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A FEW OBSERVATIONS AND

SOME NEW RESULTS ON AB-ALGEBRAS

DANIEL A. ROMANO

ABSTRACT. The notion of AB-algebras was introduced in 2017 by Hameed and Abbas.
Subsequently, this class of algebras was the subject of study by several authors. In this
paper, in addition to giving an overview of some of the results and assertions about this
class of logical algebras, we comment on a significant number of demonstrations of these
assertions, and also state several new assertions and demonstrate their proofs.

1. INTRODUCTION

Since the beginning of the second half of the 20th century, specific algebraic structures
have begun to appear, which we classify as so-called logical algebras. Some of the first
of these, known as BCK/BCI-algebras, were introduced in 1966 by Y. Imai and K. Iséki
([10]). In 1983, Hu and Li ([9]) introduced the notion of a BCH-algebra, which is a gener-
alization of the notions of BCK- and BCI-algebras. Then a whole series of different logical
algebras was determined, such as, for example, BCC-algebras ([13]), BH-algebra ([12]),
B-algebra ([15]), BF-algebras ([17]), CI-algebras ([14]) and BI-algebras ([3]. This author
has participated in the analysis of some of them (see, for example [16]). A special and very
clear insight into the classes of many logical algebras is given in the article [11].

The concept of AB-algebras was introduced in 2017 in the article [6] by A. T. Hameed
and B. N. Abbas. This algebraic structure was then the subject of several research texts
(see, for example, [2, 5, 7, 8]). While the article [2] discusses homomorphisms between
AB-algebras, the papers [5, 8] describe the properties of AB-algebras using fuzzy tech-
niques.

By studying the available literature on this class of logical algebras, we not only notice
some incompleteness about these algebras but also prove several new theorems about them,
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thus complementing the internal architecture of AB-algebras and also observing the prop-
erties of some of their substructures. As confirmation of the opinion expressed here, the
author has designed several observations on the claims presented in previously published
texts. This paper is designed as follows:

In the preliminaries section, besides presenting the necessary concepts for Section 3,
which is the main part of this paper, we also give a three observation on the original deter-
mination of the concept of AB-algebras and some of its properties presented in the original
source on this class of logical algebras.

Section 3 contains six subsections. The first of these discusses the internal architecture
of AB-algebras. It also provides three observations relating to previously published texts
on this class of logical algebras. In the second, the theorem is proved that the direct product
of any family of AB-algebras is again an AB-algebra. The third subsection discusses sub-
algebras and ideals in AB-algebras. Among other things, two criteria for recognizing ideals
in AB-algebras are proved. While subsections 4 and 5 discuss the properties of ideals
and congruences on AB-algebras as well as their connections, subsection 6 deals with the
concept of weak AB-algebras.

2. PRELIMINARIES

The concept of AB-algebras is introduced in [6] by A. T. Hameed and B. N. Abbas as
follows:

Definition 2.1. ([6], Definition 2.1) An AB-algebra is a nonempty set A with a constant 0
and a binary operation ∗ satisfying the following axioms:

(AB) (∀x, y, z ∈ A)(((x ∗ y) ∗ (z ∗ y)) ∗ (x ∗ z) = 0).

(L) (∀x ∈ A)(0 ∗ x = 0).

(M) (∀x ∈ A)(x ∗ 0 = x).
We denote this axiomatic system by AB and the corresponding algebraic structure by A =:
(A, ∗, 0).

Example 2.2. Let A = {0, a, b, c, d} be set and let the operation ∗ be determined by the
following table:

∗ 0 a b c d
0 0 0 0 0 0
a a 0 a 0 0
b b b 0 0 0
c c c a 0 0
d d c d c 0

Then A =: (A, ∗, 0) is a AB-algebra ([6], Example 2.3). □

Observation 1. In [6], Proposition 2.5(2) the statement

(∀x, y ∈ A)((x ∗ y) ∗ y = 0)

is stated. However, this formula is not valid in the AB-algebra A because, for example, in
the previous example, we have (d ∗ a) ∗ a = c ∗ a = c ̸= 0.

Observation 2. In [6], Proposition 2.5(3) the statement

(∀x, y ∈ A)(x ∗ y = 0 =⇒ 0 ∗ x = 0 ∗ y)
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is stated. However, the hypothesis in this implication is not necessary, because, by (L), the
following holds

(∀x, y ∈ A)(0 = 0 ∗ x = 0 ∗ y = 0).

Observation 3. In [6], Remark 2.4, the axiom (iii’) should reads

(∀x ∈ A)(0 ⩽ x)

with previously accepting the meaning of the sign ⩽.

The terminology and notation in this text are mostly adapted from the very well-known
article [11].

