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COMPLETE APPROXIMATION BY SYMMETRIZED AND PERTURBED
HYPERBOLIC TANGENT ACTIVATED MULTIDIMENSIONAL

CONVOLUTIONS AS POSITIVE LINEAR OPERATORS

GEORGE A. ANASTASSIOU

ABSTRACT. In this work are studied in detail the multivariate symmetrized and perturbed
hyperbolic tangent activated convolution type operators of three kinds. Here this is done
with the method of positive linear operators. Their alternative approximation properties
are established by the quantitative convergence to the unit operator using the modulus of
continuity. It is also studied the related multivariate simultaneous approximation, as well
as the multivariate iterated approximation.

1. INTRODUCTION

The author studied extensively the quantitative approximation of positive linear opera-
tors to the unit since 1985, see for example [1]-[3], [5]. He originated from the quantitative
weak convergence of finite positive measures to the unit Dirac measure, having as a method
the geometric moment theory, see [2], and he produced best upper bounds, leading to at-
tained (i.e. sharp Jackson type inequalities), e.g. see [1], [2]. These studies have been gone
to all possible directions, univariate and multivariate, though in this work we stay only on
the multivariate approach over an infinite domain.

Our multidimensional convolution operators here have a kernel based on the sym-
metrized and perturbed hyperbolic tangent activation function, which is used frequently
in the study of neural networks, and they can be interpreted as positive linear operators.

So here our proving methods come from the theory of positive linear operators.
Thus in Section 2, we discuss about the symmetrized and perturbed hyperbolic tangent

activation function in the multivariate setting. We also describe our activated multidimen-
sional convolution type operators with their properties, such as differentiation and iteration.

In Section 3, we derive some auxiliary results which are estimates to our operators,
when applied to basic functions and to be used into our main results.
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In Section 4, we present our main explicit results under the lens of positive linear op-
erators and we include their necessary related theory. We treat also the simultaneous and
iterated approximation cases under the same spirit.

We are greatly inspired by our earlier works [6], [7].
Furthermore, general motivation comes from the great works [11]-[16].

2. BASICS

Initially we follow [4], pp. 455-460.
Our perturbed hyperbolic tangent activation function is

gq,λ (x) :=
eλx − qe−λx

eλx + qe−λx
, λ, q > 0, x ∈ R. (1)

Above λ is the parameter and q is the deformation coefficient.
For more read Chapter 18 of [4]: ”q-deformed and λ-Parametrized Hyperbolic Tangent

based Banach space Valued Ordinary and Fractional Neural Network Approximation”.
The Chapters 17 and 18 of [4] motivate our current work.
The proposed ”symmetrization method” aims to use half data feed to our multivariate

neural networks.
We will employ the following density function

Mq.λ (x) :=
1

4
(gq,λ (x+ 1)− gq,λ (x− 1)) > 0, (2)

∀x ∈ R; q, λ > 0.
We have that

Mq,λ (−x) =M 1
q ,λ

(x) , ∀ x ∈ R; q, λ > 0, (3)

and
M 1

q ,λ
(−x) =Mq,λ (x) , ∀ x ∈ R; q, λ > 0. (4)

Adding (3) and (4) we obtain

Mq,λ (−x) +M 1
q ,λ

(−x) =Mq,λ (x) +M 1
q ,λ

(x) , (5)

a key to this work.
So that

Φ (x) :=
Mq,λ (x) +M 1

q ,λ
(x)

2
> 0, (6)

is an even function, symmetric with respect to the y-axis.
By (18.18) of [4], we have

Mq,λ

(
ln q
2λ

)
= tanh(λ)

2 ,

and

M 1
q ,λ

(
− ln q

2λ

)
= tanh(λ)

2 , λ > 0.

(7)

sharing the same maximum at symmetric points.
By Theorem 18.1, p. 458 of [4], we have that

∞∑
i=−∞

Mq,λ (x− i) = 1, ∀ x ∈ R, λ, q > 0,

and
∞∑

i=−∞
M 1

q ,λ
(x− i) = 1, ∀ x ∈ R, λ, q > 0.

(8)
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Consequently, we derive that
∞∑

i=−∞
Φ (x− i) = 1, ∀ x ∈ R. (9)

By Theorem 18.2, p. 459 of [4], we have that∫∞
−∞Mq,λ (x) dx = 1,

and∫∞
−∞M 1

q ,λ
(x) dx = 1,

(10)

so that ∫ ∞

−∞
Φ (x) dx = 1, (11)

therefore Φ is a density function.
Clearly, then ∫ ∞

−∞
Φ (nx− u) du = 1, ∀ n ∈ N, x ∈ R. (12)

An essential property follows:

Proposition 2.1. ([6]) It holds (k ∈ N)∫ ∞

−∞
|z|k Φ (z) dz ≤

 tanh (λ)
(k + 1)

+

(
q + 1

q

)
e2λk!

(2λ)
k

 <∞. (13)

We mention

Definition 2.1. The modulus of continuity here is defined by

ω1 (f, δ) := sup
x,y∈RN :

∥x−y∥∞<δ

|f (x)− f (y)| , δ > 0, (14)

where f : RN → R bounded and continuous, denoted by f ∈ CB

(
RN
)
, N ∈ N. Sim-

ilarly ω1 is defined for f ∈ CU

(
RN
)

(uniformly continuous functions). We have that
f ∈ CU

(
RN
)
, iff ω1 (f, δ) → 0 as δ ↓ 0.

Denote ∥x∥∞ := max {|x1| , ..., |xN |}, x ∈ RN .

We make

Remark. We introduce

Z̃ (x1, ..., xN ) := Z̃ (x) :=

N∏
i=1

Φ (xi) , x = (x1, ..., xN ) ∈ RN , N ∈ N. (15)

It has the properties:
(i)

Z̃ (x) > 0, ∀x ∈ RN ; Z̃ (−x) = Z̃ (x) ,

(ii) ∫
RN

Z̃ (x− k) =

∫ ∞

−∞
...

