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REVISITING AN EXISTING INTEGRAL INEQUALITY

CHRISTOPHE CHESNEAU

ABSTRACT. In this article, we revisit a well-known result from the literature that can be
considered a variant of the Hardy integral inequality. First, we present a counterexample
to demonstrate the invalidity of the current formulation. We then revise the result by iden-
tifying and addressing a gap in the original proof. Finally, as an additional contribution,
we derive a new integral inequality.

1. INTRODUCTION

Integral inequalities provide bounds on integrals, making them among the most valu-
able tools in mathematical analysis. In particular, they are essential for controlling error
terms in key approximation results. Their usefulness extends across numerous disciplines,
including physics, engineering, and economics. The fundamentals of integral inequalities
can be found in [6} 12, (10} 1} [12]].

An important result on this subject is attributed to Godfrey Harold Hardy (see [S]]). It
can be expressed as follows: For any p > 1 and any function f : (0, +0o0) — (0,400), by
setting

F@w=[fﬂww,

+oo 1 . P p +o0 .
/0 x—pF (x)dz < (pl) /0 fP(x)dx, (1.1

we have

provided that the integrals exist. In this general framework, the constant in the factor
cannot be improved; it is optimal. This inequality is known as the Hardy integral inequality.
Norman Levinson extended it in [7] to a more general integration domain as follows: For
any (a,b) € (0,4+00)? U {+00}? with a < b and any function f : (a,b) — (0, +00), by
setting

Fa) = [ s
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b q P b
/aprp(x)da:<<p€1> /afp(:v)alac7 (1.2)

provided that the integrals exist. This inequality is known as the Levinson integral inequal-
ity. In recent decades, various parameter and functional schemes have been used to extend
the Hardy and Levinson integral inequalities, leading to numerous variants. See the results
in [9, 8] (11} 31 4.

In particular, nine theorems are proved in [9]. They are notable for their attempt to
combine standard, monotonicity, submultiplicativity, and convexity properties in order to
derive different forms of the Hardy integral inequality. In terms of bibliometrics, the ref-
erence [9]] has been cited over thirty-seven times, demonstrating its significant impact and
level of interest.

This article builds upon the referenced work. More precisely, it revisits a specific the-
orem established in [9], namely [9, Theorem 2.6]. First, we present an example that chal-
lenges the mathematical validity of the theorem. We then propose a correction to the proof.
This theoretical gap is formalized by an additional integral term that is missing from the
upper bound described in [9, Theorem 2.6]. Finally, we provide a new alternative result
based on a similar approach. This result employs the Levinson integral inequality as an
intermediate step.

The rest of the article is organized as follows: Section E]recalls 9, Theorem 2.6] and
presents a counterexample. Section [3]is devoted to a correction of this result. The new
integral inequality is established in Section[d] The article concludes in Section [5]

we have

2. A COUNTEREXAMPLE TO AN EXISTING THEOREM

The theorem below is equivalent to [9, Theorem 2.6, page 522], with only minor changes
to the presentation.

Theorem 2.1. [9, Theorem 2.6]. Let p > 2, f : (0,400) — (0, +00) be a function and
provided that the integral exists.

/ £
Then the following inequality holds:
+oo 1 +oo 1
/ —Fp( Ydx < / — P Y (x)F(2)dz,
0 xP 0 T
still provided that the integrals exist.

The proof of this theorem can be found in [9, pages 522 and 523]. It is based on a
suitable integral decomposition, multiple exchange of the order of integration, and a well-
parameterized Holder integral inequality. In particular, for the case p = 2, this inequality
becomes

+oo +oo
/ %F%x)dw < / %f(x)F(a:)dx
0 0

The proposition below gives an elegant counterexample to this inequality (for the case
p=2).
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Proposition 2.2. We consider the framework of Theorem 21| with p = 2 and, for any
t € (0,+00),

7(8) = e

Then we have
+o0 1 +o0 1
/0 EFQ(x)dx > /0 Ef(m)F(ac)dm
This contradicts the inequality in Theorem[2.1]

