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ABSTRACT. This study presents two mathematical models to improve understanding of
cytokine-mediated effects on abortive HIV-1 infection. The models describe interactions
among healthy CD4+ T cells, abortively and actively HIV-1-infected CD4 T cells, in-
flammatory cytokines, and free HIV-1 particles. In the second model, four types of dis-
tributed time delays are incorporated. The biological feasibility of the models is established
by demonstrating the non-negativity and boundedness of solutions. Two equilibrium points
are identified, and their existence and stability are characterized in terms of the basic repro-
duction number Rg. The global stability of the equilibria is analyzed using the Lyapunov
method. Numerical simulations support the analytical results. Sensitivity analysis is con-
ducted to identify key parameters influencing $p. The impact of time delays on HIV-1
progression is also examined. The findings suggest that longer delays can significantly
reduce R, potentially suppressing HIV-1 replication.

1. INTRODUCTION

HIV-1 (Human Immunodeficiency Virus type 1) is a highly aggressive virus that primar-
ily targets CD4 ™" T cells—key components of the immune defense. Its progression leads to
severe impairment of immune function, rendering the body highly susceptible to oppor-
tunistic infections that significantly deteriorate overall health. Blood, breast milk, semen,
and vaginal secretions are among the bodily fluids through which HIV-1 can be trans-
mitted. According to UNAIDS, in 2023, approximately 630,000 individuals died from
HIV-related illnesses, while 1.3 million new infections were recorded. Globally, the num-
ber of people living with HIV reached 39.9 million [42]]. The adaptive immune system
operates through two fundamental mechanisms: the cytotoxic T cell (CTL) response and
the antibody-mediated (humoral) response. Cytotoxic T cells, primarily CD8" T lympho-
cytes, are responsible for detecting and destroying cells harboring intracellular pathogens
like viruses. Meanwhile, the humoral arm, driven by B lymphocytes, generates antibodies
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that bind to pathogens, neutralizing them, preventing their entry into host cells, and facili-
tating their clearance by other immune components. These complementary pathways work
in concert to mount a precise and effective defense against diverse infectious agents.

The use of mathematical models has significantly advanced our understanding of the
complex relationship between viral pathogens and the immune system. Through the de-
velopment and analysis of differential equation-based frameworks, scientists can replicate
infection dynamics, explore immune responses, and investigate the effectiveness of thera-
peutic interventions. Such models provide a theoretical foundation for examining biolog-
ical processes that are often challenging to capture through experimental methods alone.
Mathematical approaches have been applied to analyze the complex behavior and progres-
sion of HIV-1 infection (see, e.g., [35)]-[41]]). Additionally, stability analysis has emerged
as one of the most significant and beneficial techniques for comprehending HIV-1 dynam-
ics within hosts (see, e.g., [45]-[4]). The traditional HIV-1 infection model was presented
by Nowak [34], and it characterizes the relationship between susceptible CD4™T cells,
HIV-1-infected CD4 7T cells, and the free HIV-1 particles as follows:

T (t) = X — dpa(t) — Bra(t)o(t), (1.1)
g (t) = Bra(t)v(t) — dyy(t), (1.2)
0 (t) = Sy (t) —dyv (t), (1.3)

where (1), y(t) and v(t) are the concentrations of healthy (uninfected) CD4™T cells,
infected CD4™" T cells, and free HIV-1 particles, at time ¢, respectively. A denotes the
production rate of healthy CD4™ T cells. 81zv represents the rate of infection. Parameter
d,, refers to production rate of the HIV-1 particles. The compartments x, y and v experience
natural mortality at rates d,x, d,y and d,v, respectively. Several mathematical models
have expanded upon this framework by incorporating diverse biological factors, such as
time delays [32]]-[54]; CTL immune response [34], [[18], [28]], [9]; antiretroviral therapies
[32], [38]; humoral immunity [26], spatial dynamics via reaction-diffusion mechanisms
[12]], [30[, [3]; age structure [25]; and stochastic influences [11], [9].

The mechanism of CD4™ T cell death and HIV-1 infection are recognized to be intri-
cate processes that are still being investigated. There are two primary forms of CD4*T
cell death: apoptosis and pyroptosis [1], [20]. According to a publication [8]], ninety five
percentage of CD4™1T cell death is attributed to pyroptosis, whereas 5% is attributed to
apoptosis. Doitsh et al. [7] demonstrated that caspase-1, a type of cysteine protease, plays
a pivotal role in initiating the secretion of pro-inflammatory cytokines such as 1L — 1.
These cytokines contribute to sustained inflammation and attract healthy CD4" T cells
to the site of infection, increasing their susceptibility to cell death. This process estab-
lishes a detrimental cycle in which the demise of infected CD4™" T cells triggers further
inflammatory responses, promoting the continued depletion of uninfected CD4™ T cells
and accelerating the breakdown of the immune system.

