOO gq(y)dy] Uq,

where C,, g is given by Equation (2.).

The proof is based on suitably decomposing the double integral, applying the Holder
integral inequality, performing a change of variables, and using Proposition 2.1}

The upper bound is the same as in Theorem 2.2} including the constant Cy, 5. The
double integral now deals with the following kernel function:

_ ;1:1/17 1/q (1 + =y’
(a +ay)ftt’
It is clearly asymmetric due to the product :'/P1'/4, but the parameter o does not modulate

the asymmetry anymore. We can remark that this kernel function is not homogeneous; we
can not find a € € R such that, for any A > 0, we have k(Az, \y) = Xk(z,y).

k(x,y) =
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As a one-parameter special case, for 3 = 0 and o € (0, 00)\{1}, Theorem [2.7)implies

that
Y RV 1/q 1
/ / O (T oy @9 dady

< lzg_ : [/ [P dx} " Uooogq(y)dy] Uq-

An important feature of our result is the optimality of the constant C,, g. This is formal-
ized in the proposition below.

Proposition 2.8. The constant C,, g in Equation 2.1) is the optimal one for the inequality
in Theorem2. 2

The proof is based on choosing suitable functions that allow us to use a process of
reasoning by contradiction.

Remark. A variant of Theoremncane be proved, as follows: Letp > 1, q = p/(p— 1),
and f, g :[0,00) +— [0, 00) such that

/ fP(x)dx < oo, / y)dy < oo.

Then, for any 5 € R and o > 0, we have

T p—-1
/ / atrytle 11:aj:y))3+1 f(z)g(y)dxdy

<Cos| [ Pt " [t "

where C, g is given by Equation 2.1)), and this constant is optimal.
The parameter o now modulates the product xy, without change on the upper bound.

2.5. Additional results. Some additional results to Theorem [2.7)are given in this subsec-
tion, beginning with a reformulation in the proposition below.

Proposition 2.9. Letp > 1, ¢=p/(p— 1), and f, g : [0,00) — [0, 00) such that

/OOOfp( )dx < o0, / y)dy < oo.

Then, for any 8 € R and o > 0, we have

/ / (+ay)° 1f(x)LCJ(y)clxcly

(o + zy)P+L

< Cap UO *f”( )d ]w UOOO ;gq(y)dy] l/q,

where C,, g is given by Equation (2.).

This proposition can also be seen as the multiplicative version of Proposition 2:4]
Note that the double integral is now independent of p, and the associated kernel function
is given by
(14 zy)s1
k(z,y) = T o NBEL’
(a+zy)

Although it is now symmetric, it is still non-homogeneous.
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Weighted integral norms of f and g define the upper bound of the inequality, which is

one of its main interests.
As a one-parameter special case, for 5 = 0 and o € (0,00)\{1}, Proposition

implies that
log(a) % q 1/p % g
i e

The result below can be seen as a primitive version of Theorem In a sense, it
combines the features of Theorem [2.7|and the classical Hardy integral inequality.

Proposition 2.10. Letp > 1, g =p/(p—1), f,g: [0,00) — [0, 00) such that

/ fP(x)de < oo, / 9% (y)dy < oo,
0 0
and F,G : [0,00) — [0, 00) defined by

r) = / fdt, Gly) = / glt)dt.

Then, for any 3 € R and o > 0, we have

[e'e] B—1
0 0

(a + ay)P+!

e o] [

where C, g is given by Equation (2.1).

This result can also be viewed as the multiplicative version of Proposition [2.3]
The proposition below offers an integral inequality based on Theorem [2.7] but which
depends on only one function.

Proposition 2.11. Lerp > 1, ¢ =p/(p—1), and f : [0,0) > [0, c0) such that

/OO fP(x)dx < oo.
0

Then, for any 8 € R and o > 0, we have

[ee) o0 5 1
1/p 1/q( —i—xy) < P / p
e o] wser, [
where Cy, g is given by Equation (2.1).

This proposition can also be seen as the multiplicative version of Proposition[2.6] Typi-
cally, we can interpret this result in terms of the boundedness of a specific integral operator
from L, ([0, 00)) to itself.

As a one-parameter special case, for § = 0 and « € (0,00)\{1}, Proposition gives

[ [/om“””l/py”q<a+xy>l<1+xy>f(”“"’d””rdy<[log }/ [

Last but not least, to the best of our knowledge, all of the integral inequalities presented
in this section are new additions to the literature.
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3. PROOFS

This section provides detailed proofs of all the stated propositions and theorems.