Proof. The proof consists in finding all the integrals involved and comparing the ones
given. First, we determine F’ as follows:
x zq t=x
F(z) = / ft)ydt = / —Qefl/tdt = [eil/t} —e /2,
0 0 t t—0
We therefore have
+o0 +o0 T—=+00
1 1 1 1
/ —2F2(x)dx :/ —26_2/$dx = |:€_2/$:| =_.
0 xr 0 X 2 2—0 2

On the other hand, by an integration by parts, we obtain

—f(z)F(x)dx = —x e VT x ey = —e Y7y
x x  x? 3
0 0 0

X

1 Toteo oo g 1 1 1

= [ez/m] —|—f/ 7672/mdx=()—|—7><f:f.
2z 250 2 )y = 2 2 4

We conclude that

/O+OO iF2(x)da: — 1 % = /O+OO %f(x)F(x)dx,

which indeed contradicts Theorem 2.T]for p = 2. This ends the proof. O

Proposition [2.2] thus reveals a gap in the proof of [9, Theorem 2.6], at least for the case
p = 2. In fact, this gap goes beyond the specific case of p = 2. Let us illustrate this
claim with a short analysis. Considering the function f in Proposition ie, f(t) =
(1/t?)e=1/ for any ¢ € (0, +00), we set
+oo 1 +oo 1
h(p) ::/ — FP(x)dx f/ — P Y (x)F(z)da.
o T o T

If we make the change of variables y = p/x and leave out the details, we can see that

h(p) = p" " [p"T(p — 1) — pL'(2p — 2)] (2.1)

where I'(z) is the standard gamma function, i.e., I'(x) := 0+°° t*~le~tdt, for any x €

(0, +00). To examine the sign of h, we perform a graphical analysis in Figure [} More
precisely, we plot the curve of h(p) for p € [2,12].
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FIGURE 1. Curve of the function h(p) given by Equation (2:1)) for p € [2,12]

The purple curve shows that h(p) > 0 for p € [2,4.18], contradicting [9 Theorem 2.6]
for this range of values. This confirms that the gap in [9, Theorem 2.6] is deeper than just
for the single value p = 2.

3. REVISION OF THE THEOREM

In the theorem below, we revisit [9, Theorem 2.6], showing that a term is missing in the
upper bound.

Theorem 3.1. Letp > 2, f: (0,+00) — (0, 4+00) be a function,
0= [ 10

Glaip) = / o

provided that the integrals exist.
Then the following inequality holds:

R . z 1 2)G(x: p)dx +Oolp_1x r)dw
| pr@is [ e [ L @R,

xP

and

still provided that the integrals exist. The inequality is an equality for the case p = 2, and
we get
+o0 1 +o0 1
[ Pwa=2[  Lf@Fed
0 €T 0

Proof. Using the definition of F' and changing the order of integration (which is possible
because of the positivity of the functions involved, according to the Fubini-Tonelli integral
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theorem), we have

/Om Lpr )dx:/OJroo L o100y P(2)da

xP xP

/“’" L oy / i) dtdx/;m/; L F (@) (1)

/+(>o /+Oo L - L) f(t)dzdt

_ /0+°° /t s [ / fu du} F(t)dudt. G.1)

For the case p > 2, applylng the Holder integral inequality with the parameter p — 1 > 1
and again a change of the order of integration, we get

/m /m 1

)du} " ft)dzdt

L
1) (4 s
/ 3312[/ 7 du] f(t)dxdt
:/O+°°/+°O/O 3 77w f () dudrds
|

fp Yw) f(t)dzdudt

:/O+°° /;OO me) xldx] PP () £ () dudt

_ [ +0071 p—1 t)dudt 3.2
*/0 / a0 ). (3:2)

Note that, for the case p = 2, the inequality in the second line becomes an equality (there
is no need to use the Holder integral inequality).

