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FINDING MASS DISTRIBUTION FROM THE EXTERIOR POTENTIAL
ALEXANDER G. RAMM

ABSTRACT. Let D C R3 be abounded domain. Consider the equation [, %dy =

f(z), € D', where D' = R3\ D. We give a method for calculating m(y) from the
knowledge of f () in a subdomain of D’.

1. INTRODUCTION

In this paper an idea from [3]] (see also monograph [7]]) is used in a multidimensional
problem. In [2] results on numerical solution of operator equations are presented.

Let

Am ::/ Mdy = f(z), z€ D, (1.1)
p 4rlz —y|
where D’ = R?\ D. Let D; be a finite subdomain in D’.

Assume that equation (I1) has a solution in C (D). For this, it is necessary that f(z)
be a harmonic function inD’ and sufficient that it be continuous up to the boundary S of
D. Indeed, Am = f is harmonic inD’, and for m to be continuous up to S it is suffiecent
that f be continuous in R3.

We assume S to be a smooth, closed and connected surface.

The operator A acts from C (D) into C(Dy). Let

1 1 1
B = d dy := B dy = de——— = h
mi= [ o [ = [ B mmay= [ x4ﬂ(|§2_)x|f(x) ),
where .
B = [ Ble.ym(u)dy = he) 13
D
" B _ ! L d 1.4
€9 =5 |, Tl 9
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The kernel B(&,y) = B(y, &) is symmetric, the operator B : X — X, where X :=
L?(D), is self-adjoint and compact. Thus, the spectrum of B consists of eigenvalues \,, —
0asn — oo.

2. PROOFS

Lemma 1. The operator B is non-negative in X, (Bm,m) > 0.
Proof of Lemma 1. One haS'

1 1 2
(Bm,m) 167r2/ = y\|y—x| m(z)m(€)dzdedy = 16#(/0 ‘y_x|m(x)d:c) > 0.

@2.1)

Lemma 1 is proved. O
Equation (I.3) is obviously equivalent to the equation

m = (I — B)ym + h(€). 2.2)

Lemma 2. Equation is equivalent to equation (T.3).

Proof of Lemma 2. From equation (I.I) one derives equation (I.3) by multiplying
equation (L.I) by ;- i 51 i and integrating over Dy. Denote this operation as A*. Then
B = A*A. Let us derive from equatlon l)

Let [|m|? = [, |m(y )|2dy, and (m,p) = [, m(y)p(y)dy, where the overline de-
notes complex conjugate; one can consider the space of real Valued functions and then the
overline can be dropped. One has

[Am — f[|* = (Am, Am) + (f, ) — (Am, f) — (f, Am) = 0.
Here we have used the equation Am = f, which was assumed solvable.
Lemma 2 is proved. O

Let us choose the domain D, sufficiently far from D. Then the norm of the operator B
will be less than 1,

|B| <1, B=>o0. (2.3)
Then
0<(I-B)<1. (2.4)
Consider the iterative process
Myt1 = (I — B)my +h(§), mo = po, (2.5)
where py is an arbitrary element in L?(D) or C(D). If there is a subsequence of m,,
which converges in L?(D), lim;_ m,,; = m, then its limit m solves eqution (2.2).

This equation is equivalent to Bm = h, and this equation is equivalent to equation (I.1).
Therefore we have an iterative process for solving equation (I.I).

Does a convergent subsequence of m,, exist? The kernel B(, y) is positive. We have
proved that. The operator B is self-adjoint, compact, and maps non-negative functions into
non-negative ones: it maps a cone of non-negative functions into itself. The operator  — B
is self-adjoint, and if the domain D, is sufficiently far from D, then the norm of B in either
L?(D) or C(D) is sufficiently small, it less than 1, so the operator I — B is non-negative,
the inequalities (2.4) hold.

Subtract from (2.2)) equation (2.3) and get

Gnt1 = I — B)qn, qn:i=m—m,. (2.6)
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Since T := I — B is self-adjoint and 0 < T' < 1, it has a spectral representation:
1
T= / sdE(s), ||T) <1, 2.7
0

where F(s) is the resolution of the identity of the self-adjoint operator 7.
From (2.6) it follows that

i1 =T" "0,  Gn:=m—my. (2.8)

Choose ¢ orthogonal to the set Hy := {¢ : B¢ = 0. If the equation (T.3), or the
equivalent to (I.3) equation (Z.2), is solvable, then h must be orthogonal to Hy. Let us
choose g orthogonal to H;. Let € > 0 be an arbitrary small fixed number. One can find
1 > 0 sufficiently small, so that

1
7 el < | [ s aB )l < @9
1-n
and a sufficiently large n so that
1-n
s S)qoll =1 qo €. .
1] s raEs)al < 0 ol < 2.10)
0
From (2.9) and (2:10) it follows that
lim |jgn = 0. 2.11)
n—oo

We have proved

Theorem 1. If equation (T.I) has a solution, then the iterative process (2.5) con-
verges to a solution to equation (I.I).

Let us prove that the iterative process [2.3)) allows one to construct a stable approxima-
tion to the solution of equation (I.1). Suppose that s is given in place of h, and equation
(2:2) is not necessarily solvable, but ||h — hs|| < 6. One has:

lm —mp s < [[m —my|| + [[my — My, s (2.12)
We have proved that
lim ||m —m,|| = 0. (2.13)
n—oo
Let us choose d(n) so that
lim [né(n)] = 0. (2.14)
n—oo
If (2.14) holds, then
lim ||m, —m,s| = 0. (2.15)
n—oo
Indeed,
[l —mp || < [[(T—B)(mp—1—mn—1,)||+0 < ||T||"0+nd < (n+1)d — 0 if n — oo,
(2.16)

where we have used the inequality | I — B|| < 1, that we have established above.
An iterative method for solving linear Fredholm equations of the first kind was pub-
lished earlier in [1]. This method for solving equation (T.3) is of the form

Mpp1 = My + AN — Bmy), mo € L3(D), 0 <A\ <1, (2.17)

where \; is the largest eigenvalue of the self-adjoint compact operator B. Let m, =
m + u,, where m is a solution to equation (T.3)), which is assumed to exist. Let us prove
that ||u,|| — 0 as n — co. From (2.17) one derives

Up4+1 = Up — ABuy,. (2.18)
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Let Bg; = A\;j¢;. The set of ¢; is complete in L?(D) since B is self-adjoint. Let by, ;; =
(tn, ¢;). Equation (2.18) implies:

bpt1, =bn (1 —AX;) =bo; (1 —AX)", (2.19)
where we have used the inequalities 0 < A\ — 7 < AA; < 1. One has Z;’il |bo,;|* =
[uol|* < ¢, where ¢ = const. Also, 3272, |by ;> < 3272, [bo[*(1 — A\i)™ < ¢ For
an arbitrary small ¢ > 0 choose & such that 372, |bn, ;] < €. For a fixed k, choose n

sufficiently large so that Z?zl |bn ;| < €. This is possible since (1 — A\;) < 1. Asa
result, one gets ||uy, ||? < 2¢ if n is sufficiently large. Since € > 0 was arbitrary small, one
gets ||u,,|| — 0 as n — co. We have proved

Theorem 2. Iterative process converges to a solution of equation (I.3), if this
equation has a solution.

Several other papers were published in Ann. of Communications in Math., [4], [, [6].

3. CONCLUSION

A method is given for the calculation of the solution to equation (I.1).
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