3.1. Proofs associated of the main integral formula.

Proof of Proposition[2.1] Let us first prove the main formula by distinguishing the indi-
cated parameter cases.

e Let us consider the case 5 # 0 and o € (0,00)\{1}. Making the change of
variables y = (1 4+ z)/(a+ ), sothatz = (1 —ay)/(y — 1) and dy = [(a —
1)/(a + x)?]dz, and using standard power primitives, we get

/Oo(l-l-x)ﬁ_ld _ 1 /°° 1+2\7'[ a—1 J
o (a+z)stt R o \a+x (a+1)2 *

Sl ] e ()
= Yo dy = =Y = l—=—
a—1Ji4 a—118" |, 10 Bla=1) ab

1= a8
Bla—1)
e Let us consider the case 5 = 0 and o € (0,00)\{1}. Using standard fractional
decomposition and logarithmic primitives, we get

oo B—1 ) o0
/ (1+=x) d:z:*/ 1 dp — 1 / 1 du
o (a+z)Ptl o (I+z)(a+z) a-1J), \1+z a+=

1 1 1+z\]°7%
= — [log(1 1 A |
Ol*l [Og( +$> Og(a—i_x)]m 0 Oé*l I:Og (Oé+l’>:|m_0

-~ [mga) ~ log (;)} -

e Let us consider the case o = 1. We have

] 1 B—1 e’} 1 T—00
/ %dw:/ %dx: [_} =0—(-1)=1.
o (a+x) o (1+x) 1+z], 4

For the second part on the integral equality, making the change of variables x = 1/y, we

get
> (14 )1 C(1+1/y)Pt 1

/ (1+x) 143;:/ (1+1/y) : —2dy)

o (oz+1)F% oo (a/y+ 1)Ly

A UE R S L IR

Joo (@) T At e

_/‘” (1+y"

T o Taky
which corresponds to the first integral considered. This concludes the proof of Proposition
d

3.2. Proofs associated to Theorem[2.2
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Proof of Theorem[2.2] Decomposing the integrand of the double integral in a suitable way
and using the Holder integral inequality, we derive

x p—1
// at/Py 1/‘1 Y) f(x)g(y)dady

(o + y)P+T

(B-1)/p (8-1)/q
o o +) 1yq (2 +9) 0
/ / (azx + y)(/3+1)/pf(x) Y (ax + y)(@H)/qg(y)dxdy

)A—1 1/p
<[ [

z+y)ft 1/q
[/ / Mery Mg()dxdy] . 3.1)

Using the Fubini-Tonelli integral theorem, making the change of variables u = y/x and
applying Proposition [2.1] we get

[ e e
- e[ < ()] o

- /Ooo () UOOO mdu] dz = Co g /OOO 17 (x)dz. (32)

In a similar way, but with the change of variables v = x/y and the second part of Proposi-
tion 2.1} we obtain

/ / Ofxt—yyﬁﬁjlg (y)dady
:/O 9'(y) [/OOOMX (;dxﬂdy
_ /Ooo 9'(y) UOOO ((””)Bldv] dy = Cus OOO 9 (y)dy. (3.3)

av + 1)8+1
Using Equations (3.1)), (3:2) and (3.3), and 1/p + 1/q = 1, we obtain

/ / xH/ryt “y)ﬁlfm)g(y)dxdy

(azx + y)5+1

<lcus [ f”(fv)dw] [ca,ﬁ / mg‘l(y)dyy/q
=Cap [/Ooo f”(w)dx] v UOOO gq(y)dy] . :

This ends the proof of Theorem [2.2] O

Proof of Proposition[2.3] We use an argument by contradiction, supposing that there is a
constant y € (0, C, g) such that, for any f, g : [0, 00) + [0, c0) satisfying

/ fP(z)dz < oo, / y)dy < 00,
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we have

/ / =y l/q ) f(@)g(y)dzdy

(ax 4 y)B+1

<o | [" ] v [ "

For any n € N\{0}, we define two functions f,, g, : [0,00) — [0, 00), as follows:

0 ifx €(0,1),
ful) = {x(m/n)/p ifz € {Loi),
and
o ify €0,1),
gn(y) = {y—(1+1/n)/q ify € [1,00).

We then determine

o] 0 T—»00
/ fP(x)dx = / (z=HL/M/Pyp gy = {—nx_l/"] =n
0 1

r=1

and, similarly,

/Oo g (y)dy = /Oo(y‘““/”)/q)qdy = [~ny"] N
0 1

y=1
Using this, 1/p + 1/¢ = 1 and Equation (3:4)), we get

0o 1/p oo 1/q
v = ’Y%nl/Pnl/q — % {7 U fﬁ(fﬂ)dzv] UO gi(y)dy] }

/ / =ty ”q D g (w)dady.