In [9, Proof of Theorem 2.6], the term max(u,t) was erroneously reduced to u, with
u € (t,400), which explains the gap noticed in Proposition Taking this maximum
term into account, we continue the proof by applying the Chasles relation, changing the
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order of integration again and using the definition of G, as follows:

/O+°° /O+OO @fp*l(u)f(t)dudt
i /;OO /Ot %fp_l(mf(t)dudt i /0+°° /t+°° %fp_l(u)f(t)dudt

:/Om %f(t) [/Ot fp_l(u)du} dt+/0+oo /Ouifp‘l(u)f(t)dtdu
- [T et [ L [ [C o] a

+001

o0 1
= / Ef(t)G(t;p)dt + / Efpfl(u)F(u)du. (3.3)
0 0
Putting Equations (3.1)), (3.2) and (3.3) together, and uniformizing the notation, we get

. P +0°1 z)G(z; p)dz +Ool P=1(2)F(z)dx
| sr@as [ r@enat [ L pt @@

xP

For the case p = 2, as indicated earlier, this inequality becomes an equality, and we have

[ @ = [ L wrae = [

We therefore have

+oo
%f(:c)F(a:)dx

+Ooi2l’ T = +ool X xr)axr
| mP@a =2 [ L@F@.

22
This concludes the proof.

To reinforce our findings, an alternative proof for the case p > 2 is provided below. This
proof is of mathematical interest because it uses several intermediate results, namely [6}
Item 9.8.7, page 242], the Holder integral inequality and the Young inequality for products.
Alternative proof for the case p > 2. Based on [6l Item 9.8.7, page 242], we obtain

+oo 1 FP dr < p Feo 1 Fp—l d
s [ e

This can be rewritten as follows:
—+oo
1
/ — FP(z)dx
o
< L [T e [ S wswa e
— —_— x)f(z)dz — x)f(x)dz. .
- p— 1 0 I’p71 0 Ipfl
Let us majorize the two main terms of this upper bound in turn. Applying the Holder
integral inequality with the parameter p — 1 > 1, we get

Frla) = Mf(u)dur_l < [/0 f”_l(u)du] (/O du)p_2 = Gw:p)aP=2.

The first main term can thus be majorized as follows:

1 oo 1 p—1 1 +oo 1 s

p—1 /O 7 (@) f(2)de < | /O —Glaip)a?* f(a)dx
1 +oo 1

=,-1), /@G 3.5)
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For the second main term, a different strategy is used. The following product decomposi-
tion holds:

L1 (0) £(a) = pr_l(x)F(x)r/(pl) [;Fp(x)]ll/(pl).

P
The Young inequality for products applied with the parameter p — 1 > 1 gives

pr_l(x)F(x)] v [lpp(x)} 1=1/(p—1)

xP

< elbr ol (-9 [

Combining the two equations above and integrating both sides, the second main term can
be majorized as follows:

+o0 1
/0 71Fp_1($)f(l‘)dl‘

xP

1 oo q

< [ L @r (1_}:) /Om L praydr. 36)

p—1 1 P
Putting Equations @), (3:3) and (3.6) together, we obtain

/ " L)

+001 +OO]_
<7/ xpdz+7/ ff]”1 VF(x)dx

+ <1—p_1> /O+oo mipr( )dx,

which implies that

o[t
— — FP(z)dx
p—1Jy P
I | I |
S —] *f( )G(z; p)dz + 1/, ;fp_l(m)F(x)d%
o)
+oo 1 +o00 1 +oo 1
| prr@ds [ L f@GEde s [ @) e
0 xP 0 T 0
The desired inequality is established, ending this alternative proof. (]

Compared to [9, Theorem 2.6], Theorem@considers the following additional term in
the upper bound:

+oo
M(p) := /O %f(x)G(fc;p)dx-

This addition therefore fills a theoretical gap.
Considering the function f in Proposition ie., f(t) = (1/t?)e”'/* for any t €
(0, +00), after some integral developments, omitting the details, we get

b 20-p g20-p) N
M(p) = o= 3) [(p =P —3p ”]F(2p 1). (3.7)
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For the case p = 2 as in Proposition we have M (2) = 1/4 and it is no longer a
counterexample of Theorem 3.1 since we have

[T Eree=l ot oo [T wr@a
R r)dr = — = — —- = — 7\ xT)ax.

0 x2 2 4 4 0 X

The former missing term M (2) is as important as the other term in the upper bound in this
particular example. This illustrates its determinant role in the inequality obtained.