The impact of pyroptosis has been integrated into various HIV-1 infection models through
the inclusion of distinct biological elements. These include: (i) distinguishing between pro-
ductively and abortively infected cells [44]], (ii) incorporating spatial effects using reaction-
diffusion frameworks [48]]-[49], and (iii) accounting for age structure within the infected
cell population [52]. In the model presented in [44], the persistent inflammation driven
by pyroptosis has no influence on the basic reproduction number, indicating that the un-
derlying disease transmission potential remains unaffected by chronic inflammatory re-
sponses. Cytokine-enhanced viral infection models were recently created and examined
[20]. Zhang et al. [S3] developed a model of viral infection that included CTL immune
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response, discrete-time delays, and inflammatory cytokines. In a recent study, Lv et al.
[27] introduced a time delay in the activation of inflammatory cytokines within a cytokine-
enhanced viral infection model. However, their model did not differentiate between cells
that were productively infected and those that were abortively infected.

This study focuses on formulating two HIV-1 infection models that incorporate the roles
of (i) inflammatory cytokines and (ii) abortive infection. The second model further includes
four distinct types of distributed time delays to capture biological realism. We begin by
analyzing the essential properties of the models, followed by identifying all possible equi-
libria and examining their existence and global stability. Lyapunov’s method is employed
to demonstrate the global asymptotic stability of each equilibrium. Numerical simulations
are carried out to support and validate the theoretical findings. Finally, the implications of
the results are thoroughly discussed.

2. CYTOKINE-ENHANCED HIV-1 DYNAMICAL SYSTEM

2.1. Model development. We formulate a five-dimensional system of ordinary differen-
tial equations (ODEs) as follows:

T(t) =X —dya(t) — [frz () v (t) + Baz (t) ¢ (t)], 2.1)
g () = A —q)[Prz (t) v (t) + Pax (1) c ()] — dyy (1), (2.2)
w(t) = q[Bfrx () v (t) + Box (t) ¢ (t)] — dpw (1), (2.3)
¢(t) = nedyw (t) — dee (1), (2.4)
O (t) = buy (t) — dyv (t) (2.5)

where w(t) and ¢(t) denote the concentrations of abortive HIV-1-infected CD4 1T cells and
inflammatory cytokines at time ¢, respectively. 3zzc reflects the infection rate of CD4+ T
cells driven by inflammatory cytokines. The quantity of inflammatory cytokines produced
by each abortive HIV-1-infected CD4™ T cell throughout its life time is denoted by 7. The
compartments w and ¢ experience natural mortality at rates d,,w and d.c, respectively. A
portion ¢ € (0, 1) of newly HIV-1-infected cells becomes abortive, whereas the remaining
portion, (1 — ¢) will be active.

2.2. Properties of solutions. Proposition 1. Solutions of system (2.I)-(2.3) are non-
negative and bounded.
Proof. We have

& |p=0= A >0,

U ly=0= (1 — q) [Brzv + Boxc] > 0 forall z,v,c >0,

W |w=o0= q [B12v + Bazc] >0 forall z,v,c > 0,

¢ |e=0=nedypw >0 forallw >0,

U |lp=o= dpy forally > 0.
This insures that ((t), y(t), w(t), c(t),v(t)) € RS forall £ > 0, when ((0), y(0), w(0),
¢(0),v(0)) € R%,. To show the boundedness of the all state variables, we define the

function T' (t) = z (t) + y (t) + w (t). Then, by finding the derivative of that function and
using the model’s equations, we get

C(t) =X —dpx (t) —dyy (t) — dpw () <X — 0 (x(t) +y(t) +w(t)) =X — ol (1),

where ¢ = min {d,, d,, d, } . Hence, we have 0 < I'(t) < L, if I'(0) < g forall ¢ > 0,
where Ly = 2. Tt follows that 0 < z(t), y(t), w(t) < L1 if 0 < (0) +y(0) +w(0) < L.
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Moreover, from Eq. (2:4) we have

&(t) = Nedww(t) — dec(t) < nedy Ly — dec(t).
This means that 0 < ¢(t) < L whenever 0 < ¢(0) < Ly for all ¢ > 0, where Ly =
%. Furthermore, Eq. yields

0(t) = Suy(t) — dyv(t) < 6y L1 — dyv(t).

This means that 0 < v(t) < Lz whenever 0 < v(0) < Lg forall ¢t > 0, where L3 = ‘s’éfl.
O
Proposition 1 states that the set

0 = {(z,y,w,c,v) € R‘;o cx(t)+y(t)+wt) <L,0<c(t) < Ly,0<w(t) < Ls},
is positively invariant for system (2.1)-(2.3).