(ax +y)P+1

(3.4)

(3.5)

Now, let us focus on this double integral. Expressing f,, and g,, making the change of
variables = wuy, applying the Fubini-Tonelli integral theorem and using 1/p + 1/¢ = 1,

we obtain

0o 0o B—1
/ / 1/py1/q((oi5;’_yzy))an( Vgn (y)dzdy
(v + y)B+1

—&—yﬁl

—1
/ 2Py 1/q (@+9)° 7 ar/m ey 11 4 gy

_1/("p)dx] 10 gy
> 1+“ﬁ L Ly~ |
= Y (np), =1/(np) (1 —1/(na) q
/1 /1/y (au +1)7+1 - yzu Y (wdw)| Y

= (LW ) gy, | (117
_ d ™ dy.
/1 /1/y Oé’LL + 1 ﬁ+1 uly Y

(3.6)
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Using the Chasles integral relation with the splitting value © = 1, the Fubini-Tonelli inte-
gral theorem, simple integral calculus and 1/p + 1/q = 1, we get

/OO /Oo (14+u)’ ! w10 gy | =1/ gy
1 1/y (ou + 1)5+1
[e%e] 1 _
A+ 1w g, | -Crm)
= —_— "P)du, "d
/1 l‘/l/y (au + 1)13‘H Y 4
I A 0 Gy s
d 1+1/n)q
U e ey

/[ / ~igmg,| 0w

(qu +1)8+1

L+ W) 1) CREYS)
Jr|:/ au+15+1u du /1 Y dy
(1+u)lt * (14uw)ft _
1/n w1V (P) g S Pt YAC P
/ (qu—i—l)ﬁ‘*‘1 utn [/1 (au+1)3+1u Y
1 -1 e B—1
(14 w)” 1/(nq) (1+w) —1
= — " T YRy 3.7
n[/o (au+1)5+1u u+ : (au+1)3+1u u (3.7)
Joining Equations (3.3)), (3.6) and (3.7), we establish that
1 —1 (') B—1
> TR/ (ma)g IS Y VA CO P A
= /0 (au + 1)5““ vt 1 (au+1)5+1u b
Applying the inferior limit with respect to n denoted liminf,, ., the Fatou integral
lemma, lim inf,, ;. u/("® = 1 foru € (0, 1), liminf, o u= ") =1 foru € [1, o),
the Chasles integral relation and the second part of Proposition 2.1} we obtain
1 — [es} —1
L (14wt W/ (1+u)f~t _
> nq) 1/(np)
v = hmnlggo/o (au+ 1)[3“ du + hmnlggo | eut 1)5+1u du

1 B—1 00 B-1
1 1
Z/ ((—ﬁ—u) [lim inf ul/(nq)} du+/ ((—l—u) {hm inf u=Y®P)| du
0 1

w1 09) gy,

au + 1)8+1 n—00 au + 1)A+1 N o0
1 — e’} — es}
1 pB—1 1 B—1 1 B—1
:/ %du—&—/ %du: %d = Cop.
o (au+1)F+1 1 (au+1)F+1 o (oau+1)F+ -
A contradiction is with the assumption v € (0, Cy g). Consequently, the constant Cy, g is
optimal. This ends the proof of Proposition[2.3] O

Proof of Proposition[2.4] We can write
(x+y)P!
/ / (az T y)PF f(@)g(y)dady

T 1
A R e Y R

-1
/ / i EED @™ ¢ ) () dady, (3.8)

(ax + y)P+1
where f,(z) = x71/7 f(2) and g.(y) = y~/9g(y).
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Applying Theorem[2.2]to f, and g,, we get

/ / Lyl jxiy;)ﬂ“f*() (y)dxdy

< Cuy [ I ff(x)dm] v [ | gi(y)dy] "

where C,, 3 is given by Equation (2.1)),

| e = [Cersepae= [

and

/Ooo gl(y)dy = /Ooo[y‘”"g(y)}qdy = /OOO ig“(y)dy-

Joining Equations (3:8), (3.9), @) and e gt
(x+y) ﬂ 1
/ / (o + y)PtT f(z)g(y)dzdy

< Cap UO *f”( )d ]UP UOOO ;g“(y)dy] Uq-

This concludes the proof of Proposition 2:4]

