
ANNALS OF COMMUNICATIONS IN MATHEMATICS

Volume 8, Number 2 (2025), 184-187
DOI: 10.62072/acm.2025.080203
ISSN: 2582-0818
https://www.technoskypub.com/journal/acm/

FINDING MASS DISTRIBUTION FROM THE EXTERIOR POTENTIAL

ALEXANDER G. RAMM

ABSTRACT. Let D ⊂ R3 be a bounded domain. Consider the equation
∫
D

m(y)
4π|x−y|dy =

f(x), x ∈ D′, where D′ = R3 \ D. We give a method for calculating m(y) from the
knowledge of f(x) in a subdomain of D′.

1. INTRODUCTION

In this paper an idea from [3] (see also monograph [7]) is used in a multidimensional
problem. In [2] results on numerical solution of operator equations are presented.

Let

Am :=

∫
D

m(y)

4π|x− y|
dy = f(x), x ∈ D′, (1.1)

where D′ = R3 \D. Let D1 be a finite subdomain in D′.
Assume that equation (1.1) has a solution in C(D). For this, it is necessary that f(x)

be a harmonic function inD′ and sufficient that it be continuous up to the boundary S of
D. Indeed, Am = f is harmonic inD′, and for m to be continuous up to S it is suffiecent
that f be continuous in R3.

We assume S to be a smooth, closed and connected surface.
The operator A acts from C(D) into C(D1). Let

Bm :=

∫
D1

dx
1

4π|ξ − x|

∫
D

1

4π|x− y|
m(y)dy :=

∫
D

B(ξ, y)m(y)dy =

∫
D1

dx
1

4π|ξ − x|
f(x) := h(ξ),

(1.2)
where

Bm =

∫
D

B(ξ, y)m(y)dy = h(ξ), (1.3)

and
B(ξ, y) =

1

16π2

∫
D

1

|ξ − y||y − x|
dy. (1.4)
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The kernel B(ξ, y) = B(y, ξ) is symmetric, the operator B : X → X , where X :=
L2(D), is self-adjoint and compact. Thus, the spectrum of B consists of eigenvalues λn →
0 as n → ∞.

2. PROOFS

Lemma 1. The operator B is non-negative in X , (Bm,m) ≥ 0.
Proof of Lemma 1. One has:

(Bm,m) =
1

16π2

∫
D

1

|ξ − y||y − x|
m(x)m(ξ)dxdξdy =

1

16π2

(∫
D

1

|y − x|
m(x)dx

)2

≥ 0.

(2.1)
Lemma 1 is proved. 2

Equation (1.3) is obviously equivalent to the equation

m = (I −B)m+ h(ξ). (2.2)

Lemma 2. Equation (1.1) is equivalent to equation (1.3).
Proof of Lemma 2. From equation (1.1) one derives equation (1.3) by multiplying

equation (1.1) by 1
4π|ξ−x| and integrating over D1. Denote this operation as A⋆. Then

B = A⋆A. Let us derive from (1.3) equation (1.1).
Let ∥m∥2 :=

∫
D
|m(y)|2dy, and (m, p) :=

∫
D
m(y)p(y)dy, where the overline de-

notes complex conjugate; one can consider the space of real-valued functions and then the
overline can be dropped. One has

∥Am− f∥2 = (Am,Am) + (f, f)− (Am, f)− (f,Am) = 0.

Here we have used the equation Am = f , which was assumed solvable.
Lemma 2 is proved. 2

Let us choose the domain D1 sufficiently far from D. Then the norm of the operator B
will be less than 1,

∥B∥ < 1, B ≥ 0. (2.3)
Then

0 < (I −B) ≤ 1. (2.4)
Consider the iterative process

mn+1 = (I −B)mn + h(ξ), m0 = p0, (2.5)

where p0 is an arbitrary element in L2(D) or C(D). If there is a subsequence of mn

which converges in L2(D), limj→∞ mnj
= m, then its limit m solves eqution (2.2).

This equation is equivalent to Bm = h, and this equation is equivalent to equation (1.1).
Therefore we have an iterative process for solving equation (1.1).

Does a convergent subsequence of mn exist? The kernel B(ξ, y) is positive. We have
proved that. The operator B is self-adjoint, compact, and maps non-negative functions into
non-negative ones: it maps a cone of non-negative functions into itself. The operator I−B
is self-adjoint, and if the domain D1 is sufficiently far from D, then the norm of B in either
L2(D) or C(D) is sufficiently small, it less than 1, so the operator I −B is non-negative,
the inequalities (2.4) hold.