3. THE MAIN RESULTS

3.1. AB-algebras. First, from (L), that is, from (M), we immediately obtain:

Proposition 3.1. Let A =: (A, ∗, 0) be a AB-algebra. Then:

(1) 0 ∗ 0 = 0.

Proposition 3.2. In any AB-algebra A =: (A, ∗, 0), the following properties holds:

(Re) (∀x ∈ A)(x ∗ x = 0).

(2) (∀x, y ∈ A)((x ∗ y) ∗ x = 0).

Proof. If we put z = 0, and y = 0 in (AB) , we get ((x ∗ 0) ∗ (0 ∗ 0)) ∗ (x ∗ 0) = 0. From
here, with respect to (1) and (M), we get (Re).

Since our statement (2) differs from statement (2) in [6], Proposition 2.5, we state its
proof. If we put z = 0 in (AB), we get ((x ∗ y) ∗ (0 ∗ y))(x ∗ 0) = 0. From here, with
respect to (L) and (M), we get (x ∗ y) ∗ x = 0. □

We determine the relation ≼ in an AB-algebra A =: (A, ∗, 0) by the following way

(∀x, y ∈ A)(x ≼ y ⇐⇒ x ∗ y = 0).

The induced relation ≼ on the AB-algebra A =: (A, ∗, 0), has the following properties:

Proposition 3.3. Let A =: (A, ∗, 0) be an AB-algebra. Then:

(3) (∀x ∈ A)(0 ≼ x).

(4) (∀x ∈ A)(x ≼ x).

(5) (∀x ∈ A)(x ≼ 0 =⇒ x = 0).

(6) (∀x, y ∈ A)(x ∗ y ≼ x).

(7) (∀x, y, z ∈ A)((x ≼ y ∧ y ≼ z) =⇒ x ≼ z).

(8) (∀x, y, z ∈ A)(x ≼ y =⇒ x ∗ z ≼ y ∗ z).
(9) (∀x, y, z ∈ A)(x ≼ y =⇒ z ∗ y ≼ z ∗ x).

Proof. Since statements (3), (4) and (6) are obvious, we will prove the statement (5) and
and others.

(5): Let x ∈ A be such that x ≼ 0. This means x ∗ 0 = 0. Since x ∗ 0 = x according to
(M), we get x = 0.

(7): Let x, y, z ∈ A be such that x ≼ y and y ≼ z. This means that x ∗ y = 0 and
y ∗ z = 0 If we put z = y and y = z in (AB), we get ((x ∗ z) ∗ (y ∗ z)) ∗ (x ∗ y) = 0. From
here, taking into account the hypothesis, we get ((x ∗ z) ∗ 0) ∗ 0 = 0 from where it follows
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that x ∗ z = 0 due to (M) . This proves that x ≼ z which means that the induced relation
≼ on A is a quasi-order on A.

(8): Let x, y, z ∈ A be such that x ≼ y Then x ∗ y = 0. If we put z = y and y = z in
(AB), we get ((x ∗ z) ∗ (y ∗ z)) ∗ (x ∗ y) = 0. Thus (x ∗ z) ∗ (y ∗ z) ≼ x ∗ y = 0. From
here it follows that (x ∗ z) ∗ (y ∗ z) = 0 according to (5). Hence, x ∗ z ≼ y ∗ z.

(9): Let x, y, z ∈ A be arbitrary elements such that x ≼ y. This means x ∗ y = 0. If we
put x = z and z = x in (AB), we get ((z∗y)∗(x∗y))∗(x∗z) = 0. Thus, (z∗y)∗(z∗x) = 0
if we use the hypothesis and taking into account (M), So, z ∗ y ≼ z ∗ x. □

In the Previous Proposition it was shown that the induced relation ≼ is a quasi-order
(reflexive and transitive relation) on the set A and that it is right compatible and left anti-
compatible with the operation in A in accordance with the just proved statements (8) and
(9). On the other hand, it is generally known that the relation

≡ =: ≼ ∩ ≼−1

is an equivalence on the set A. Therefore, ≡≼ is a congruence on A since it is compatible
with the operation in A. Therefore, in every AB-algebra A =: (A, ∗, 0), the following
formula

(∀x, y ∈ A)((x ≼ y ∧ y ≼ x) =⇒ x ≡ y)

is valid.

Example 3.1. Let A = {0, a, b, c} be set and let the operation ∗ be determined by the
following table:

∗ 0 a b c
0 0 0 0 0
a a 0 0 0
b b a 0 0
c c b b 0

Then A =: (A, ∗, 0) is a AB-algebra ([6], Example 2.2).