∫ ∞

−∞
Z̃ (x1 − u1, ..., xN − uN ) du1...duN =

N∏
i=1

∫ ∞

−∞
Φ (xi − ui) dui

(12)
= 1, ∀x ∈ RN , (16)

hence
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(iii) ∫
RN

Z̃ (nx− u) du = 1, ∀ x ∈ RN ; n ∈ N, (17)

and
(iv) by (11) ∫

RN

Z̃ (x) dx = 1, (18)

that is Z̃ is a multivariate density function.

We mention a useful related result.

Theorem 2.2. ([7]) It holds (k ∈ N)∫
RN

∥x∥k∞ Z̃ (x) dx ≤ Nk

 tanh (λ)
(k + 1)

+

(
q + 1

q

)
e2λk!

(2λ)
k

 <∞. (19)

When k = 0, (19) is again valid.

We give

Definition 2.2. Let f ∈ CB

(
RN
)
,N ∈ N. We define the following activated symmetrized

and perturbed hyperbolic tangent multivariate convolution type operators:
The basic one

S̃n (f) (x) :=

∫
RN

f
(u
n

)
Z̃ (nx− u) du, ∀ x ∈ RN , (20)

the activated Kantorovich type

S̃∗
n (f) (x) := nN

∫
RN

(∫ u+1
n

u
n

f (t) dt

)
Z̃ (nx− u) du, ∀ x ∈ RN . (21)

Let now θ = (θ1, ..., θN ) ∈ NN , r = (r1, ..., rN ) ∈ ZN
+ , wr = wr1r2...rN ≥ 0, such

that
θ∑

r=0

wr =

θ1∑
r1=0

θ2∑
r2=0

...

θN∑
rN=0

wr1r2...rN = 1; u ∈ RN ,

and

δn (f) (u) := δn (f) (u1, ..., uN ) :=

θ∑
r=0

wrf
(u
n
+

r

nθ

)
=

θ1∑
r1=0

θ2∑
r2=0

...

θN∑
rN=0

wr1r2...rN f

(
u1
n

+
r1
nθ1

,
u2
n

+
r2
nθ2

, ...,
uN
n

+
rN
nθN

)
, (22)

where r
θ :=

(
r1
θ1
, r2θ2 , ...,

rN
θN

)
.

We define the activated quadrature operators

Ŝn (f) (x) := Ŝn (f, x1, ..., xN ) :=

∫
RN

δn (f) (u) Z̃ (nx− u) du = (23)

∫ ∞

−∞

∫ ∞

−∞
...

∫ ∞

−∞
δn (f) (u1, ..., uN )

(
N∏
i=1

Φ (nxi − ui)

)
du1...duN , ∀x ∈ RN .
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One can rewrite

S̃n (f) (x) =

∫ ∞

−∞

∫ ∞

−∞
...

∫ ∞

−∞
f
(u1
n
,
u2
n
, ...,

uN
n

)( N∏
i=1

Φ (nxi − ui)

)
du1...duN ,

(24)
and

S̃∗
n (f) (x) = nN

∫ ∞

−∞

∫ ∞

−∞
...

∫ ∞

−∞

(∫ u1+1
n

u1
n

∫ u2+1
n

u2
n

...

∫ uN+1

n

uN
n

f (t1, ..., tN ) dt1...dtN

)
(

N∏
i=1

Φ (nxi − ui)

)
du1...duN , (25)

n ∈ N, ∀ x ∈ RN .
In this work we study the approximation properties of the operators S̃n, S̃∗

n and Ŝn,
expecially their convergence to the unit operator I , and being treated as positive linear
operators.

We notice that
S̃n (1) = S̃∗ (1) = Ŝ (1) = 1. (26)

From [7] we have that S̃n, S̃∗
n, Ŝn map CB

(
RN
)

into itself.
Differentiation of our operators follows:

Remark. ([7]) Let i ∈ N be fixed. Assume that f ∈ C(i)
(
RN
)
,N ∈ N. Here fα denotes a

partial derivative of f , α := (α1, ..., αN ), αj ∈ Z+, j = 1, ..., N , and |α| :=
N∑
j=1

αj = l,

where l = 0, 1, ..., i.

We write also fα := ∂αf
∂xα and we say it is of order l.

We assume that any partial fα ∈ CB

(
RN
)
, for all α : |α| = l, l = 0, 1, ..., i.

We have that (
S̃n (f)

)
α
(x) =

∫
RN

fα

(
x− z

n

)
Z̃ (z) dz = (27)∫

RN

fα

(u
n

)
Z̃ (nx− u) du =

(
S̃n (fα)

)
(x) , ∀ x ∈ RN .

Similarly, we have that (
S̃∗
n (f)

)
α
(x) =

(
S̃∗
n (fα)

)
(x) , (28)

and (
Ŝn (f)

)
α
(x) =

(
Ŝn (fα)

)
(x) , ∀ x ∈ RN ; (29)

for all α : |α| = l, l = 0, 1, ..., i.

We also need

Remark. ([7]) About iterated operators:
It holds ∣∣∣S̃n (f) (x)

∣∣∣ ≤ ∥f∥∞
∫
RN

Z̃ (z) dz = ∥f∥∞ ,

i.e. ∥∥∥S̃n (f)
∥∥∥
∞

≤ ∥f∥∞ . (30)

So S̃n is a bounded positive linear operator.
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Clearly it holds∥∥∥S̃2
n (f)

∥∥∥
∞

=
∥∥∥S̃n

(
S̃n (f)

)∥∥∥
∞

≤
∥∥∥S̃n (f)

∥∥∥
∞

≤ ∥f∥∞ . (31)

And for k ∈ N we obtain∥∥∥S̃k
n (f)

∥∥∥
∞

≤
∥∥∥S̃k−1

n (f)
∥∥∥
∞

≤
∥∥∥S̃k−2

n (f)
∥∥∥
∞

≤ ... ≤ ∥f∥∞ , (32)

so the contraction property valid and S̃k
n is a bounded linear operator.