Subtract from (2.2) equation (2.5) and get

qn+1 = (I −B)qn, qn := m−mn. (2.6)
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Since T := I −B is self-adjoint and 0 ≤ T ≤ 1, it has a spectral representation:

T =

∫ 1

0

sdE(s), ∥T∥ ≤ 1, (2.7)

where E(s) is the resolution of the identity of the self-adjoint operator T .
From (2.6) it follows that

qn+1 = Tn+1q0, qn := m−mn. (2.8)

Choose q0 orthogonal to the set H1 := {ϕ : Bϕ = 0. If the equation (1.3), or the
equivalent to (1.3) equation (2.2), is solvable, then h must be orthogonal to H1. Let us
choose q0 orthogonal to H1. Let ϵ > 0 be an arbitrary small fixed number. One can find
η > 0 sufficiently small, so that

∥Tn+1q0∥ < ∥
∫ 1

1−η

sn+1dE(s)q0∥ < ϵ, (2.9)

and a sufficiently large n so that

∥
∫ 1−η

0

sn+1dE(s)q0∥ ≤ ηn+1∥q0∥ < ϵ. (2.10)

From (2.9) and (2.10) it follows that

lim
n→∞

∥qn∥ = 0. (2.11)

We have proved
Theorem 1. If equation (1.1) has a solution, then the iterative process (2.5) con-

verges to a solution to equation (1.1).
Let us prove that the iterative process (2.5) allows one to construct a stable approxima-

tion to the solution of equation (1.1). Suppose that hδ is given in place of h, and equation
(2.2) is not necessarily solvable, but ∥h− hδ∥ < δ. One has:

∥m−mn,δ ≤ ∥m−mn∥+ ∥mn −mn,δ∥. (2.12)

We have proved that
lim
n→∞

∥m−mn∥ = 0. (2.13)

Let us choose δ(n) so that
lim
n→∞

[nδ(n)] = 0. (2.14)

If (2.14) holds, then
lim
n→∞

∥mn −mn,δ∥ = 0. (2.15)

Indeed,

∥mn−mn,δ∥ ≤ ∥(I−B)(mn−1−mn−1,δ)∥+δ ≤ ∥T∥nδ+nδ ≤ (n+1)δ → 0 if n → ∞,
(2.16)

where we have used the inequality ∥I −B∥ ≤ 1, that we have established above.
An iterative method for solving linear Fredholm equations of the first kind was pub-

lished earlier in [1]. This method for solving equation (1.3) is of the form

mn+1 = mn + λ(h−Bmn), m0 ∈ L2(D), 0 < λλ1 < 1, (2.17)

where λ1 is the largest eigenvalue of the self-adjoint compact operator B. Let mn =
m + un, where m is a solution to equation (1.3), which is assumed to exist. Let us prove
that ∥un∥ → 0 as n → ∞. From (2.17) one derives

un+1 = un − λBun. (2.18)
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Let Bϕj = λjϕj . The set of ϕj is complete in L2(D) since B is self-adjoint. Let bn,j ; =
(un, ϕj). Equation (2.18) implies:

bn+1,j = bn,j(1− λλj) = b0,j(1− λλ1)
n, (2.19)

where we have used the inequalities 0 ≤ λλ − j < λλ1 < 1. One has
∑∞

j=1 |b0,j |2 =

∥u0∥2 < c, where c = const. Also,
∑∞

j=1 |bn,j |2 ≤
∑∞

j=1 |b0,j |2(1 − λλ1)
n ≤ c For

an arbitrary small ϵ > 0 choose k such that
∑∞

j=k |bn,j |2 < ϵ. For a fixed k, choose n

sufficiently large so that
∑k

j=1 |bn,j |2 < ϵ. This is possible since (1 − λλ1) < 1. As a
result, one gets ∥un∥2 < 2ϵ if n is sufficiently large. Since ϵ > 0 was arbitrary small, one
gets ∥un∥ → 0 as n → ∞. We have proved

Theorem 2. Iterative process (2.17) converges to a solution of equation (1.3), if this
equation has a solution.

Several other papers were published in Ann. of Communications in Math., [4], [5], [6].

3. CONCLUSION

A method is given for the calculation of the solution to equation (1.1).
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