Proof of Proposition[2.3] We can write

/ / gt/P=1yl/a— 1MF(x)G(y)dl‘dy

(ax +y)P+t

p—1
/ / 1/17 1/lI +y) [ 71F($)][y71G(y)]da:dy

(ax + y)Bs+l

/ / 2Pyl ax+?j>5+1ff( Vg1 (y)dzdy,

where fi(z) = 7' F(z) and g4 (y) = y~'G(y).
Applying Theorem2.2to f; and gy, we get

B—1
/ / z'/Py 1/q o +) fi(@)gi(y)dwdy

(ax + )Pt

<Cos | [ p0105] " [ sl "

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

where C,, 3 is given by Equation (2.I)). Using the Hardy integral inequality, we obtain

/ fE(x dx—/ [z _1F(x)}pdx:/ooo %F”( )dx

and

(3.14)

(3.15)
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Joining Equations m (3-13), (3.14) and (3.13)), we have
T + y B 1
/ / (ax + y)B+t f(@)g(y)dzdy

coor () [l (G [ o]
e ) ) [ ][]

This concludes the proof of Proposition 2:3] O

Proof of Proposition[2.6] Using the Fubini-Tonelli integral theorem, we can write
o) B—1 p
rygtla EXY L dx} d
/0 Uo Vo aa+y)7HT /) Y
[e%e] B—1
— 1/p 1/q (1‘ + y) >
I = EE

VOO Vil ((x + y))ﬁjl fa)d r_l ay

ar +vy

x—l—y)ﬁ !
/ / 1/p 1/q (ax 1 9P f(2)go(y)dxdy, (3.16)

where
) B—1 p—1
_ 1/p 1/(1%
Applying Theorem 2.2]to the functions f and g,, we get
B-1
/ / o Uq o) f(2)go(y)dxdy

(ax + y)P+1

1/p S 1/q
<Cus [/ fp<x>da:] [/ gz<y>dy} 7 (3.17)

where C,, 3 is given by Equation (2.1).
Furthermore, since ¢(p — 1) = p, we have

o0 oo (%) ( + )[3 1 Q(P_l)
/O gZ(y)dy=/O UO xl/”y”"mﬂ) ] dy
= /Ooo [/0 1/py1/q(m'|_y)/81f(x)dx]pdy‘ (3.18)

(az + )7
Joining Equations (3.16), (3.17) and (3-13)), we get

L] o

<Cus [/Om fp(x)dx} v {/Ooo [/O 1/py1/qmﬂx>dmrdy}w.
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Thisand 1 — 1/qg = 1/p give
> /p oo 1p
fooasq (2 Y r }1 [ ]
{/0 [/0 s q(cwc+y)6+1 f(x)dz| dy < Cap /0 17(z)dz ’

so that
o] B—1 p )
L1/Py 1/ (z+y) <P / P
I KT

This concludes the proof of Proposition 2:6] O
3.3. Proofs associated to Theorem 2.7

Proof of Theorem[2.7} Decomposing the integrand of the double integral in a suitable way
and using the Holder integral inequality, we derive

zy)f1
/ / at/Py ”q (1 + 2) f(x)g(y)dady

(a + zy)stt
(14 zy)B-D/p (14 2y)B-D/a
1/p 1/ \L T XY T
/ / (ot 2y) P07 () <y (o + zy)B+D/a? (y)ddy
1/p
1 + xy )Pt

(1+ zy) p-1 1/a
[/ / a—l—xZ 0 (y)dxdy] . (3.19)

Using the Fubini-Tonelli integral theorem, making the change of variables v = xy and
applying Proposition[2.1] we get

L et et = [ o) [ G ] o
:/0 () [/O Mdu} dxzca,ﬁ/ooofp(az)dx. (3.20)

In a similar Way, but with the change of variables v = xy, we obtain

(1+U)ﬂ 1 /oo .
p— —_— = «a . .21
/O 9'(y) [/0 (a+U)ﬁ+ldU dy = Cap 9 (y)dy (3.21)
Using Equations (3.19), (3:20) and (3.21), and 1/p + 1/q = 1, we get

/ / @'’y l/q (+au) 1J”(m)LCJ(y)clmcly

(a+ zy)5+1

<lcus [ f”(w)dw] ews [ mg‘l(y)dyy/q
=Cap [/OOC fp(x)dm] v UOOO gq(y)dy] . :