Let r ∈ N, we observe that

S̃r
nf − f =

(
S̃r
nf − S̃r−1

n f
)
+
(
S̃r−1
n f − S̃r−2

n f
)
+
(
S̃r−2
n f − S̃r−3

n f
)

+...+
(
S̃2
nf − S̃nf

)
+
(
S̃nf − f

)
. (33)

Then∥∥∥S̃r
nf − f

∥∥∥
∞

≤
∥∥∥S̃r

nf − S̃r−1
n f

∥∥∥
∞

+
∥∥∥S̃r−1

n f − S̃r−2
n f

∥∥∥
∞

+
∥∥∥S̃r−2

n f − S̃r−3
n f

∥∥∥
∞

+...+
∥∥∥S̃2

nf − S̃nf
∥∥∥
∞

+
∥∥∥S̃nf − f

∥∥∥
∞

=∥∥∥S̃r−1
n

(
S̃nf − f

)∥∥∥
∞

+
∥∥∥S̃r−2

n

(
S̃nf − f

)∥∥∥
∞

+ ...+
∥∥∥S̃n

(
S̃nf − f

)∥∥∥
∞

+∥∥∥S̃nf − f
∥∥∥
∞

≤ r
∥∥∥S̃nf − f

∥∥∥
∞
.

Therefore ∥∥∥S̃r
nf − f

∥∥∥
∞

≤ r
∥∥∥S̃nf − f

∥∥∥
∞
. (34)

Let now m1,m2, ...,mr ∈ N : m1 ≤ m2 ≤ ... ≤ mr, and S̃mi
as above.

S̃mr

(
S̃mr−1

(
...S̃m2

(
S̃m1

f
)))

− f = ... =

S̃mr

(
S̃mr−1

(
...S̃m2

))(
S̃m1f − f

)
+ S̃mr

(
S̃mr−1

(
...S̃m3

))(
S̃m2f − f

)
+ (35)

S̃mr

(
S̃mr−1

(
...S̃m4

))(
S̃m3

f − f
)
+ ...+ S̃mr

(
S̃mr−1

f − f
)
+ S̃mr

f − f.

Consequently it holds, as in [4], Chapter 2,∥∥∥S̃mr

(
S̃mr−1

(
...S̃m2

(
S̃m1f

)))
− f

∥∥∥
∞

≤
r∑

i=1

∥∥∥S̃mif − f
∥∥∥
∞
. (36)

The properties (30)-(36) are also valid for the iterations of operators S̃∗
n and Ŝn.

Notation. We denote by Kn any of the operators S̃n, S̃∗
n and Ŝn, ∀ n ∈ N.

3. AUXILIARY RESULTS

Here let x0 ∈ RN , m,n ∈ N. It follows:

Proposition 3.1. It holds that

S̃n (∥· − x0∥m∞) (x0) > 0, (37)

and
0 <

∥∥∥S̃n (∥· − x0∥m∞) (x0)
∥∥∥
∞

≤ (38)
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Nm

nm

 tanh (λ)
(m+ 1)

+

(
q + 1

q

)
e2λm!

(2λ)
m

 (< +∞) → 0, as n→ +∞.

Proof. We have that

0 < S̃n (∥· − x0∥m∞) (x0) =

∫
RN

∥∥∥u
n
− x0

∥∥∥m
∞
Z̃ (nx0 − u) du =

1

nm

∫
RN

∥nx0 − u∥m∞ Z̃ (nx0 − u) du = (39)

1

nm

∫
RN

∥x∥m∞ Z̃ (x) dx
(19)
≤

Nm

nm

 tanh (λ)
(m+ 1)

+

(
q + 1

q

)
e2λm!

(2λ)
m

 (< +∞) → 0, as n→ +∞.

□

Proposition 3.2. It holds that

S̃∗
n (∥· − x0∥m∞) (x0) > 0, (40)

and
0 <

∥∥∥S̃∗
n (∥· − x0∥m∞) (x0)

∥∥∥
∞

≤

2m−1

nm

1 +Nm

 tanh (λ)

(m+ 1)
+

(
q + 1

q

)
e2λm!

(2λ)
m

 (< +∞) → 0, as n→ +∞. (41)

Proof. We have that

0 < S̃∗
n (∥· − x0∥m∞) (x0) =

∫
RN

(
nN
∫
[0, 1

n ]
N

∥∥∥t+ u

n
− x0

∥∥∥m
∞
dt

)
Z̃ (nx0 − u) du ≤

∫
RN

(
nN
∫
[0, 1

n ]
N

(∥∥∥u
n
− x0

∥∥∥
∞

+ ∥t∥∞
)m

dt

)
Z̃ (nx0 − u) du ≤ (42)

∫
RN

(
nN
∫
[0, 1

n ]
N

(∥∥∥u
n
− x0

∥∥∥
∞

+
1

n

)m

dt

)
Z̃ (nx0 − u) du =∫

RN

(∥∥∥u
n
− x0

∥∥∥
∞

+
1

n

)m

Z̃ (nx0 − u) du =

1

nm

∫
RN

(∥nx0 − u∥∞ + 1)
m
Z̃ (nx0 − u) du ≤ (43)

2m−1

nm

(∫
RN

(1 + ∥nx0 − u∥m∞) Z̃ (nx0 − u) du

)
(17)
=

2m−1

nm

[
1 +

∫
RN

∥nx0 − u∥m∞ Z̃ (nx0 − u) du

]
=

2m−1

nm

[
1 +

∫
RN

∥x∥m∞ Z̃ (x) dx

]
(19)
≤
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2m−1

nm

1 +Nm

 tanh (λ)

(m+ 1)
+

(
q + 1

q

)
e2λm!

(2λ)
m

 (< +∞) → 0, as n→ +∞.

□

Proposition 3.3. It holds that

Ŝn (∥· − x0∥m∞) (x0) > 0,

and
0 <

∥∥∥Ŝn (∥· − x0∥m∞) (x0)
∥∥∥
∞

≤

2m−1

nm

1 +Nm

 tanh (λ)

(m+ 1)
+

(
q + 1

q

)
e2λm!

