ANNALS OF COMMUNICATIONS IN MATHEMATICS

Volume 8, Number 2 (2025), 184-187 DOI: 10.62072/acm.2025.080203

ISSN: 2582-0818

https://www.technoskypub.com/journal/acm/

FINDING MASS DISTRIBUTION FROM THE EXTERIOR POTENTIAL

ALEXANDER G. RAMM

ABSTRACT. Let $D \subset \mathbb{R}^3$ be a bounded domain. Consider the equation $\int_D \frac{m(y)}{4\pi|x-y|} dy = f(x), \ x \in D'$, where $D' = \mathbb{R}^3 \setminus D$. We give a method for calculating m(y) from the knowledge of f(x) in a subdomain of D'.

1. Introduction

In this paper an idea from [3] (see also monograph [7]) is used in a multidimensional problem. In [2] results on numerical solution of operator equations are presented.

Let

$$Am := \int_{D} \frac{m(y)}{4\pi |x - y|} dy = f(x), \ x \in D',$$
 (1.1)

where $D' = \mathbb{R}^3 \setminus D$. Let D_1 be a finite subdomain in D'.

Assume that equation (1.1) has a solution in C(D). For this, it is necessary that f(x) be a harmonic function in D' and sufficient that it be continuous up to the boundary S of D. Indeed, Am = f is harmonic in D', and for m to be continuous up to S it is sufficient that f be continuous in \mathbb{R}^3 .

We assume S to be a smooth, closed and connected surface.

The operator A acts from C(D) into $C(D_1)$. Let

$$Bm := \int_{D_1} dx \frac{1}{4\pi |\xi - x|} \int_{D} \frac{1}{4\pi |x - y|} m(y) dy := \int_{D} B(\xi, y) m(y) dy = \int_{D_1} dx \frac{1}{4\pi |\xi - x|} f(x) := h(\xi),$$

$$(1.2)$$

where

$$Bm = \int_D B(\xi, y)m(y)dy = h(\xi), \tag{1.3}$$

and

$$B(\xi, y) = \frac{1}{16\pi^2} \int_D \frac{1}{|\xi - y||y - x|} dy.$$
 (1.4)

²⁰²⁰ Mathematics Subject Classification. 45A05; 45E10; 45Q05; 65M32.

Key words and phrases. Integral equations; Regularization; Mass distribution; Exterior potential.

Received: April 08, 2025. Accepted: June 19, 2025. Published: June 30, 2025.

Copyright © 2025 by the Author(s). Licensee Techno Sky Publications. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

The kernel $B(\xi,y)=B(y,\xi)$ is symmetric, the operator $B:X\to X$, where $X:=L^2(D)$, is self-adjoint and compact. Thus, the spectrum of B consists of eigenvalues $\lambda_n\to 0$ as $n\to\infty$.

2. Proofs

Lemma 1. The operator B is non-negative in X, $(Bm,m) \ge 0$. Proof of Lemma 1. One has:

$$(Bm,m) = \frac{1}{16\pi^2} \int_D \frac{1}{|\xi - y||y - x|} m(x) m(\xi) dx d\xi dy = \frac{1}{16\pi^2} \Big(\int_D \frac{1}{|y - x|} m(x) dx \Big)^2 \geq 0. \tag{2.1}$$

Lemma 1 is proved.

Equation (1.3) is obviously equivalent to the equation

$$m = (I - B)m + h(\xi). \tag{2.2}$$

Lemma 2. Equation (1.1) is equivalent to equation (1.3).

Proof of Lemma 2. From equation (1.1) one derives equation (1.3) by multiplying equation (1.1) by $\frac{1}{4\pi|\xi-x|}$ and integrating over D_1 . Denote this operation as A^* . Then $B=A^*A$. Let us derive from (1.3) equation (1.1).