Based on the previous example, we can make the following observations:

Observation 4. In this case, we have a ∗ (b ∗ c) = a ∗ 0 = a and b ∗ (a ∗ c) = b ∗ 0 = b,
which shows that formula

(a) (∀x, y, z ∈ A)(x ∗ (y ∗ z) = y ∗ (x ∗ z))
in [6], Proposition 2.7 is not a valid formula.

Observation 5. In the general case, formula
(b) (∀x, y ∈ A)((y ∗ x) ∗ (0 ∗ x) = y)

in [6], Proposition 2.7 is also not valid because, for example, we have (b ∗ a) ∗ (0 ∗ a) =
a ∗ 0 = a ̸= b.

Observation 6. In addition to the above, the formula
(2) (∀x, y ∈ A)((x ∗ (x ∗ y)) ∗ y = 0.)

in [7], Remark 2.3 is also not valid in the general case because, for example, we have
(c ∗ (c ∗ a)) ∗ a = (c ∗ b) ∗ a = b ∗ a = a ̸= 0.

3.2. Direct product of AB-algebras. In what follows, we deal with the creation of the
direct product of AB-algebras. Let {(Ai, ∗i, 0i) : i ∈ I} be a family of AB-algebras. If on
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the set ∏
i∈I

Ai =: {f : I −→ ∪i∈IAi | (∀i ∈ I)(f(i) ∈ Ai)},

we define the operation ⊙ as follows

(∀f, g ∈
∏
i∈I

Ai)(∀ ∈ I)((f ⊙ g)(i) =: f(i) ∗i g(i)),

we created the structure (
∏

i∈I Ai,⊙, f0), where f0 was chosen as follows

(∀i ∈ I)(f0(i) =: 0i).

Before we start working with direct products of AB-algebras, we say that the operation
determined in this way is well-defined. If a priori we accept conditions that ensure the
existence of non-empty direct product, we can prove the following theorem.

Theorem 3.4. The direct product of any family of AB-algebras, determined as above, is
an AB-algebra.

Proof. By direct verification, it can be proved that this structure satisfies the axioms of
AB-algebra:

Let f, g, h ∈
∏

i∈I Ai be arbitrary elements and i ∈ I . Then, we have:
(M) (f ⊙ f0)(i) = f(i) ∗i f0(i) = f(i) ∗i 0i = f(i).

(L) (f0 ⊙ f)(i) = f0(i) ∗i f(i) = 0i ⊙ f(i) = 0i.

(AB) Considering that
(((f⊙g)⊙(g⊙h))(h⊙f))(i) = ((f(i)∗i g(i))(h(i)∗i g(i)))∗i (f(i)∗ih(i)) = f0(i),

we have that (AB) is a valid formula for the observed structure.
Therefore, the structure (

∏
i∈I Ai,⊙, f0) is an AB-algebra. □

3.3. Sub-algebras and ideals. The concept of sub-algebras in AB-algebras is introduced
by the standard way:

Definition 3.2. ([6], Definition 2.8) A nonempty subset S of an AB-algebra A =: (A, ∗, 0)
is called a sub-algebra in A if it holds

(S1) (∀x, y ∈ A)((x ∈ S ∧ y ∈ S) =⇒ x ∗ y ∈ S).
We denote the family of all sub-algebras of the AB-algebra A by S(A).

Let us show that the sub-algebra S in an AB-algebra A also satisfies the condition
(S0) 0 ∈ S.

Indeed, since S is not empty, there exists at least some x ∈ A such that x ∈ S. From here,
it follows immediately that 0 = x ∗ x ∈ S according to (S1) and (Re).

Definition 3.3. ([6], Definition 2.9) A nonempty subset J of an AB-algebra A =: (A, ∗, 0)
is called an ideal in A if it satisfies the following conditions:

(J0) 0 ∈ J .
(J1) (∀x, y, z ∈ A)((x ∗ (y ∗ z) ∈ J ∧ y ∈ J) =⇒ x ∗ z ∈ J).

We denote the family of all ideals of the AB-algebra A by J(A).

Proposition 3.5 ([6], Proposition 2.11). Every ideal in an AB-algebra A is a sub-algebra
in A. So, J(A) ⊆ S(A).
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Proof. Since our proof of this proposition differs somewhat from the proof in [6], we
demonstrate it here.

Let J be an ideal in A and let x, y ∈ A be such that x ∈ J and y ∈ J . Then J ∋ x =
x ∗ 0 = x ∗ (y ∗ y) and y ∈ J . Thus x ∗ y ∈ J by (J1). □

Also, we have:

Proposition 3.6. For every ideal J in an AB-algebra A holds

(J2) (∀x, y ∈ A)((x ∗ y ∈ J ∧ y ∈ J) =⇒ x ∈ J).