(2λ)
m

 (< +∞) → 0, as n→ +∞. (44)

Proof. We have that

0 < Ŝn (∥· − x0∥m∞) (x0) =

∫
RN

(
θ∑

r=0

wr

∥∥∥u
n
+

r

nθ
− x0

∥∥∥m
∞

)
Z̃ (nx0 − u) du ≤

∫
RN

(
θ∑

r=0

wr

(∥∥∥u
n
− x0

∥∥∥
∞

+
∥∥∥ r
nθ

∥∥∥
∞

)m)
Z̃ (nx0 − u) du ≤∫

RN

(∥∥∥u
n
− x0

∥∥∥
∞

+
1

n

)m

Z̃ (nx0 − u) du (45)

(the rest as in the proof of Proposition 3.2)

2m−1

nm

1 +Nm

 tanh (λ)

(m+ 1)
+

(
q + 1

q

)
e2λm!

(2λ)
m

 (< +∞) → 0, as n→ +∞.

□

4. MAIN RESULTS

We need the following:

Theorem 4.1. Let (Ln)n∈N be a sequence of positive linear operators from CB

(
RN
)

into
itself, such that Ln (1) = 1. Assume 0 < Ln (∥· − x0∥∞) (x0) < +∞.

Then

|Ln (f) (x0)− f (x0)| ≤ 2ω1 (f, Ln (∥· − x0∥∞) (x0)) < +∞. (46)

Given that lim
n→+∞

Ln (∥· − x0∥∞) (x0) = 0 and f is uniformly continuous, we get that

lim
n→+∞

Ln (f) (x0) = f (x0) .

Proof. Here it is ω1 (f, h) <∞, h > 0.
By Lemma 7.1.1, p. 208, [2], we get that

|f (t)− f (x)| ≤ ω1 (f, h)

⌈
∥t− x∥∞

h

⌉
, (47)

where ⌈·⌉ is the ceiling function.
But it holds ⌈

∥t− x∥∞
h

⌉
≤ 1 +

∥t− x∥∞
h

. (48)
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Thus we get

|f (t)− f (x)| ≤ ω1 (f, h)

[
1 +

∥t− x∥∞
h

]
, ∀ t ∈ RN . (49)

The last can be written also as

|f (·)− f (x)| ≤ ω1 (f, h)

[
1 +

∥· − x∥∞
h

]
, over RN . (50)

Hence we derive

|Ln (f) (x0)− f (x0)| = |Ln (f (·)− f (x0)) (x0)| ≤

Ln (|f (·)− f (x0)|) (x0)
(50)
≤ ω1 (f, h)

[
1 +

Ln (∥· − x0∥∞) (x0)

h

]
(51)

(choose h := Ln (∥· − x0∥∞) (x0) > 0)

= 2ω1 (f, Ln (∥· − x0∥∞) (x0)) .

□

We derive

Theorem 4.2. We have for Kn = S̃n, S̃∗
n, Ŝn that

|Kn (f) (x0)− f (x0)| ≤ 2ω1 (f,Kn (∥· − x0∥∞) (x0)) < +∞, (52)

where x0 ∈ RN , f ∈ CB

(
RN
)
.

Given that lim
n→+∞

Kn (∥· − x0∥∞) (x0) = 0 and f is uniformly continuous, we get that

lim
n→+∞

Kn (f) (x0) = f (x0) .

Proof. By Theorem 4.1. □

More specifically we derive:

Proposition 4.3. It holds that (f ∈ CB

(
RN
)
)

∥∥∥S̃n (f)− f
∥∥∥
∞

≤ 2ω1

f, N
n

 tanh (λ)
2

+

(
q + 1

q

)
e2λ

2λ

 < +∞. (53)

If f is uniformly continuous, then S̃n (f) → f , uniformly as n→ +∞.

Proof. By Proposition 3.1, and Theorem 4.2. □

Proposition 4.4. It holds that (f ∈ CB

(
RN
)
)

∥∥∥S̃∗
n (f)− f

∥∥∥
∞

≤ 2ω1

f, 1
n

1 +N

 tanh (λ)

2
+

(
q + 1

q

)
e2λ

2λ

 < +∞. (54)

If f is uniformly continuous, then S̃∗
n (f) → f , uniformly as n→ +∞.

Proof. By Proposition 3.2, and Theorem 4.2. □

Proposition 4.5. It holds that (f ∈ CB

(
RN
)
)

∥∥∥Ŝn (f)− f
∥∥∥
∞

≤ 2ω1

f, 1
n

1 +N

 tanh (λ)

2
+

(
q + 1

q

)
e2λ

2λ

 < +∞. (55)
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If f is uniformly continuous, then Ŝn (f) → f , uniformly as n→ +∞.

Proof. By Proposition 3.3, and Theorem 4.2. □

Next, we study our operators under convexity:

Theorem 4.6. Let (Ln)n∈N positive linear operators from CB

(
RN
)

into itself : Ln (1) =

1. Let f ∈ CB

(
RN
)

and the convex function |f (·)− f (x0)| over RN , x0 ∈ RN . Assume
that 0 < Ln (∥· − x0∥∞) (x0) < +∞.

Then
|Ln (f) (x0)− f (x0)| ≤ ω1 (f, Ln (∥· − x0∥∞) (x0)) . (56)

The last (56) is attained by f (t) = ∥t− x0∥∞, ∀ t ∈ RN , x0 ∈ RN , that is sharp.
Given that f is uniformly continuous and Ln (∥· − x0∥∞) (x0) → 0, as n → ∞, then
Ln (f) (x0) → f (x0), as n→ ∞.