2.3. Steady states and the basic reproduction number. In this subsection, we will com-
pute the potential steady states of system (2.1)-(2.3)) and identify the prerequisites for their
existence. Any steady state (x, y, w, ¢, v) satisfies the below system of algebraic equations:

0= A—dyx — [frzv + Baxc], (2.6)
0= (1—q) [rzv + Boxc] — dyy, 2.7)
0 = q[Brzv + Bazc] — dyw, (2.8)
0 = nedyw — dec, (2.9)
0 =dyy — dyv. (2.10)

It is evident that system (2.1)-(2.5)) has an infection-free steady state, 1Ty = (20,0, 0,0, 0),
where xog = di. This signifies a healthy situation in which there is no infection. Addi-

tionally, from éqs. (2.6)-(2.10) there is an infected steady state, IT; = (x1,y1, w1, 1, v1),
where

dydcd, o d,
xrp = = -, = —1,
' 61 (1 - q) 6vdc + 52qncdydv 3%O u 51} !
] .d, 1-—-
wy — 1y qnedyd, oy = A=) 0 (o 1),

C=qbudy "7 (=) ad. " dudyRo

where Ry is the model basic reproduction number (2.I)-(2.3), and it indicates how many
further CD4 T cells will become infected from the single infected cell when infections
started. Clearly, the existence of I1; is guaranteed whenever ¥y > 1, where Ry is defined
as:

Fo = Row + Roc,

where

Furthermore, it is clear that Ry, denotes the contribution of viral infection to %y, while
Ro. denotes the contribution of inflammatory cytokines.

2.4. Global stability. In this part, we will examine the global asymptotic stability of the
steady states of system (2.I)-(2.5), and this can be studied by constructing suitable Lya-
punov functions and applying LaSalle’s invariance principle. Define x(0) = 6 — 1 — In(6)
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and denote (z,y, w, c,v) = (x(t),y(t), w(t), c(t),v(t)). Define a Lyapunov function can-
didate ®; = ®,(x,y, w, c,v) and let Y’ be the largest invariant subset of
dd; )
Ti:{(;c,%w,c,v): ZO}, 1=0,1,2,3.
dt
We use the following relation between the arithmetical mean and geometrical mean

1 +772:...+77n > m7 for all 1,79, ..., 1, > 0. 2.11)

Theorem 1. If &y < 1, then the infection-free steady state, IIy(xg,0,0,0,0) of system

2.1)-23) is globally asymptotically stable.
Proof. By formulated a function ®¢(z, y, w, ¢, v) as:

51.) c
@ = Rozox <;> + brzo + Fazon Pao ﬁlxov,

ad, VT a Ua T g,

Calculating % along the solutions of model lHi as:

dd T 200y
S0 = (1 - ?0) (A — dy — Prav — Boxc) + ﬁ;ygy ((1 = q) (Brawv + Boe) — dyy)
B2 B2 Bio
+ 7 (q (Brzv + Pazxe) — dyw) + 7 (Nedypw — dee) + p) (0py — dyv)
T zo(1 — q)d, ToNe
= §RO (1 — ;O) ()\ — drl‘) — 521’06 — 511170’0 + 511:0 (61 OC(lvdy q) + 62 docn q> v
511'0(1 - q>6v B2$OTICQ)
+ Bazo ( + ¢
dydy d.
Substituting A = d,x(, we obtain
do Rody (x — x0)°
W0 _ Roel@ 2201 1 5,0 (g — 1) v + B (R~ 1)

Bizov + Bazoc] (Ro — 1) .

If Rg < 1 then % < 0 for all z,y,w,c,v > 0. Moreover, 422 = 0 when = =

and [B1xov + Bazoc] (Ro — 1) = 0. Solutions of system 1)1} converge to Y, [[14],
where x = z¢ and

Rody (x — x0)°
Y (x xO) Jr[
X

[Biwov + Baxoc] (R — 1) = 0. (2.12)
We have the cases:
Case (I) Ry = 1, then from Eq. (2.1)) we have
0=1=X—dyxo— f120v — foxoc = —(B1xov + Baxoc) = v(t) = ¢(t) = 0, for all ¢.

Egs. (2:4) and (Z.3) give
0=¢=ndyw = w(t)=0,forallt, (2.13)
0=v=4d,y = y(t) =0, forall ¢. (2.14)
This yields that T( = {IIo}
Case (IT) Ry < 1, and by using Eq. (2.12) we get v(t) = ¢(t) = 0 for all ¢. Egs. (2.13)
and (2.14) give w (t) = y (t) = 0 and then Y{, = {IIp}.
Applying LaSalle’s invariance principle [21], we find that I1j is globally asymptotically
stable. [J
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Theorem 2. If i}y > 1, then the infected steady state, IT; (1, y1, w1, ¢1,v1) is globally
asymptotically stable.
Proof. Construct a function ®4 (21, y1, w1, c1,v1) as:

1 = z1(Brv1+P201) [X () dﬂzl Ouy1x (;j ) 5 fletx < ) %CIX < C> * %le <:1)] .