Proof. If we put z = 0 in (J1), respecting (M), we get (J2). □

Corollary 3.7. For every ideal J in an AB-algebra A holds

(J3) (∀x, y ∈ A)((x ≼ y ∧ y ∈ J) =⇒ x ∈ J).

Proof. Let J be an ideal in an AB-algebra A and let x.y ∈ A be such that x ≼ y and
y ∈ J . Then x ∗ y = 0 ∈ J and y ∈ J in accordance with (J0). Thus x ∈ J by (J2). □

As a consequence of the claim (6) and Corollary 3.7, we have:

Corollary 3.8. For every ideal J in an AB-algebra A holds

(J4) (∀x, y ∈ A)((x ∈ J =⇒ x ∗ y ∈ J).

Proof. Since, for arbitrary x, y ∈ A, according to (6), x ∗ y ≼ x holds, we have x ∗ y ∈ J
in accordance with Corollary 3.7. □

Let us emphasize that the statements (J3) and (J4) are consequences of the statement
(J2). This means that if a nonempty subset J in an AB-algebra A satisfies the conditions
(J0) and (J2), then it also satisfies the conditions (J3) and (J4). Let us now show that the
converse of Proposition 3.6 also holds.

Proposition 3.9. If a nonempty subset J of an AB-algebra A satisfies the conditions (J0)
and (J2), then J is an ideal in A.

Proof. Let J be a nonempty subset in an AB-algebra A that satisfies the conditions (J0)
and (J2) and let x, y, z ∈ A be such that x ∗ (y ∗ z) ∈ J and y ∈ J . Then, with respect
to (J4), we have x ∗ (y ∗ z) ∈ J and y ∗ z ∈ J . Thus, x ∈ J according to (J2). Hence,
x ∗ z ∈ J according to (J4). Therefore, J is an ideal in A. □

Example 3.4. Let the AB-algebra A be as in Example 2.2.
Subsets S0 =: {0}, S1 =: {0, a}, S2 =: {0, b}, S3 =: {0, c}, S4 =: {0, a, b} and

S6 =: {0, b, c} are sub-algebras in A. The subset S5 =: {0, a, c} is not a sub-algebra in A
since, for example, we have c ∗ a = b /∈ S5.

Sub-algebra S0 is an ideal in A. The other sub-algebras mentioned above are not ideals
in A. □

The previous example shows that, in the general case, J(A) ⊊ S(A) holds.
In the following theorem, we show that:

Theorem 3.10. The families S(A) and J(A) of every AB-algebra A =: (A, ∗, 0) form
complete lattices.

Proof. Let {Si :∈ I} be a family of sub-algebras (ideals) in AB-algebra A.
Suppose that Si is a sub-algebra in A for every i ∈ I . Let x, y ∈ A be such that

x ∈
⋂

i∈I Si and y ∈
⋂

i∈I Si. This means that x ∈ Si and y ∈ Si for each i ∈ I . Thus
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x ∗ y ∈ Si for each i ∈ I since Si is a sub-algebra in A. Hence x ∗ y ∈
⋂

i∈I Si. So,⋂
i∈I Si is a sub-algebra in A.
Suppose that Si is an ideal in A for every i ∈ I . Let x, y ∈ A be such that x ∗ y ∈⋂

i∈I Si and y ∈
⋂

i∈I Si. This means that x ∗ y ∈ Si and y ∈ Si for each i ∈ I . Thus
x ∈ Si for each i ∈ I since Si is an ideal in A. Hence x ∈

⋂
i∈I Si. So,

⋂
i∈I Si is an

ideal in A.
Let Z be the family of all sub-algebras (ideals) in A that contain

⋃
i∈I Si. Then ∩Z

is a sub-algebra (an ideal) that contains
⋃

i∈I Si as already shown in this proof. If we put
⊔i∈ISi =

⋃
i∈I Si and ⊓i∈ISi = ∩Z , then (S(A),⊔,⊓) is a complete lattice. □

The previous theorem is a generalization of Theorem 2.13 in [6].

Example 3.5. Let A = {0, a, b, c, d} be set and let the operation ∗ be determined by the
following table:

∗ 0 a b c d
0 0 0 0 0 0
a a 0 0 0 0
b b b 0 0 0
c c b a 0 0
d d d d d 0

Then A =: (A, ∗, 0) is a AB-algebra ([2], Example 2.2).
Subsets S0 =: {0}, S1 =: {0, a}, S2 =: {0, b}, S3 =: {0, c}, S4 =: {0, d}, S5 =:

{0, a, b}, S7 =: {0, a, d}, S9 =: {0, b, d}, S10 =: {0, c, d}, S11 =: {0, a, b, c} and S12 =:
{0, a, b, d} are sub-algebras in A. However, the subsets S6 =: {0, a, c}, S8 =: {0, b, c},
S13 =: {0, a, c, d} and S14 =: {0, b, c, d} are not sub-algebras in A.