Proof. Based on Lemma 8.1.1, p. 243, [2], we obtain:
Let (V, ∥·∥) be a real normed vector space and f : V → R such that |f (t)− f (x0)| is

convex in t ∈ V ; x0 ∈ V . Then

|f (t)− f (x0)| ≤
ω1 (f, h)

h
∥t− x0∥ , ∀ t ∈ V, h > 0. (57)

That is, it holds here

|f (·)− f (x0)| ≤
ω1 (f, h)

h
∥· − x0∥ , over RN . (58)

Then, the proof of (56) goes as in the proof of Theorem 4.1.
Inequality (56) is sharp, namely it is attained by f (t) = ∥t− x0∥∞, ∀ t ∈ RN , x0 ∈

RN .
We have

|Ln (f, x0)− f (x0)| = Ln (∥· − x0∥∞) (x0) . (59)
Next we observe

ω1 (f, Ln (∥· − x0∥∞) (x0)) = ω1 (∥· − x0∥∞ , Ln (∥· − x0∥∞) (x0)) =

sup t1, t2 ∈ RN :
: ∥t1 − t2∥∞ ≤ Ln (∥· − x0∥∞) (x0)

|∥t1 − x0∥∞ − ∥t2 − x0∥∞| ≤ (60)

sup t1, t2 ∈ RN :
: ∥t1 − t2∥∞ ≤ Ln (∥· − x0∥∞) (x0)

∥t1 − t2∥∞ = Ln (∥· − x0∥∞) (x0) .

So that
ω1 (f, Ln (∥· − x0∥∞) (x0)) = Ln (∥· − x0∥∞) (x0) .

Thus (56) it is attained. □

Consequently we obtain:

Theorem 4.7. Let f ∈ CB

(
RN
)

and the convex function |f (·)− f (x0)| over RN , x0 ∈
RN .

Then

|Kn (f) (x0)− f (x0)| ≤ ω1 (f,Kn (∥· − x0∥∞) (x0)) < +∞. (61)

The last (61) is attained by f (t) = ∥t− x0∥∞, ∀ t ∈ RN , x0 ∈ RN , that is sharp. Given
that f is uniformly continuous, we derive that Kn (f) (x0) → f (x0), as n→ ∞.
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Proof. By Theorem 4.6. □

More specifically we derive:

Proposition 4.8. Let f ∈ CB

(
RN
)

such that |f (·)− f (x0)| is convex over RN , x0 ∈
RN .

Then∣∣∣S̃n (f) (x0)− f (x0)
∣∣∣ ≤ ω1

f, N
n

 tanh (λ)

2
+

(
q + 1

q

)
e2λ

2λ

 < +∞. (62)

If f is uniformly continuous, then S̃n (f) (x0) → f (x0), as n→ ∞.

Proof. By Proposition 3.1, and Theorem 4.7. □

Proposition 4.9. Let f be as in Proposition 4.8. It holds that∣∣∣S̃∗
n (f) (x0)− f (x0)

∣∣∣ ≤ ω1

f, 1
n

1 +N

 tanh (λ)

2
+

(
q + 1

q

)
e2λ

2λ

 < +∞.

(63)
If f is uniformly continuous, then S̃∗

n (f) (x0) → f (x0), as n→ ∞.

Proof. By Proposition 3.2, and Theorem 4.7. □

Proposition 4.10. Let f be as in Proposition 4.8. It holds that∣∣∣Ŝn (f) (x0)− f (x0)
∣∣∣ ≤ ω1

f, 1
n

1 +N

 tanh (λ)

2
+

(
q + 1

q

)
e2λ

2λ

 < +∞.

(64)
If f is uniformly continuous, then Ŝn (f) (x0) → f (x0), as n→ ∞.

Proof. By Proposition 3.3, and Theorem 4.7. □

We make

Remark. We consider
(
RN , ∥·∥∞

)
and

(
RN
)j

denote the j-fold product space RN × ...×
RN endowed with the max-norm ∥x∥(RN )j := max

1≤k≤j
∥xk∥∞, where x := (x1, ..., xj) ∈(

RN
)j

. Then the space Lj := Lj

((
RN
)j

;R
)

of all real valued multilinear continuous

functions g :
(
RN
)j → R is a Banach space with norm

∥g∥ := ∥g∥Lj
:= sup(

∥x∥
(RN )j

=1

) |g (x)| = sup
|g (x)|

∥x1∥∞ ... ∥xj∥∞
. (65)

Let x0 ∈ RN be fixed, and f : RN → R be a continuous and bounded function whose
Fréchet derivatives

f (j) : RN → Lj = Lj

((
RN
)j

;R
)

exist and are continuous and bounded for all 1 ≤ j ≤ m, m ∈ N. Call (x− x0)
j
:=

(x− x0, ..., x− x0) ∈
(
RN
)j

= RN × ...× RN︸ ︷︷ ︸
−j−

.
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Then, by Taylor’s formula, see [10], p. 124 and [9], we get

f (x) =

m∑
j=0

f (j) (x0) (x− x0)
j

j!
+Rm (x, x0) , all x ∈ RN , (66)

where

Rm (x, x0) :=

∫ 1

0

(1− u)
m−1

(m− 1)!

(
f (m) (x0 + u (x− x0))− f (m) (x0)

)
(x− x0)

m
du.

(67)
Here we assume that f (j) (x0) = 0, j = 1, ...,m, then

f (x)− f (x0) =

∫ 1

0

(1− u)
m−1

(m− 1)!

(
f (m) (x0 + u (x− x0))− f (m) (x0)

)
(x− x0)

m
du.

(68)
Consider

w := ω1

(
f (m), h

)
= sup x, y ∈ RN

: ∥x− y∥∞ ≤ h

∥∥∥f (m) (x)− f (m) (y)
∥∥∥ , h > 0. (69)

Notice that w < +∞.
We obtain that∥∥∥(f (m) (x0 + u (x− x0))− f (m) (x0)

)
(x− x0)

m
∥∥∥ ≤∥∥∥f (m) (x0 + u (x− x0))− f (m) (x0)

∥∥∥ ∥x− x0∥m ≤ (70)

w ∥x− x0∥m
⌈
u ∥x− x0∥

h

⌉
,

by Lemma 7.1.1, p. 208, [2].
Therefore for all x ∈ RN :

|f (x)− f (x0)| ≤ w ∥x− x0∥m
∫ 1

0

⌈
u ∥x− x0∥∞

h

⌉
(1− u)

m−1

(m− 1)!
du (71)

= wΦm (∥x− x0∥∞) ,

by a change of variable, where

Φm (t) :=

∫ |t|

0

⌈ s
h

⌉ (|t| − s)
m−1

(m− 1)!
ds =

1

m!