Calculating % along the solutions of || as:

% = (Briv1 + facr) (1 - 7) (A = doa = Brzv — faxc)
n Brz1(Brvr + 5201)51} <1 _ ) ((1 —q) (Byzv + Boxc) — dyy)
dyd, y
+ 623;1(@21 thal, (1 - %) (¢ (Brzv + Pawe) — dyw)
N Ble(ﬁlZi+ﬁQCl) (1 Cc1> (Nedww — dyc)
N 51x1(ﬁ121+62c1) (1-2) Gy = duv). 2.15)

Summing terms of Eq. (2.15) and using the following conditions for IT;:
A =dyry + Brrrvr + Bazica,
dyyr = (1 — q) (Brz1v1 + Pazicr),
dywi = q(Br1z1v1 + Bazicr),
0y 6y (1=q) (Brziv1 + Paxicy)

U1 = d*U?/l = dydv )
o = e g, = NedBroav + forier)
d. d,
we obtain
dd,
= (B1v1 + Bacr) (1 - ?) (A —dzx) + (Brv1 + Bacr) (Brziv + Pozic)
x v1 + Dac
_ Bim(Bros + focr) (1 —q) b, (Brzv + Baxc) LS
dydy Y
x U1 + p2cC x U1 + p2cC w
+ B 1(51d1 B2 1)5vy1 _ Bo 1(51d1 B2 1)q77c (Brazv + Bazc) El
. Baw1(Brvr + ﬁ261)77cdww1 _ Bex1(Brv1 + Becr) Doy 2EL
dc dc C
— Bazic(Brvr + Bac1) + Bawici(Brvr + Bach)
x v1 + Dac v
— b l(ﬁldl b 1)5 yvfl — Brx1v(Brvr + Bacr) + Brxyvr (Brvr + Pacr).
Then, we get
&:(5v+ﬁc)<1——)(dx + Br1ziv1 + BoxyC d,x)
o 101 2C1 o 1 12101 2X101 —

VY1 TCyYi

2. 2

— Biz1vy —— — B1Baxivicy
rimy .2?16 y

+ Brx1v1(Brvr + Pacr)

v
*525@1@101% — Biwici—— o +52$161(51’01+5201)
v )
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— Bazic1(Brvr + 5201)% + Boxic1(Brvr + Bacr)
— Bz (Bror + 5201)% + frzivi(Brvr + Bacr). (2.16)

Simplifying Eq. (2:16)), we obtain

& — _dw (617)1 + 6261) (.’E — 1‘1) + ﬂlmlvl (1 — 7) + 251521‘17}101 (1 — ;1)

dt T
2 VY|

+ B3wyct (1 - *) Bixyv [ y - 515233111101 + 287710}
xcwl
+ 451 f2x1v101 — 51323011)101 — Baxict + 25213101
yu
—5152901111017 52 xic 17 —51 v 17 - 15230101017.
Yy1v Yy1v

Then, we obtain

% _ e (Brn +5z€1) (z — z1)° + B0 (3 m o wvyr Wl)

T Trcw wce
2 2 1 1 1
+6233101 (3———)

T T xTCcy1 TOWq wceq Yyvq
+ﬁlﬂ2xlvlcl 6-———— - — — = .
X X ri1c1y r1ow wic Yy1v

Hence, If ¥y > 1 then inequality (2.11)) gives:

m1+£ﬁ2+%%>:361) oy \ (o) _
3 - T 101y Y10
T TUY, n Y1

Then, — + > 3.
X 11y Yy1v

Similary we get
I Ircwq weq
= +—2>3
X Triclw wicC
X1 X1 TCY1 TOW1 wcey Yyvy
—t—t+——+—F—+"—=2>6
xT xT ric1y 1w wic Yy1v

Therefore, % < 0 for all z,y,w,c,v > 0. Moreover, <3+ = 0 when z (1) = 1,
y(t) = y1,w(t) = wy,e(t) = ¢; and v (t) = vy for all t. Therefore, all solutions
of model (2.1)-(2.5) converge to Y and this yields that Y7 = {II;}. Hence, LaSalle’s

invariance principle implies that IT; is globally asymptotically stable. [

3. DISTRIBUTED TIME DELAY MODEL

3.1. Analysis of the model. We extend model (Z.I)-(2.3)) by including four kinds of dis-
tributed time delays:

B () = A= dya () — Buz (8) 0 (8) — Bz (V) e (1), 3.1)
k1
J(t)=(1-q) / br(9)e ™ (1 — ) (Bro (t — @) + Bac (t — @) do — dyy (1)
(3.2)

k2
() = g / ba(@)e™ ™02 (t — @) (Brv (t — @) + Bac (t — 9)) dp — dyo (1), (33)



324 ABDELLATIF ET AL.

k3
é () = ned / bs(p)e ™% w (t — @) dip — dec (1) (3.4)

ka
o (t) = 4, / balp)e™ ™2y (t — @) dip — dyo (1) (3.5)
0

Here, m; > 0 are constants. The delay parameter ¢ is taken randomly from a probability
distribution function b;(¢) over the interval of time [0, k;], j = 1,2, 3,4, where k; is the
limit superior of this delay period. The factor b1 (p)e™"™1% is the probability that a healthy
CD4™T cell contacted by viruses at time ¢ — ¢ will survive ¢ time units and become
active HIV-1-infected at time ¢. bo(p)e™™2% is the probability that a healthy CD4 1T cell
contacted by viruses at time ¢ —  will survive  time units and become abortive infected
cell at time ¢. The expression b3 (@)e™""3% represents the likelihood that inactive cytokines
persist for a duration of ¢ time units before transitionary into their active form. The term
by(p)e~™4¥ demonstrates the probability that new immature HIV-1 particles at time ¢ — ¢
will survive for ¢ time units and become mature at time ¢.