This ends the proof of Theorem [2.7] O
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Proof of Proposition 2.8, We use an argument by contradiction, supposing that there is a
constant i € (0, Cy g) such that, for any f, g 00) > [0, 00) satisfying

/ fP(z)dx < oo, / y)dy < 00,

/ / =7y ”" QAT g (y)drdy

(o + zy)P+L

< [/0 fp(m)dw} v [/Ooo gq(y)dy} . : (3.22)

For any n € N\ {0}, we define two functions f,,, g, : [0, 00) — [0, 00), as follows:
A/n=1)/p if
x ifz € (0,1),
ule) = { -y

we have

0 ifz € l,00),
from wich we can add the value f,,(z) = 0 if 2 = 0 to cover the domain [0, 00), and
(y) = 0 ify €[0,1),
Iy armia iy e [1,00),

We then calculate
/ e :/ (2 V/n=D/PYp g — [ml/n]““’:l o
x=0

Y—>00

| oty = [0y = [—nyin] T
0 1

y=1

and, similarly,

Using this, 1/p + 1/¢ = 1 and Equation (3:22), we obtain

00 1/p oo 1/q
p= u%nl/”n”q = % {u [/ fﬁ(ﬂf)dw} [/0 gﬁ(y)dy} }

B—1
/ / 2Pyt Q:Z))M (@) gn (y)dady. (3.23)

Now, let us concentrate on this double integral. Expressing f,, and g,,, making the change
of variables = = u/y, applying the Fubini-Tonelli integral theorem and using 1/p+1/q =

1, we get
1+ zy)s—1
/ / x!/ryl/a a+xy))3+1fn( )gn (y)dwdy
:/ / pyt/a AE2Y 0 ety 11/ 0 g
1 Jo (at ay)P+1"

M 1/(np)d4 y =1/ (9 gy

(
(
CIY AW ), 1/ L
— n — n =d —1/(nq)d
/1 /0 (a+uprit Y y“]y Y
(
(

ul/("p)du] y~ ™) gy, (3.24)
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Using the Chasles integral relation with the splitting value © = 1, the Fubini-Tonelli inte-
gral theorem and 1/p 4+ 1/q = 1, we obtain

SRS
RS VAT OP (1+1/n)q
/1 [/ (@t Y Y
(e%e] 1 —

(1+u)s? Yy 1/ () —(1+1/
= ———u!/"P)g "d
/1 U <a+u>ﬁ+l ! Y
(n d (1+1/n)d
z / (OL+U)B+1 w|y Yy

1 oo
(1+u)’~ Ly 1/ () / —a
= np) g 1+1/n)q
[/ R Vi Y

/ S (1+1/n>dy} % W) gy
1 (a+u)Ptt

1 1 e8] -1
=n {/ (L+u)’~ 1/(np)du} +/ (nufl/n)%ul/(np)du
o ( 1 (
( 1

_|_

+

._.

(o + u)B+t a+ u)Bftl

14 u)f~? L1/ () /Oo L+w)’t

= -_— "P)d —_— /(@) gy | 3.25
n{/o (a—l—u)ﬂﬂ u -+ 1 (a+u)f3+1u U (3.25)
Joining Equations (3:23), m and (3.23), we find that

1 e’} —1
> np) 4 1/(n9) o
“—/o (a+u)ﬁ+l T arap !

Applying the inferior limit with respect to 7, the Fatou integral lemma, lim inf,, _, o, u!/("?) =
1 for u € (0,1), liminf, o u= /"0 = 1 foru € [1,00), the Chasles integral relation
and Proposition [2.1] we obtain

1 (1
@ > lim inf / (( +u)’ 1/(””)du—i—hm inf / % u YD gy
1

n— oo ) n—oo (a + u)ﬁ+1

1 B-1 © (1 B—1
/ (( +u) [hm inf ul/("”)} dqu/ Gl {lim inf uil/("q)} du
1
(

o+ U)B+1 n—o00 (a + u)5+1 n—oo
1 B—1 © (1 B—1 © 1 B—1
/ + u) 4w +/ %du:/ %du:CQB.
(a+u)Btt (o + u)P*t o (a+u)*! ’
A contradiction appears with the assumption ¢ € (0,C, g). Consequently, the constant
C,p is optimal. This completes the proof of Proposition@ (]

Proof of Proposition[2.9, We can write
(14 zy)s~1
/ / f(@)g(y)dzdy

a+ zy) B+1
B—1
-/ / Py P )l (o)
B-1
/ / /P 1/q(<;i ”;«Z))W fo(@) g (y)dzdy, (3.26)

where f,(z) = 27 V/? f(z) and g, (y) =y~ g(y).
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Applying Theorem[2.7]to f. and g., we get