 ∞∑
j=0

(|t| − j · h)m+

 , (72)

t ∈ R; (x)+ = max {x, 0}.
For a full list of properties of the spline function Φm see Remark 7.1.3 of [2], p. 210.
By (7.1.18) of [2], p. 210, we have

Φm (x) ≤

(
|x|m+1

(m+ 1)!h
+

|x|m

2m!
+

h |x|m−1

8 (m− 1)!

)
, ∀ x ∈ R. (73)

Consequently it holds (x ∈ RN )

|f (x)− f (x0)| ≤ ω1

(
f (m), h

)(∥x− x0∥m+1
∞

(m+ 1)!h
+

∥x− x0∥m∞
2m!

+
h ∥x− x0∥m−1

∞
8 (m− 1)!

)
.

(74)
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So that

|f (·)− f (x0)| ≤ ω1

(
f (m), h

)(∥· − x0∥m+1
∞

(m+ 1)!h
+

∥· − x0∥m∞
2m!

+
h ∥· − x0∥m−1

∞
8 (m− 1)!

)
,

(75)
over RN .

Let (Ln)n∈N be a sequence of positive linear operators from CB

(
RN
)

into itself such
that Ln (1) = 1, ∀ n ∈ N.

By |f | ≤ |f |, iff − |f | ≤ f ≤ |f |, then −Ln (|f |) ≤ Ln (f) ≤ Ln (|f |), and |Ln (f)| ≤
Ln (|f |) .

Hence

|Ln (f (·)− f (x0)) (x0)| ≤ Ln (|f (·)− f (x0)|) (x0)
(75)
≤ ω1

(
f (m), h

)
Ln

(
∥· − x0∥m+1

∞

)
(x0)

(m+ 1)!h
+
Ln (∥· − x0∥m∞) (x0)

2m!
+
hLn

(
∥· − x0∥m−1

∞

)
(x0)

8 (m− 1)!

 =: (ξ) .

(76)

We need the following Hölder’s type inequality for positive linear operators.

Theorem 4.11. ([8]) Let L be a positive linear operator from CB

(
RN
)

into itself and
f, g ∈ CB

(
RN
)
, furthermore let p, q > 1 : 1

p + 1
q = 1. Assume that L ((|f (·)|p)) (s∗),

L ((|g (·)|q)) (s∗) > 0 for some s∗ ∈ RN . Then

L (|f (·) g (·)|) (s∗) ≤ (L ((|f (·)|p)) (s∗))
1
p (L ((|g (·)|q)) (s∗))

1
q . (77)

We continue with

Remark. Let g = 1 and Ln : Ln (1) = 1, then by (77) we get:

Ln (∥· − x0∥m∞) (x0) ≤
(
Ln

(
∥· − x0∥m+1

∞

)
(x0)

)( m
m+1 )

, (78)

and

Ln

(
∥· − x0∥(m−1)

∞

)
(x0) ≤

(
Ln

(
∥· − x0∥m+1

∞

)
(x0)

)(m−1
m+1 )

, (79)

where m ∈ N and Ln

(
∥· − x0∥m+1

∞

)
(x0) > 0.

Continuing from (76):

(ξ) ≤ ω1

(
f (m), h

)Ln

(
∥· − x0∥m+1

∞

)
(x0)

(m+ 1)!h
+ (80)

(
Ln

(
∥· − x0∥m+1

∞

)
(x0)

) m
m+1

2m!
+
h
(
Ln

(
∥· − x0∥m+1

∞

)
(x0)

)m−1
m+1

8 (m− 1)!


(assume h :=

(
Ln

(
∥· − x0∥m+1

∞

)
(x0)

) 1
m+1

> 0)

= ω1

(
f (m),

(
Ln

(
∥· − x0∥m+1

∞

)
(x0)

) 1
m+1

)
[

hm

(m+ 1)!
+
hm

2m!
+

hm

8 (m− 1)!

]
(81)
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= ω1

(
f (m),

(
Ln

(
∥· − x0∥m+1

∞

)
(x0)

) 1
m+1

)
(
Ln

(
∥· − x0∥m+1

∞

)
(x0)

) m
m+1

[
1

(m+ 1)!
+

1

2m!
+

1

8 (m− 1)!

]
. (82)

We have proved that

Theorem 4.12. Let f ∈ CB

(
RN
)
, x0 ∈ RN , Fréchet derivatives f (j) continuous and

bounded with f (j) (x0) = 0, j = 1, ...,m. Then

|Ln (f) (x0)− f (x0)| ≤ ω1

(
f (m),

(
Ln

(
∥· − x0∥m+1

∞

)
(x0)

) 1
m+1

)
(83)(

Ln

(
∥· − x0∥m+1

∞

)
(x0)

) m
m+1

[
1

(m+ 1)!
+

1

2m!
+

1

8 (m− 1)!

]
, ∀ n ∈ N.

Here Ln (1) = 1, Ln positive linear operators from CB

(
RN
)

into itself under the as-

sumption Ln

(
∥· − x0∥m+1

∞

)
(x0) > 0.

Let Ln

(
∥· − x0∥m+1

∞

)
(x0) → 0, as n→ +∞, then lim

n→+∞
Ln (f) (x0) = f (x0) .

Next we apply Theorem 4.12 to the operators Kn.

Theorem 4.13. Let f ∈ CB

(
RN
)
, x0 ∈ RN , Fréchet derivatives f (j) continuous and

bounded with f (j) (x0) = 0, j = 1, ...,m. Then

|Kn (f) (x0)− f (x0)| ≤ ω1

(
f (m),

(
Kn

(
∥· − x0∥m+1

∞

)
(x0)

) 1
m+1

)
(84)(

Kn

(
∥· − x0∥m+1

∞

)
(x0)

) m
m+1

[
1

(m+ 1)!
+

1

2m!
+

1

8 (m− 1)!

]
,

∀ n ∈ N.
We have that lim

n→+∞
Kn (f) (x0) = f (x0) .