The function b; (), j = 1,2, 3, 4, satisfies b;(¢) > 0,

2 k;
/ bj(¢)dp =1 and / bj(w)e_e“’dw < 00, where /> 0.
0 0

Let us denote

7} (90) = bj(go)eimjwv 73 = A 7; (90) dQO, j = ]-7 27 334
Therefore, 0 < 7; < 1,5 = 1, 2,3, 4. The initial conditions of system (3.1)-(3.5) are given
by:
z(0) = w1(0), y(0)=w20), w(d) =ws(0), c(0)=rw4a0), v(0)=ws5(0),
@) >0, 0e[-£0], i=1,2..5. (3.6)
where { = max {kq, ko, ks, ks }, and @;(0) € C([—€,0],R>(), the Banach space of

continuous functions mapping the interval [—&, 0] into R>¢ is denoted by C. With norm
|lwil| = sup |wi(0)| for w; € C. Thus, when the fundamental theory of functional
<6<0

differential equations is utilized, system (3.1)-(3.3) with initial conditions (3.6) exhibits a
unique solution [14], [22].

3.2. Properties of solutions. Proposition 2. Solutions of system (3.1)-(3-3) with initial
conditions (3.6) are non-negative and ultimately bounded.

Proof. From Eq. (3.1), we have & |,—o= A > 0, then z(t) > 0 for all ¢ > 0. Moreover,
fort € [0, €], we have

t ki
y(t) = @w2(0)e” " + (1 —q) / e~ W= [ TH(@)x (s — @) (Brv(se — @) + Bac(se — @) dpdse > 0,
0 0
t ko 5
wlt) =@ g [ e [T (0 ) (o (e = ) + B~ ) dpdoe 2 0,
0 0
t ks
c(t) = wa(0)e %" + ncdu}/ e~ de(t=2) / Ts(p)w (32 — @) dpds > 0,
0 0

t k4 ~
v(t) = w5 (0)e " + 51;/ e~ dv(t=) / Ta(p)y (3¢ — ) depdse > 0.
0 0
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Thus, through a recursive argument using, we obtain that x(t), y(t), w(t), ¢(t), and v(¢)

remain non-negative for all ¢ > 0. Next, we show the ultimate boundedness of the model’s

solutions. The non-negativity of the model’s solution implies that tlim supz(t) < dA.
—00 @

Further, we let
k1

. 1
Qi (t) = ; Ti(p)z(t — ¢)dp + li_qy(t).
Then, we get
) ki d,
Q1 (1) = ; Ti(p) (A = do(t — ¢)) dip — 7— qy(t)
ki d,
=ATi—ds | Ti(@)a(t = )do — ——y(t) <A = prf,

0
where p; = min{d,,d,}. Hence, tlim sup Q4 (1) < ﬁl, where L, = p%. Therefore, we
—00
are able to get that tlim supy(t) < L. Moreover, we let
— 00

ko

o) = [ twnuf@wwéww.
Then, we get
ky
() = [ Tal) (A= dualt = ) do = (1)

ko ~ dw
=T —dy T2(p)x(t — p)dp — ?w <A = pafly,
0
where py = min{d,, d,, }. Hence, tlim sup Qa(t) < f)g, where Lo = p%. Therefore, we
—00
are able to get that tlim sup w(t) < .ig. From Eq. (3.4), we have
—00

k3

é(t) = nedy Ta(@)w (t — ) dp — doc(t) < nedwTzLy — dec(t) < nedy Ly — dec(t),
0

fal fal cdwi/ . .
then tli}m supc(t) < L3, where L3 = n 7 2 Furthermore, Eq. (3.5) implies
k4 - ) N N
v (t) = 51} ﬁ(@)y (t - 90) d‘/) - dvv(t) S 5117?1[’1 - dvv(t) S 6UL1 - dvv<t)>
0
. . 6L
hence, lim supv(t) < Ly, where Ly = Lo
t—o0 dv

Proposition 2 states that the set
6 = {(@,y.w,e,0) € Ly : o], Iyl < L, Jwll < Loy llell < L, o]l < La}
is positively invariant for system (3.1)-(3.5).

3.3. Steady states and the basic reproduction number. This subsection finds the steady
states of system (3.1)-(3-3) and identifies the prerequisites for their existence. Any steady
state satisfies the following:

0=X—dx — Brav — Baxc, (3.7
0=(1-¢q)T1 (Brizv + Bawe) — dyy, (3.8)
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0= q72 (Brzv + Boxc) — dyw, (3.9)
0 = nedy, Tsw — dec, (3.10)
0= 51)’721y — dyv. (3.11)
It is obvious that system has no infection with free steady state, I, = (%0,0,0,0,0),
where o = . This case is descrlbes the healthy situation state, where the infection is

absent. Addltlonally’ from Eqs. (3.7)-(3-11) system (3.I)-(3.3) has an infected steady state,
11y = (&1, 41, W1, é1,01), where

b dedyd, _do o
B1 (1 —q) 0udcTiTa + BaqnedydsTaTs Ry’ 6uTa

By = qdydyTo by & = qnedydy T2 T3 by, By = (1—-4q) Niﬂ'ﬂl (%O B 1)_
(1—1¢q)0udyTiTs (1—-¢q)dudTiTa dyd,Ro

Clearly, the existence of I, is guaranteed whenever §R0 > 1, where §fﬁo is the basic repro-
duction number for system (3.I)-(3.3) given as:

§]Efo = 32301; + 3230&
where
- B1(1—=q)6u20T1Ta
Ov dvdy )
foo BaqnetoT2Ts
Oc — di

The parameters R have the same biological meanings of the parameters Ry that explained
in Section 2.