Sub-algebras S0, S1 and S11 are ideals in A. The remaining sub-algebras in A, men-
tioned above, are not ideals in A. For illustration, the sub-algebra S5 = {0, a, b} is not an
ideal in A because, for example, we have c ∗ b = b ∈ S5 and b ∈ S5 but c /∈ S5. □

Remark. The statement that the sub-algebra S5 is not an ideal in the AB-algebra A con-
tradicts the statement about this sub-algebra reported in [2], Example 2.8.

Further on, we have:

Theorem 3.11. Let {(Ai, ∗i, 0i) : i ∈ I} be a family of AB-algebras, K be a subset of
I and let Si be a sub-algebra (an ideal) in (Ai, ∗i, 0i) for each i ∈ K. Then

∏
i∈I Ti,

where Ti = Si for i ∈ K and Tj = Aj for j ̸= i ∈ K, is a sub-algebra (an ideal) in the
AB-algebra

∏
i∈I Ai.

Proof. First, it is clear that f0 ∈
∏

i∈I Ti.
If K = ∅, then

∏
i∈I Ti =

∏
i∈I Ai, so

∏
i∈I Ti is certainly a sub-algebra (an ideal) in∏

i∈I Ai. Assume, therefore, that K ̸= ∅.
Let x, y ∈

∏
i∈I Ai be such that x ∈

∏
i∈I Ti and y ∈

∏
i∈I Ti. This means x(i) ∈ Si

and y(i) ∈ Si for each i ∈ K. Then (x ⊙ y)(i) = x(i) ∗i y(i) ∈ Si since Ji is an sub-
algebra in (Ai, ∗i, 0i) for each i ∈ K. Hence x ⊙ y ∈

∏
i∈I Ti. As shown,

∏
i∈I Ti is a

sub-algebra in
∏

i∈I Ai.
Let x, y ∈

∏
i∈I Ai be such that x ⊙ y ∈

∏
i∈I Ti and y ∈

∏
i∈I Ti. This means

(x ⊙ y)(i) = x(i) ∗i y(i) ∈ Si and y(i) ∈ Si for each i ∈ K. Then x(i) ∈ Si since Si is
an ideal in (Ai, ∗i, 0i) for each i ∈ K. Hence x ∈

∏
i∈I Ti. As shown,

∏
i∈I Ti is an ideal

in
∏

i∈I Ai. □
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Example 3.6. Let the AB-algebra A =: (A, ∗, 0) be as in Example 3.4. Therefore, A ×
A =: (A×A,⊙, (0, 0)) is an AB-algebra according to the Theorem 3.4 where the operation
⊙ is determined as follows

(∀x, y, u, v ∈ A)((x, y)⊙ (u, v) =: (x ∗ u, y ∗ v)).
The subset S1 =: {0, a} is a sub-algebra (an ideal) in A, so the subsets S1 × A, A × S1

and S1 × S1 are sub-algebras (ideals) in A× A. □

At the end of this subsection, let us give a criterion for recognizing ideals in AB-
algebras.

Theorem 3.12. Let A =: (A, ∗, 0) be an AB-algebra. A subset J of A is an ideal in A if
and only if it holds

(J5) (∀x, y, z ∈ A)((y ∈ J ∧ z ∈ J ∧ (x ∗ y) ∗ z = 0) =⇒ x ∈ J).

Proof. Let J be an ideal in A and let x, y, z ∈ A be such that y, z ∈ J and (x ∗ y) ∗ z = 0.
Then x ∗ y ≼ z ∈ J . Thus x ∗ y ∈ J by (J3). Hence, x ∈ J by (J1).

Conversely, let (J5) be valid and let x, y ∈ A be such that x ∗ y ∈ J and y ∈ J . Then
(x ∗ y) ∗ (x ∗ y) = 0, y ∈ J and x ∗ y ∈ J according to (Re). Thus x ∈ J by (J5). Let us
show that (J0) holds. Putting x = 0 in (J5), we get 0 ∈ J with respect (L). Therefore, J is
an ideal in A. □

3.4. Ideals and congruences. For an equivalence relation ρ on an AB-algebra A =:
(A, ∗, 0) we say that it is a left congruence on A if it holds

(∀x, y, z ∈ A)((x, y) ∈ ρ =⇒ (z ∗ x, z ∗ y) ∈ ρ).

The right congruence is determined analogously. The relation ρ is said to be a congruence
on A if it is a left and right congruence on A. By Q(A) (QL(A) respectively) we denote
the family of all (left) congruences on the AB-algebra A =: (A, ∗, 0).