Let $||m||^2 := \int_D |m(y)|^2 dy$, and $(m,p) := \int_D m(y) \overline{p(y)} dy$, where the overline denotes complex conjugate; one can consider the space of real-valued functions and then the overline can be dropped. One has

$$||Am - f||^2 = (Am, Am) + (f, f) - (Am, f) - (f, Am) = 0.$$

Here we have used the equation Am = f, which was assumed solvable.

Let us choose the domain D_1 sufficiently far from D. Then the norm of the operator B will be less than 1,

$$||B|| < 1, \quad B > 0.$$
 (2.3)

Then

$$0 < (I - B) \le 1. \tag{2.4}$$

Consider the iterative process

$$m_{n+1} = (I - B)m_n + h(\xi), \quad m_0 = p_0,$$
 (2.5)

where p_0 is an arbitrary element in $L^2(D)$ or C(D). If there is a subsequence of m_n which converges in $L^2(D)$, $\lim_{j\to\infty} m_{n_j} = m$, then its limit m solves equation (2.2). This equation is equivalent to Bm = h, and this equation is equivalent to equation (1.1). Therefore we have an iterative process for solving equation (1.1).

Does a convergent subsequence of m_n exist? The kernel $B(\xi,y)$ is positive. We have proved that. The operator B is self-adjoint, compact, and maps non-negative functions into non-negative ones: it maps a cone of non-negative functions into itself. The operator I-B is self-adjoint, and if the domain D_1 is sufficiently far from D, then the norm of B in either $L^2(D)$ or C(D) is sufficiently small, it less than 1, so the operator I-B is non-negative, the inequalities (2.4) hold.

Subtract from (2.2) equation (2.5) and get

$$q_{n+1} = (I - B)q_n, \quad q_n := m - m_n.$$
 (2.6)

Since T := I - B is self-adjoint and $0 \le T \le 1$, it has a spectral representation:

$$T = \int_0^1 s dE(s), \quad ||T|| \le 1, \tag{2.7}$$

where E(s) is the resolution of the identity of the self-adjoint operator T.

From (2.6) it follows that

$$q_{n+1} = T^{n+1}q_0, \quad q_n := m - m_n.$$
 (2.8)

Choose q_0 orthogonal to the set $H_1:=\{\phi: B\phi=0.$ If the equation (1.3), or the equivalent to (1.3) equation (2.2), is solvable, then h must be orthogonal to H_1 . Let us choose q_0 orthogonal to H_1 . Let $\epsilon>0$ be an arbitrary small fixed number. One can find $\eta>0$ sufficiently small, so that

$$||T^{n+1}q_0|| < ||\int_{1-n}^1 s^{n+1} dE(s)q_0|| < \epsilon,$$
 (2.9)

and a sufficiently large n so that

$$\|\int_0^{1-\eta} s^{n+1} dE(s) q_0\| \le \eta^{n+1} \|q_0\| < \epsilon.$$
 (2.10)

From (2.9) and (2.10) it follows that

$$\lim_{n \to \infty} ||q_n|| = 0. {(2.11)}$$

We have proved

Theorem 1. If equation (1.1) has a solution, then the iterative process (2.5) converges to a solution to equation (1.1).

Let us prove that the iterative process (2.5) allows one to construct a stable approximation to the solution of equation (1.1). Suppose that h_{δ} is given in place of h, and equation (2.2) is not necessarily solvable, but $||h - h_{\delta}|| < \delta$. One has:

$$||m - m_{n,\delta}| \le ||m - m_n|| + ||m_n - m_{n,\delta}||. \tag{2.12}$$

We have proved that

$$\lim_{n \to \infty} ||m - m_n|| = 0. {(2.13)}$$

Let us choose $\delta(n)$ so that

$$\lim_{n \to \infty} [n\delta(n)] = 0. \tag{2.14}$$

If (2.14) holds, then

$$\lim_{n \to \infty} ||m_n - m_{n,\delta}|| = 0.$$
 (2.15)

Indeed,

$$||m_n - m_{n,\delta}|| \le ||(I - B)(m_{n-1} - m_{n-1,\delta})|| + \delta \le ||T||^n \delta + n\delta \le (n+1)\delta \to 0 \text{ if } n \to \infty,$$
(2.16)

where we have used the inequality $||I - B|| \le 1$, that we have established above.