3.4. Global stability. This subsection focuses on analyzing the global asymptotic stability
of the steady states of system (3.1)-(3.5). Denote (z (t — @),y (t — @) ,w (t — @) ,c(t — ),
(t—ﬁp)) (xapayapvwapvcapavsa)
Theorem 3. The infection-free steady state of system Ho %0,0,0,0,0) will
be globally asymptotically stable, when Ry < 1.
Proof. Define a function ®5(z, y, w, ¢, v) as:

%oxox( >+51$05 w74 +52$077c75w /3296‘00 ﬁlﬂ?ov
Zg

dd, Y d de d,

+5a—q5mﬁ/‘7 (/ (Buz(0)0(0) + Boz(0)c(0)) dbdis
M / T /_ (Buo(0)0(8) + Boz(0)c(6)) dddip

e - ! P00, [ - ¢
+ 5—” " T / w(®)dod + P10 / Tale) / y(0)dody.
dc 0 t—p d’U 0 t—p

Clearly, ®5(z,y,w,c,v) > 0 for all z,y,w,c,v > 0, and 5 = 0 at IIy. Calculating

ddy
at as:

dj;z Ro (1 — ;) (A —dpx — Brzv — Bazc)
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U 5UT kr |
% <(1 ~9) 0 Ti(p) (Bizpvy + Pazpc,) dp — dyy>
- 6233;71]3 <q 0 Ta(p) (Brzpvp + Pazpcy) dip — dww>

~ k4
T -
,6; 0 <5v Ta(p)y,de — dvv>
v 0
+ B1(1—q)du2oTiTa B1(1—q) 0,207
dydy dydy

M BoqneioToTs

X 7—1(30) (ﬂl*/ttpvtp + BQ:E@C@) d@ + d
0 c

0Ty ™ 5
- 52%5703 /0 Tal9) (Brarpvg + Bapey) dp +

N ks
+ 5(250 (ncdw ; T3(p)wydp — dCC> +

(Brav + Boxc) —

(Brzv + Bazc)

52500770dw7§
7{1 w

Z cdw ks T (SvT T 67) ka
- 523777/ Ta(p)wede + A ; Ty — Bldo / Ta()ypde. (3.12)
c 0 v v 0

Summing terms of Eq. (3.12), we obtain

dd . T . .
7; =Ry <1 — xx()) ()\ — dxil,') + ﬂli'ogf(ﬂ] — 51.’13'01} -+ ﬁzi’o%oc — 5252'06.

Substituting A = d, &g, we obtain

A d.Ro (x — #)° (e e
dsz—wfio)+ﬂzxo (?Ro—l)c—i-ﬁlxo (5}30_1)1;
deRo (x — #0)° A (e
- *M + [Battoc + frion] (Ro — 1)

It 3% < 1 then % < 0 for all z,y,w,c,v > 0. Moreover, 422 = 0 when = = ¢, and

2ZoC + D1ZoV AO— = 0. e model solutions (3.1)-(3.5) converge to , Where
[Baioc + frivgv] (Ro — 1) = 0. The model sol oe 10 T, , wh

x (t) = Zo, and
[Baiioc + Priov] (9%0 - 1) —0. (3.13)
We have the two cases:
Case (I) 8?%0 = 1, then from the Eq. we have
0=10=A—dyzo— Lr120v — faxoc = —(L120v + P2zoc) => v(t) = ¢(t) = 0, for all ¢.
ks

Eqs. (3:4) and (3.3) derive

0=2¢(t) =nedy T3(p)wedp = w (t) = 0, for all ¢, (3.14)
0
k4 -
0=19(t) =9, Ti(@)y,dp =y (t) =0, forall t. (3.15)
0

This yields that T, = {ﬁo }

Case (II) Ry < 1, then from Eq. (3.13) we get v(t) = ¢(t) = 0, for all £. Egs. (3.14)
and (3.15) give w (t) = y (t) = 0, for all ¢, and then Y|, = {IIo}.