In what follows, we need the following lemma:

Lemma 3.13. Let J be an ideal in an AB-algebra A = (A, ∗, 0). Then:

(10) (∀x, y, z ∈ A)((x ∗ y ∈ J ∧ y ∗ z ∈ J) =⇒ x ∗ z ∈ J).

(11) (∀x, y, z ∈ A)(x ∗ y ∈ J =⇒ (x ∗ z) ∗ (y ∗ z) ∈ J).

(12) (∀x, y, z ∈ A)(y ∗ x ∈ J =⇒ (z ∗ x) ∗ (z ∗ y) ∈ J).

Proof. (10): If we put y = z and z = y in (AB), we get ((x∗z)∗(y∗z))∗(x∗y) = 0 ∈ J .
From here, according to (J2), it follows (x ∗ z) ∗ (y ∗ z) ∈ J since x ∗ y ∈ J . We can apply
(J2) again, because y ∗ z ∈ J . We get x ∗ z ∈ J .

(11): If we put z = y and y = z in (AB), we get ((x ∗ z) ∗ (y ∗ z)) ∗ (x ∗ y) = 0 ∈ J .
From here, according to (J2), it follows (x ∗ z) ∗ (y ∗ z) ∈ J .

(12): If we put x = z, y = x and z = y in (AB), we get ((z∗x)∗(y∗x))∗(z∗y) = 0 ∈ J .
From here, according to (J1), (z ∗ x) ∗ (z ∗ y) ∈ J follows. □

The concept of α-ideals in logical algebras (see, for example [4]) is determined by the
conditions (J0) and (10). Therefore:

Proposition 3.14. Every ideal in an AB-algebra A is an α-ideal in A.

Now we can prove the following theorem:
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Theorem 3.15 ([6], Theorem 3.2, Lemma 3.2 and Corollary 3.4). Let J be an ideal in an
AB-algebra A =: (A, ∗, 0). Then the relation ρJ ⊆ A×A, defined by

(∀x, y ∈ A)((x, y) ∈ ρJ ⇐⇒ (x ∗ y ∈ J ∧ y ∗ x ∈ J)),

is an equality relation on A compatible with the operation in A.

Proof. Since our proof of this theorem differs significantly from the proofs presented in
[6], Theorem 3.2, Lemma 3.2 and Corollary 3.4, we demonstrate it here.

Since it is obvious that the relation ρJ is reflexive and symmetric, it remains to prove
transitivity and its compatibility with the operation in A.

Let x, y, z ∈ A such that (x, y) ∈ ρJ and (y, z) ∈ ρJ . This means x ∗ y ∈ J , y ∗x ∈ J ,
y ∗ z ∈ J and z ∗ y ∈ J . Now, from x ∗ y ∈ J and y ∗ z ∈ J we get x ∗ z ∈ J according
to (10). Assume that z ∗ y ∈ J and y ∗ x ∈ J . If we put x = z and z = x in (10), we get
z ∗ x ∈ J . This shows that ρJ is transitive.

Let x, y, z ∈ A be such that (x, y) ∈ ρJ . This means x ∗ y ∈ J and y ∗ x ∈ J . If we
use x ∗ y ∈ J , (11) immediately gives (x ∗ z) ∗ (y ∗ z) ∈ J . Let us take y ∗ x ∈ J . If we
put x = y and y = x in (11), we get (y ∗ z) ∗ (x ∗ z) ∈ J . Therefore, (x ∗ z, y ∗ z) ∈ ρJ ,
which means that ρJ is a right congruence on A.

Let x, y, z ∈ A be such that (x, y) ∈ ρJ . This means x ∗ y ∈ J and y ∗ x ∈ J . If we
use y ∗ x ∈ J , (12) immediately gives (z ∗ x) ∗ (z ∗ y) ∈ J . Let us take x ∗ y ∈ J . f we
put x = y and y = x in (12), we get (z ∗ y) ∗ (z ∗ x) ∈ J . Therefore, (z ∗ x, z ∗ y) ∈ ρJ ,
which means that ρJ is a left congruence on A. □

The previous theorem illustrates the correspondence

J(A) ∋ J 7−→ ρJ ∈ Q(A).

On the other hand, we have:

Theorem 3.16. If ρ is a left congruence on an AB-algebra A, then the class [0]ρ =: {x ∈
A : (x, 0) ∈ ρ} is an ideal in A.

Proof. Let ρ be a left congruence on an AB-algebra A =: (A, ∗, 0) and let x, y ∈ A be
such that x ∗ y ∈ [0]ρ and y ∈ [0]ρ. This means (x ∗ y, 0) ∈ ρ and (y, 0) ∈ ρ. Then
(x ∗ y, 0) ∈ ρ and (x ∗ y, x ∗ 0) = (x ∗ y, x) ∈ ρ since ρ is a left congruence on A. Hence,
(0, x) ∈ ρ due to the transitivity of the relation ρ. Thus, x ∈ [0]ρ. Therefore, [0]ρ is an
ideal in A since 0 ∈ [0]ρ by reflexivity of ρ. □

The preceding theorem illustrates the correspondence

QL(A) ∋ ρ 7−→ [0]ρ ∈ J(A).