In order to analyze more deeply this example, with a general value for p, let us consider
the following function:

+oo +oo +oo
Jj(p) ::/O %f(x)G(x;p)dx—i—/O %fp—l(gg)F(a:)dx—/o iFP(x)dm.

xP
Then, based on Equations (2:1) and (3.7), we can express it as

j(p) = M(p) — h(p)

= m [(p —1)2(-») 3p2“”’)] T'(2p—1)
—p " [P'T(p—1) —pl'(2p - 2)]. (3.8)

Theorem |3.1{ensures that, for any p > 2, we have j(p) > 0. This is illustrated in Figures
and [3| with the curve of j(p) for p € [2,13] for small values and p € [2,50] for a visual
of large values of p, respectively.
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0.04
|

iP)

0.02
|

0.00
|

FIGURE 2. Curve of the function j(p) given by Equation (3-8) for p € [2,13]
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FIGURE 3. Curve of the function j(p) given by Equation (3.8) for p € [2, 50]

In any case, the red curve shows that, as expected, j(p) > 0 for p > 2. We also note
that the inequality is sharp, with approximately 0.065 as the maximum error amplitude.
We have thus proved the following inequality on the gamma function, which may be of
independent interest: For any p > 2 we have j(p) > 0, i.e.,

1 - - B
53 (p—1)207P) — gp20 ”)] I(2p—1)—p' 2 [pPT(p — 1) — pI'(2p — 2)]
> 0.

We leave it to future work to investigate this further.

4. A NEW INTEGRAL INEQUALITY

The result below gives an upper bound for ["°°(1/2P)FP(z)dx in a similar way to
Theorem [3.1] considering only one integral term close to that suggested in [9, Theorem
2.6], but with a constant factor different from 1. It is also only valid for p > 2 (the case
p = 2 is excluded).

Theorem 4.1. Letp > 2, f: (0,400) — (0, 4+00) be a function,

0= [ 1)
1
)= |
0
provided that the integrals exist.
Then we have

/O%O zipr( )dz < (ﬁ)p_l /0+°° 2 () H (),

still provided that the integrals exist.

and
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Proof. Using the definition of I and changing the order of integration, we have

/(:Oo iFP( )dx /m 1pF” Yx)F(z)dx

xP
—/+001F”1 /f dtdm—/+oo/ —F”1 )f(t)dtdx
/ - / L () (0t @

By the simple bound 1/x < 1/t for x € (¢, +00), we get

+oo  ptoo 1 +oo +oo 1 1
/O /t ﬁprl(x)f(t)dzdtg /0 { /t xp_lel(x)dx] n ft)dt. (4.2)

Now, by applying the Levinson integral inequality on the interval (¢, +00) (see Equation
(T.2) with a = ¢ and b — +00) with the parameter p — 1 > 1, doing an exchange of order
of integration and using the definition of H, we obtain

/O+oo [/t+oo xpllpp—l(x)d:c} %f(t)dt

S/om [(i ;) /tmf” (o) “f(t)dt

B (i DP 1/ / 777 @) (0ot

- <Z ;>p 1/ / 777 ) T ()i
:<i:;>“/o [ [/ Sf(t dt}dm

- (E)H /Om I (@) H () de. w3

Putting Equations (@.1)), (4.2) and (@.3) together, we have

[ Erwes (220 [T wnee.

This concludes the proof. O

To the best of our knowledge, this integral inequality is a novel addition to the literature.
In a sense, it supplements the theorems in [9], which are similar in nature.

5. CONCLUSION

The reference [9] contains many important and influential theorems in the field of in-
tegral inequalities. Most of these are valuable variants of the well-known Hardy integral
inequality. However, in this article, we have identified a gap in one of these theorems
(i.e., [9, Theorem 2.6]), and found a counterexample to the current formulation. Following
analysis, we revised the statement and provided a correct proof, thereby closing the gap.
Additionally, in the spirit of [9]], a new integral inequality has been established.
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Possible avenues for future research include generalizing these results by introducing a
tuning parameter or an intermediate function, or extending them to the multidimensional
case. Such generalizations would make them more adaptable to a broader range of integral
analyses across various applications.
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