Applying LaSalle’s invariance principle, we will obtain that I is globally asymptoti-
cally stable. [
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Theorem 4. If %%y > 1, then the infected steady state of system || -, I (1,91, W1, ¢1,01)
is globally asymptotically stable.
Proof. Construct a function ®3(Z1, 91, W1, ¢1,01) as:

O3 = 21 (8101 + B2c1) [X (;) F10,7a ] (y)

dyd, U1
+2an ( ) v () - o (3]
1 d
13:1111/ (o X( ;g)f; )d&d(p
515296111161/ e / ( o )d@dap
B1B22101¢1
4+ — 7 / /W ( 710, )dﬁdgp
35“6%/ Ta(p ( i)A >d9d<p
BoZ1w1ned w(5101+5201) -
+ d. /0 Ts(p ( >d9dgﬁ

B119100(B101 + B2c1) [ ¢ <(9)>
+ . /O Taly /W dbdp.

Calculating <5 d‘I’S as:

% = (101 + Baé1) (1 - ;) (A = dyx — Brav — Boxc) + 61@1(,61@21;2346261)61}7;
N ki

X (1 - Z/l) ((1 —q) ; Ti(¢) (Bragv, + Bawpcy) dp — dyy>

“ ~ ~ N k2
i B0t Bt )neTs (1 - Z) (q Ta(0) (Brgv, + Bz pc,) dip — d‘”“’)

c 0

. . . . k3

n 52901(511;1 + B2¢1) (1 _ Cl) (ncdw 7~§(<p)w¥,dg0 — dcc>
c ¢ 0

N Bwﬁl(ﬁﬂ?l + B2¢1)

o ka
(1 - > o | Ta(@)ypde — dyv
v 0
ﬁlxl / File < ﬂj _ xquj@ T1n (xwvw))d@
101 101 xv
n 515293111101 i Fi(e) < € Tele 4y (I@cga)) d
Ti 0 I 161 16 xc @
515236111101/ T5(0) < v

B2i162 ~ | Tply ! ZTyCy d
T /0 fale) (a%lél e+ (75 )) ?
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52x1w1775 Cgﬁlm + Ba2é1) / Tale ( w ( )) do
c w1 ’LU1 w
+mMMQWWHﬂw1/ ﬁwwgf+m<w>)w. (3.16)
dy 0 % y

Summing the terms of Eq. (3.16), we get
de A . :
73 = (511}1 + 5201) (1 - {E> ()\ d Jj)

dt
n B1210, (1 — qc)l (51111 + B2¢1)Ta / Tile

_ B1216, (1 — q) (B101 + B2é1)Ta / ,7-1 ) (Brz v, + o ycy) ‘Zldw

(Brz vy + Pazpcy,) dp

dyd
n 5150151}(511;1 + ﬂzél)ﬁyl n Bzﬂflﬁcqwl;)l + B261)T5
X Okz Ta(p) (Brzpv, + Bazpey) dp — 52&1176[1(61? + 581)Ts
[T Br + Burge,) Dap  AELlB T BT
- BB A B8 [ 55 ) 88 1y 4 gy i + )

dy + 12101 (8101 + B2ér)

%551@%/ 7- U<pd +51$1U1/ ﬂ(¢)1n<xw”w)d(p
0 v

_ Pr1Zady (51111-1-/5261/ Tale ysa

$1 1
5152%0161/ 7- de Jr51/3’25311)101/ ﬁ(go)ln (chw)d@
xC
5152%11101/ 'T Lp pd Jr5152$10101/ Tz ln (‘Tapvap)dgo
101 T
%jlé%/ 7— Lo sad _'_5% 167 7~—( )ln(chw)d
xlcl T2 0 2\¥ ze L
Bo1 W1 Medy (B101 + B2é1) [ 4 Wy,
¥ L | Tt (52)
n 51331915@(51?11 + B2¢1) / Ti(o)In (y;) do.
v 0

Using the following conditions for I
A =dy®1 + 12101 + BaZily,
dyfr = (1 = q) Ty (Br@101 + B2d1éy),

dwid1 = qT2 (12101 + P22181) ,
Tz, . meqTaT3 (B12191 + Bade6r)
c1 = dwwl = 5
d. dec
o 0Ta . 6y (1=q) ThiTa (Br#101 + Badié)
U1 = Y1 = ,

d, dyd,
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330
we obtain

dPs ~ ~ T

T (B101 + Batr) | 1 — ; (dei + B128101 + Pod1éy — dyp)

Pron /kl’r( ) Burvo + Bavpes) do — 2 g2ty [ Falo)leve g
v _n YLy

7.10 1¥ 1TpVp 2¢¢S07.11110 1 yE 101
. k1
D o ~ To,C

—71515236101 Ti(p )yl - wd@+ﬁlxlvl(5lvl + B2¢1)
1 0 yxic

ey /sz( ) (Brvoto + Bomonco) dip — LBy Biind /sz( 1Ll
7~220 2\ 1Lply 2@@@7512110 2 Wiy
R ko
é1 o . ~ W1 T,C

- %5356101 ; T2 () uta:f —F 2 dp+ Bod161 (101 + Beér)

_|_

_ By ﬁ;-? 521‘101/ Ta(e 1:501 do + Bat161(B101 + Bac1)

_|_
_ (B101 + Bty /Bll'lvl/ Tilo yw 1d<,0+/31331111(51111 + Bot)
324,02 R
1351711/ Tilp Usad + 19511)1/ ﬂ(@)ln(xwvw)dgo
0 v