An iterative method for solving linear Fredholm equations of the first kind was published earlier in [1]. This method for solving equation (1.3) is of the form

$$m_{n+1} = m_n + \lambda(h - Bm_n), \quad m_0 \in L^2(D), \ 0 < \lambda \lambda_1 < 1,$$
 (2.17)

where λ_1 is the largest eigenvalue of the self-adjoint compact operator B. Let $m_n = m + u_n$, where m is a solution to equation (1.3), which is assumed to exist. Let us prove that $||u_n|| \to 0$ as $n \to \infty$. From (2.17) one derives

$$u_{n+1} = u_n - \lambda B u_n. \tag{2.18}$$

Let $B\phi_j = \lambda_j \phi_j$. The set of ϕ_j is complete in $L^2(D)$ since B is self-adjoint. Let $b_{n,j}$; = (u_n, ϕ_j) . Equation (2.18) implies:

$$b_{n+1,j} = b_{n,j}(1 - \lambda \lambda_j) = b_{0,j}(1 - \lambda \lambda_1)^n, \tag{2.19}$$

where we have used the inequalities $0 \le \lambda\lambda - j < \lambda\lambda_1 < 1$. One has $\sum_{j=1}^\infty |b_{0,j}|^2 = \|u_0\|^2 < c$, where c = const. Also, $\sum_{j=1}^\infty |b_{n,j}|^2 \le \sum_{j=1}^\infty |b_{0,j}|^2 (1 - \lambda\lambda_1)^n \le c$ For an arbitrary small $\epsilon > 0$ choose k such that $\sum_{j=k}^\infty |b_{n,j}|^2 < \epsilon$. For a fixed k, choose n sufficiently large so that $\sum_{j=1}^k |b_{n,j}|^2 < \epsilon$. This is possible since $(1 - \lambda\lambda_1) < 1$. As a result, one gets $\|u_n\|^2 < 2\epsilon$ if n is sufficiently large. Since $\epsilon > 0$ was arbitrary small, one gets $\|u_n\| \to 0$ as $n \to \infty$. We have proved

Theorem 2. Iterative process (2.17) converges to a solution of equation (1.3), if this equation has a solution.

Several other papers were published in Ann. of Communications in Math., [4], [5], [6].

3. CONCLUSION

A method is given for the calculation of the solution to equation (1.1).

4. Conflict of interest

There is no conflict of interest.

REFERENCES

- [1] V. Fridman, Method of successive approximation for integral equations of the first kind, Uspekhi Math. Nauk, 11, N1, (1956), 233-234.
- [2] M. Krasnoselskii and others, Approximate solution of operator equations, Nauka, Moscow, 1969.
- [3] A.G. Ramm, On one integral equation, Comptes rendus de l'Academie bulgare des Sciences, 32, N6, (1979), 715-717.
- [4] A.G. Ramm, New definition of singular integral operators, Ann. of Communications in Math., 6, N4, (2023), 220-224.
- [5] A.G. Ramm, Absence of positive eigenvalues of the Laplacian in domains with infinite boundaries, Ann. of Communications in Math., 7, N3, (2024), 264-266.
- [6] A.G. Ramm, Materials with a desired refraction coefficient, Ann. of Communications in Math., 8, N1, (2025), 38-42.
- [7] A.G. Ramm, Theory and applications of some new classes of integral equations, Springer Verlag, New York, 1980, Appendix 1.

DEPARTMENT OF MATHEMATICS, KANSAS STATE UNIVERSITY

MANHATTAN, KS 66506, USA.

ORCID: 0000-0002-5160-4248

Email address: ramm@ksu.edu