3.5. Strong ideals. On the other hand, in the text [7], Definition 2.5, the concept of ideals
in AB-algebras is introduced somewhat differently than in [6], Definition 2.9. Since this
definition of an ideal, as done in the paper [7], is recognizable as a strong ideal (see, for
example [1], Definition 3.1), we have:

Definition 3.7. A non-empty subset J of an AB-algebra A =: (A, ∗, 0) is called a strong
ideal in A if it satisfies (J0) and the following condition:

(StJ) (∀x, y, z ∈ A)(((x ∗ y) ∗ z ∈ J ∧ y ∈ J) =⇒ x ∗ z ∈ J).

Proposition 3.17. Any strong ideal in an AB-algebra A is an ideal in A.

Proof. Putting z = 0 in (StJ), we obtain (J2). □
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Proposition 3.18. In every AB-algebra A =: (A, ∗, 0), the subset {0} is a strong ideal in
A.

Proof. Let x, y, z ∈ A be arbitrary elements such that (x ∗ y) ∗ z = 0 and y = 0. Then
x ∗ z = (x ∗ 0) ∗ z = 0 in accordance with (M). So, the subset {0} is a strong ideal in
A. □

Definition 3.8. ([2], Definition 3.1) Let A =: (A, ∗, 0A) and B =: (B, ⋆, 0B) be AB-
algebras. A function f : A −→ B is said to be an AB-homomorphism if holds

(f1) (∀x, y ∈ A)(f(x ∗ y) = f(x) ⋆ f(y)).
We denote this AB-homomorphism by f : A −→ B.

Let’s prove that it is also valid
(f0) f(0A) = 0B .

Indeed, for arbitrary x ∈ A, we have f(0A) = f(x ∗ x) = f(x) ⋆ f(x) = 0B .

Theorem 3.19. Let f : A −→ B be an AB-homomorphism of AB-algebras. If C is a
strong ideal of B , then f−1(C) is a strong ideal in A.

Proof. Since f(0) = 0, we have 0 ∈ f−1(C).
Let x, y, z ∈ A be such that (x ∗ y) ∗ z ∈ f−1(C) and y ∈ f−1(C). Then (f(x) ∗

f(y))∗f(z) = f((x∗y)∗z) ∈ C and f(y) ∈ C. Since C is a strong ideal in B, it follows
from (StJ) that f(x ∗ z) = f(x) ∗ f(z) ∈ C. So that x ∗ z ∈ f−1(C). Hence f−1(C) is a
strong ideal in A. □

Corollary 3.20. Let f : A −→ B be an AB-homomorphism of AB-algebras. Then
Kerf := {x ∈ A : f(x) = 0} is a strong ideal of A.

Proof. Since the subset {0} is a strong ideal in the AB-algebra B, by Proposition 3.18, we
have that the kernel Kerf = f−1({0}) of the homomorphism f is a strong ideal in A in
accordance with the previous theorem. □

The claim of this Corollary is stronger than the claim exposed by Theorem 3.7 in [2].

Proposition 3.21. Every strong ideal in an AB-algebra A is a sub-algebra in A.

Proof. Since every strong ideal in an AB-algebra A is an ideal in A (according to Propo-
sition 3.17) and every ideal in A is a sub-algebra in A (according to Proposition 3.5), we
conclude that every strong ideal in A is a sub-algebra in A. □

Example 3.9. Let A be an AB-algebra as in Example 3.5. Ideals S0 = {0}, S1 = {0, a}
and S11 = {0, a, b, c} are strong ideals in A.

3.6. Weak AB-algebras. The concept of weak AB-algebras was introduced in [7] by A.
T. Hameed and B. N. Abbas as follows:

Definition 3.10. ([7], Definition 3.1.1) An algebra A =: (A, ∗, 0) of type (2, 0) is a weak
AB-algebra if and only if it satisfies the conditions (AB), (Re) and (M).

We denote this system of axioms by wAB and the corresponding algebraic structure as
wAB-algebra.

Remark. The requirement (Re) can be omitted in this determination, since it can be
demonstrated from (AB) and (M), as already done in Proposition 3.2.
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It is obvious that every AB-algebra is a wAB-algebra and that, in the general case, the
reverse need not be the case.

As is common in weakened logical algebras that are obtained by omitting the condition
(L), so in the case of wAB-algebra A =: (A, ∗, 0), the correspondence ϕ(x) =: 0 ∗ x is
introduced for arbitrary x ∈ A.