Proof. Here Kn any of S̃n, S̃∗
n and Ŝn.

By Theorem 4.12, and Propositions 3.1-3.3 we get Kn

(
∥· − x0∥m+1

∞

)
(x0) → 0, as

n→ +∞. □

More specifically we derive:

Proposition 4.14. All as in Theorem 4.13, m ∈ N. Denote by

ψ1n (m) :=
Nm

nm

 tanh (λ)
(m+ 1)

+

(
q + 1

q

)
e2λm!

(2λ)
m

 . (85)

Then ∣∣∣S̃n (f) (x0)− f (x0)
∣∣∣ ≤ ω1

(
f (m), (ψ1n (m+ 1))

1
m+1

)
(ψ1n (m+ 1))

m
m+1

[
1

(m+ 1)!
+

1

2m!
+

1

8 (m− 1)!

]
, (86)

∀ n ∈ N.
We have that lim

n→+∞
S̃n (f) (x0) = f (x0) .

Proof. By Theorem 4.13 and Proposition 3.1. □
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Proposition 4.15. All as in Theorem 4.13, m ∈ N. Denote by

ψ2n (m) :=
2m−1

nm

1 +Nm

 tanh (λ)

(m+ 1)
+

(
q + 1

q

)
e2λm!

(2λ)
m

 . (87)

Then 
∣∣∣S̃∗

n (f) (x0)− f (x0)
∣∣∣∣∣∣Ŝn (f) (x0)− f (x0)
∣∣∣
 ≤ ω1

(
f (m), (ψ2n (m+ 1))

1
m+1

)
(ψ2n (m+ 1))

m
m+1

[
1

(m+ 1)!
+

1

2m!
+

1

8 (m− 1)!

]
, (88)

∀ n ∈ N.
We have that lim

n→+∞
S̃∗
n (f) (x0) = lim

n→+∞
Ŝn (f) (x0) = f (x0) .

Proof. By Theorem 4.13 and Propositions 3.2, 3.3. □

Next we do simultaneous approximation.

Theorem 4.16. Let i ∈ N be fixed and f ∈ C(i)
(
RN
)
. Here fα denotes a partial de-

rivative of f , α := (α1, ..., αN ), αi ∈ Z+, j = 1, ..., N, and |α| :=
N∑
j=1

αj = l, where

l = 0, 1, ..., i. We assume that fα ∈ CB

(
RN
)
, for all α : |α| = l, l = 0, 1, ..., i; x0 ∈ RN .

Then

|(Kn (f))α (x0)− fα (x0)| ≤ 2ω1 (fα,Kn (∥· − x0∥∞) (x0)) < +∞. (89)

Given that lim
n→+∞

Kn (∥· − x0∥∞) (x0) = 0 and fα is uniformly continuous, we get

that lim
n→+∞

(Kn (f))α (x0) = f (x0) .

Proof. By Remark 2 and Theorem 4.2. □

Proposition 4.17. All as in Theorem 4.16. Then∥∥∥(S̃n (f)
)
α
− fα

∥∥∥
∞

≤ 2ω1

fα, N
n

 tanh (λ)
2

+

(
q + 1

q

)
e2λ

2λ

 < +∞. (90)

If fα is uniformly continuous, then
(
S̃n (f)

)
α
→ fα, uniformly as n→ +∞.

Proof. By Remark 2 and Proposition 4.3. □

Proposition 4.18. All as in Theorem 4.16. Then
∥∥∥(S̃∗

n (f)
)
α
− fα

∥∥∥
∞∥∥∥(Ŝn (f)

)
α
− fα

∥∥∥
∞

 ≤ 2ω1

fα, 1
n

1 +N

 tanh (λ)

2
+

(
q + 1

q

)
e2λ

2λ

 < +∞.

(91)
If fα is uniformly continuous, then

(
S̃∗
n (f)

)
α

→ fα,
(
Ŝn (f)

)
α

→ fα, uniformly as
n→ +∞.

Proof. By Remark 2 and Propositions 4.4, 4.5. □

Next, we do simultaneous convexity approximation.
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Theorem 4.19. The notation is as in Theorem 4.16, with a particular α : |α| = l ∈
{0, 1, ..., i}, fα ∈ CB

(
RN
)

and |fα (·)− fα (x0)| is convex over RN , x0 ∈ RN . Then

|(Kn (f))α (x0)− fα (x0)| ≤ ω1 (fα,Kn (∥· − x0∥∞) (x0)) < +∞. (92)

Given that fα is uniformly continuous, we derive that (Kn (f))α (x0) → fα (x0), as n→
∞.

Proof. By Remark 2 and Theorem 4.7. □

More specifically we obtain:

Proposition 4.20. All as in Theorem 4.19. Then∣∣∣(S̃n (f)
)
α
(x0)− fα (x0)

∣∣∣ ≤ ω1

fα, N
n

 tanh (λ)
2

+

(
q + 1

q

)
e2λ

2λ

 < +∞.

(93)
If fα is uniformly continuous, then

(
S̃n (f)

)
α
(x0) → fα (x0), as n→ +∞.

Proof. By Remark 2, Proposition 4.8 and Theorem 4.19. □

Proposition 4.21. All as in Theorem 4.19. Then
∣∣∣(S̃∗

n (f)
)
α
(x0)− fα (x0)

∣∣∣∣∣∣(Ŝn (f)
)
α
(x0)− fα (x0)

∣∣∣
 ≤

ω1

fα, 1
n

1 +N

 tanh (λ)

2
+

(
q + 1

q

)
e2λ

2λ

 < +∞. (94)

If fα is uniformly continuous, then
(
S̃∗
n (f)

)
α
(x0) → fα (x0),

(
Ŝn (f)

)
α
(x0) → fα (x0) ,

as n→ +∞.

Proof. By Remark 2 and Propositions 4.9, 4.10 and Theorem 4.19. □

We continue with iterated approximations:

Remark. Here f ∈ CB

(
RN
)
; r ∈ N; m1, ...,mr ∈ N : m1 ≤ m2 ≤ ... ≤ mr;

Kn = S̃n, S̃
∗
n, Ŝn.