1 1
/ / 21/py1/a aiiz))ﬂ“ £u(2)gs (y)dady

< Cap [/0 ff(x)dm] v VOOO gf(y)dy] Uq,

where C,, 3 is given by Equation (2.1)),

N [ (z)de = Oo[xfl/l’f(x)]ﬁdm _ [ lfp( )da
/ / /
[ atas= [T gy = [ oan

Joining Equations (3.26), (3-27), (3:28) and (3:29), we obtain
(1+ xy)s=t
L[ F(@)g(y)dady

(a+ zy)B+t

< Cayp UO *f”( )d ]UP UOOO ;g“(y)dy] Uq-

This concludes the proof of Proposition 2:9]

and

Proof of Proposition[2.10} We can write

/ / g /P=1ylfa= 1MF(x)G(y)dxdy

(o + zy)P+t

zy)Bf—1
/ / LU/ 1/q((1+ Y Py G ) dady
(

a+ zy)Ptl

xy)B—1
/ / LU/p 1/q(;iwz)>5+1f¢() () dady

where fi(z) = 7' F(z) and g;(y) = y~'G(y).
Applying Theorem[2.7to f; and g, we get

1
/ / 21yl ;izz))ﬁﬂfi( Vg5 (y)ddy

< Cus [ | ff(w)drc} v [ | ot (y)dy] "
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(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

where C,, 3 is given by Equation (2.I)). Using the Hardy integral inequality, we obtain

/ fE(x dx—/ [z _1F(x)}pdx:/ooo %F”( )dx

and

(3.32)

(3.33)
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Joining Equations (3.30), (3.31), (3-32) and (3:33)), we have
(14 zy)s~1
/ / 1(@)9(y)dady

(a + zy)B+t

coor () [l (G [ o]
e ) ) [ [ r]”

This concludes the proof of Proposition 2:.10] O

Proof of Proposition[2.11) Using the Fubini-Tonelli integral theorem, we can write
[e'e] oo B—1 P
1/p, 1/q (1+$y) d :| d
x — 7 x
fo L e ]
[e'e] /3 1
— 1/p 1/q (1+J)y) 2dz | %
I el

-1
{/ 1/py1/q(1+x7y)[;+11f() r dy

(a + xy)
(1 1
= [T o o, 33

where

an(y) = {/OOO xl/pyl/q%f( \ ]p—l.

Applying Theorem 2.7]to the functions f and g, we get
(1+xy)s~1
/ / 2'/Py l/q W f@)gay)dudy

(o + zy)Ptl

1/p 00 1/q
<Cus [ / fp<x>dx] [ / qu(y)dy] , (3.35)

where C,, 3 is given by Equation (2.1).
Furthermore, since ¢(p — 1) = p, we have

/Ooog‘i(y>dy:/om UO L/ 1/q%f( y r@—l) .

o 1 5-1
_ /0 [ /O 1/py1/qwz))ﬁ+lf(x)d4 dy. (3.36)

Joining Equations (3.34), (3.33) and (3:36)), we get
[e’e] o) B—1 p

Vpg /g L+ 2Y)" del d

L <a+xy>ﬁ+1f”x Y
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Thisand 1 — 1/q = 1/p give

[ (1 + xy)P~1 P 1/p o0 1/p
([ oo o)l o]

so that
%) ) B—1 p o
Vo /g LE e 1 g < o / P(2)d
x x)dx x)dx.
A |:/0 y (Oé+£['y)ﬂ+lf( ) y— a,f 0 f ( )
This concludes the proof of Proposition [2.11] O

4. CONCLUSION

Inspired by recent developments, we have derived two new two-parameter modifica-
tions of the classical Hardy-Hilbert integral inequality. We have determined a closed-form
expression for the optimal constants for each of them, which is necessary for theoretical
investigations and potential applications in analysis and related fields. We also obtained
supplementary results, including variants involving the primitives of the main functions.
Our article is self-contained and accessible to a broad mathematical audience thanks to the
detailed, step-by-step proofs that accompany all of our results.

This work suggests several natural directions for further research. For instance, one
could consider weighted extensions of the proposed inequalities, or analogous results in
higher dimensions or on different domains. Furthermore, as outlined in the article, the
application of these results to the boundedness of certain integral operators or convolution-
type inequalities warrants further exploration. We hope that these results will stimulate
further research into integral inequalities and their many applications in analysis and other
fields.
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