Observation 7. The statement [7], 3.1.4(2)

(∀x, y ∈ A)(x ≼ y =⇒ ϕ(x) = ϕ(y))

cannot be proved without using the formula (∀x, y, z ∈ A)((x∗y)∗z = (x∗z)∗y), stated
in [7], Lemma 2.1.7(4) since it is, in general, not a valid formula in the system wAB. For
illustration, in Example 3.1, we have (c ∗ b) ∗ a = b ∗ a = a ̸= 0 = b ∗ b = (c ∗ a) ∗ b.

The following observation follows from the previous observation and is related to the
statement [7], Theorem 3.1.4(3)

(∀x ∈ A)(ϕ3(x) = ϕ(x)).

It is possible to prove:

Proposition 3.22. Let A =: (A, ∗, 0) be a wAB-algebra. Then:

(13) (∀x ∈ A)(ϕ2(x) ≼ x).

(14) (∀x ∈ A)(ϕ(x) ≼ ϕ3(x)).

(15) (∀x, z ∈ A)(ϕ(z ∗ x) ≼ x ∗ z).
(16) (∀x, z ∈ A)(ϕ(x ∗ z) ≼ ϕ2(z ∗ x)).

Proof. If we put y = x and z = 0 in (AB), we get ((x ∗ x) ∗ (0 ∗ x)) ∗ (x ∗ 0) = 0 which
gives (0 ∗ (0 ∗ x)) ∗ x = 0 according to (Re) and (M). So ϕ2(x) ≼ x.

From the just proven (13), using (9), we obtain ϕ(x) ≼ ϕ3(x). Here it should be said
that the formula (9) is a valid formula in the wAB system since its proof was demonstrated
without using the axiom (L).

If we put y = x in (AB), we get ((x ∗ x) ∗ (z ∗ x)) ∗ (x ∗ z) = 0. From here we get
(0 ∗ (z ∗ x)) ∗ (x ∗ z) = 0 with respect to (Re), which gives ϕ(z ∗ x) ≼ x ∗ z.

If we apply (9) to (15), we get (16). □

As a consequence of (13) and (14), we have:

Corollary 3.23. Let A =: (A, ∗, 0) be a wAB-algebra. Then

(∀x ∈ A)(ϕ3(x) ≡ ϕ(x)).

Proof. If we put ϕ(x) instead of x in (13), we get ϕ3(x) ≼ ϕ(x) which together with (14),
gives ϕ3(x) ≡≼ ϕ(x). □

It should be noted that, in the general case, the condition (J1) is not equivalent to the
condition (J2) in wAB-algebras. Additionally, if J is an ideal in a wAB-algebra A =:
(A, ∗, 0), then, in addition to (J2), also

(∀y, z ∈ A)((ϕ(y) ∗ z ∈ J ∧ y ∈ J) =⇒ ϕ(z) ∈ J)

holds. On the other hand, for a strong ideal in a wAB-algebra A, we have

(∀y, z ∈ A)((ϕ(y ∗ z) ∈ J ∧ y ∈ J)) =⇒ ϕ(z) ∈ J)

so, that’s why, and the following formula

(∀z ∈ A)(ϕ2(z) ∈ J =⇒ ϕ(z) ∈ J)
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is valid.

4. FINAL COMMENTS

The concept of AB-algebra was introduced in 2017 in the article [6] written by A. T.
Hameed and B. N. Abbas. The axiomatization of this class of logical algebras, as well
as the deduction of propositions from them, has not received sufficient attention from re-
searchers. Thus, a number of stated propositions about AB-algebras still do not have satis-
factory demonstrations of their proofs. Apart from the previous observations, the question
about the correspondence

QL(A) ∋ ϱ 7−→ [0]ϱ 7−→ ρ[0]ϱ ∈ Q(A).

remains open. The existence of the aforementioned correspondence between QL(A) and
Q(A) supports our expectation that it should be possible to prove that every left congruence
on an AB-algebra is simultaneously a right congruence on that algebra.
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KORDUNAŠKA STREET 6, 78000 BANJA LUKA, BOSNIA AND HERZEGOVINA

ORCID: 0000-0003-1148-3258
Email address: daniel.a.romano@hotmail.com; danielromano1949@gmail.com

https://orcid.org/0000-0003-1148-3258

	1. Introduction
	2. Preliminaries
	3. The main results
	3.1. AB-algebras
	3.2. Direct product of AB-algebras
	3.3. Sub-algebras and ideals
	3.4. Ideals and congruences
	3.5. Strong ideals
	3.6. Weak AB-algebras

	4. Final comments
	5. Acknowledgements
	References