As in (34) we get that

∥Kr
n (f)− f∥∞ ≤ r ∥Kn (f)− f∥∞ , (95)

and as in (36) we obtain that∥∥Kmr

(
Kmr−1

(...Km2
(Km1

(f)))
)
− f

∥∥
∞ ≤

r∑
i=1

∥Kmi
(f)− f∥∞ . (96)

Clearly then follows:

Proposition 4.22. Let f ∈ CB

(
RN
)
; r ∈ N; and m1, ...,mr ∈ N : m1 ≤ m2 ≤ ... ≤

mr. Then
1) ∥∥∥S̃r

n (f)− f
∥∥∥
∞

≤ r
∥∥∥S̃n (f)− f

∥∥∥
∞

≤ (97)
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2rω1

f, N
n

 tanh (λ)
2

+

(
q + 1

q

)
e2λ

2λ

 < +∞,

and the speed of convergence of S̃r
n to the unit I is not worse than the speed of convergence

of S̃n to I ,
2) ∥∥∥S̃mr

(
S̃mr−1

(
...S̃m2

(
S̃m1

(f)
)))

− f
∥∥∥
∞

≤
r∑

i=1

∥∥∥S̃mi
(f)− f

∥∥∥
∞

≤ (98)

2

r∑
i=1

ω1

f, N
mi

 tanh (λ)
2

+

(
q + 1

q

)
e2λ

2λ

 ≤

2rω1

f, N
m1

 tanh (λ)
2

+

(
q + 1

q

)
e2λ

2λ

 < +∞. (99)

Again, the speed of convergence of the iterated operator to I is not worse than the speed
of convergence of S̃m1

to I .

Proof. By (95), (96) and Proposition 4.3. □

Similarly we have:

Proposition 4.23. Let f ∈ CB

(
RN
)
; r ∈ N; and m1, ...,mr ∈ N : m1 ≤ m2 ≤ ... ≤

mr. Then
1) 

∥∥∥S̃∗r
n (f)− f

∥∥∥
∞∥∥∥Ŝn

r
(f)− f

∥∥∥
∞

 ≤ r


∥∥∥S̃∗

n (f)− f
∥∥∥
∞∥∥∥Ŝn (f)− f
∥∥∥
∞

 ≤ (100)

2rω1

f, 1
n

1 +N

 tanh (λ)

2
+

(
q + 1

q

)
e2λ

2λ

 < +∞,

and the speed of convergence of S̃∗r
n , Ŝn

r
to I is not worse than the speed of convergence

of S̃∗
n, Ŝn to I ,

2)
∥∥∥S̃∗

mr

(
S̃∗
mr−1

(
...S̃∗

m2

(
S̃∗
m1

(f)
)))

− f
∥∥∥
∞∥∥∥Ŝmr

(
Ŝmr−1

(
...Ŝm2

(
Ŝm1 (f)

)))
− f

∥∥∥
∞

 ≤
r∑

i=1


∥∥∥S̃∗

mi
(f)− f

∥∥∥
∞∥∥∥Ŝmi (f)− f
∥∥∥
∞

 ≤

(101)

2

r∑
i=1

ω1

f, 1

mi

1 +N

 tanh (λ)

2
+

(
q + 1

q

)
e2λ

2λ

 ≤

2rω1

f, 1

m1

1 +N

 tanh (λ)

2
+

(
q + 1

q

)
e2λ

2λ

 < +∞. (102)

Again, the speed of convergence of the iterated operator to I is not worse than the speed
of convergence of S̃∗

m1
, Ŝm1

to I .

Proof. By (95), (96) and Propositions 4.4, 4.5. □
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We finish our work with multivariate simultaneous iterations.

Remark. Let i ∈ N be fixed. Assume that f ∈ C(i)
(
RN
)
, with fα ∈ CB

(
RN
)
, with

α : |α| = l, l = 0, 1, ..., i; r ∈ N. Then, by (34), we obtain∥∥∥S̃r
n (fα)− fα

∥∥∥
∞

≤ r
∥∥∥S̃n (fα)− fα

∥∥∥
∞
. (103)

By (27) and inductively, we obtain∥∥∥(S̃r
n (f)

)
α
− fα

∥∥∥
∞

≤ r
∥∥∥(S̃n (f)

)
α
− fα

∥∥∥
∞
, (104)

Similarly, we derive that∥∥∥(S̃∗r

n (f)
)
α
− fα

∥∥∥
∞

≤ r
∥∥∥(S̃∗

n (f)
)
α
− fα

∥∥∥
∞
, (105)

and ∥∥∥(Ŝn

r
(f)
)
α
− fα

∥∥∥
∞

≤ r
∥∥∥(Ŝn (f)

)
α
− fα

∥∥∥
∞
. (106)

Let now m1,m2, ...,mr ∈ N : m1 ≤ m2 ≤ ... ≤ mr. Then, based on (36), we find that∥∥∥(S̃mr

(
S̃mr−1

(
...S̃m2

(
S̃m1

f
))))

α
− fα

∥∥∥
∞

≤
r∑

i∗=1

∥∥∥(S̃mi∗ (f)
)
α
− fα

∥∥∥
∞
. (107)

Similarly, we get that∥∥∥(S̃∗
mr

(
S̃∗
mr−1

(
...S̃∗

m2

(
S̃∗
m1
f
))))

α
− fα

∥∥∥
∞

≤
r∑

i∗=1

∥∥∥(S̃∗
mi∗

(f)
)
α
− fα

∥∥∥
∞
, (108)

and∥∥∥(Ŝmr

(
Ŝmr−1

(
...Ŝm2

(
Ŝm1

f
))))

α
− fα

∥∥∥
∞

≤
r∑

i∗=1

∥∥∥(Ŝmi∗ (f)
)
α
− fα

∥∥∥
∞
. (109)

All the above inequalities (103)-(109) prove that our implied multivariate iterated si-
multaneous approximations do not have a speed worse than our basic simultanous approx-
imations by the activated convolution operators.
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