515233171101 / Tile de n 51»32@1@1@1 /”1 i (o) In (v%%) dop

xc

5152%7)161/ ,7- <,o Lpd 51523010101/ 7. (%o%;)d(p

v

5255161 go ga 62931 1 = pCo
/ Ta(p d + o/ ’Tg((p)lﬂ(—xc )dcp

T4 Y

.\ 52$101(@101 + 5201 /0 Talp)In (%) do + B12191 (8101 + Paé1) /0 ! Ta() In (y%"

Ts

Therefore, by collecting terms we get

a2,

dt

dy(Bris + Bodr) ( — & o ) L@
=- (Brin ngl)( )° + B12107 + 2B1Bed10161 + B33165 — a1 07 =
Y . T
—251523610161* — BB fxlvf/ Tile iy =L dy
x yl‘l’l}l
1 A oA ko yl gocgo ~
- 7ﬂ1ﬁ2x1v101 Ti(p)=—=22dyp + B7a107 + B1B2d10161
0 Y161
w TV c
—*51&%1?}101/ Ta(p %d - *»3233101/ Ta(p wd@‘*‘ﬁleﬁ
101

+ B1P2810161 — xlcl/ Ts(p wyCldQO ﬁ1ﬁ2x1v161/ Tsle wwqd%@*‘ﬁle

21% 2 T101¢C
+ B1Bod10161 — b 1/ Talp y;vldgo 5152 e 1/ Taly y“’ 1d<p+,31331v1
1

)

. BiEgod = Ty 5152331U101 = TyCy
+ Bif2dr01¢1 + T /0 Ti(p) In (7) de + T /0 Ti(p) In (?) dp
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U
515233111101 = T Bzfvl & oC
—_— Ta(p) In [ =22 'T ln P ) dy
Tv

215101/ Tolp ln )d +5152551@101/ Tale hl(w)d@

1501171/ Ta(o)In (ng) do+ 51521710101/ e 1n<y>d<p

Then, rearranging the terms we obtain

dds do(Brin + Boéy) (z — 31)° o 1 /’“1 N
btk 6ot L Ti(p) 2222
7 - + B1B2210161 : T 1(¢) 16 @
L [P gt L [P g8t L[N ey
Tz 2P wri1v;1 73 0 3\ wic 7 71 0 e zhv v

+% /Klﬁ(cp)ln (;—C“’) d@+i/527~5(9@)ln (%) de
o ] o )i [ o () o

T 1 [k Y1T LV 1 ~ Yo U1
37— — T Pdo — — ’T £ —d
+lelv1[ 5 [ Tl = [ T ket
1 [ ) Y
_ In [ 2222 dy 7/ 1 ) d
+T1/0 Tl(w)n( m) + Talyp n(y) so}
z 1 ke W1THCyp 1 [k We,C1
_ = PPy — = 2 d
+52x1 l3 T 7-2/ 7—2((10) wi’lél P 75 0 7?)’( )wlc g

1[5 Lol L/H?“ Ye
s [ o (T2 ) ot - [T Tt (1) .

Moreover, using the following equalities:

i (725 =t (228 ) o (2] o (222,
xc YT1C1 x CY1T1
i (20) —m (e ) g (201,
wWIr1V1 VW1
() =i () o ()
w wicC wceq
() () +m(
1v
In (Lsﬂ’w) =1In (an) + In (ylgfwf)w) +1In (gvl) )
v x Yyrivy Yy1v
i (22 < (L2 ) o (22,
Y y1v Yyu1
In (w) =In <£1> +In (%) + In <ujé1> ,
xc x wWT1Cl wic
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we get
d®s  da(Br0y + Faby) (z — 21)* 2B1Badrbnéy /Rl Ti(p) (551 —1-In (i‘l)> dy
dt x T 0 x x

51ﬁ2$1v161 / Tile (ylxapctp - <?Q19AU¢AC¢>) do
yrici yricy
ka N N
_ 5152’;3_111101 / T2 () (wlff@})w —1—-In (wlf?sa}@)) dp
2 0 wIr1v1 wIri1v1
AoA A ks ~ o
_ B1Bedr 016y / Talo) (€8 g g (2ef1)) g
7?3 0 wic wicC

PP Ky . N
_ P1Pe@i1ty / T(e) (yiam - (y:;ﬂh)) dy
T4 0 v v

T O’E(w)x1lnx di
—;/ﬁfcw% Ti(e >(W_1_1D(W)>dw
1 0
24 52 .
51?%/ Ta(p) <
2A 22 ~ R
] e (o ()
5%5?1@%/ = (
T —1—
T 0 2(¢)

24 22 - p P
_ GG / Ta () (wfcl “1-In (“’j”cl>) de. (3.17)
T3 0 wice wice
Finally Eq. (3.17) can be rewritten as:

dd dy(B191 + Bat N X X ;
7; = Gt thel) @ d0) &1 (Bron + Baé1)” x <xl>
X X
_ Dibatiiney /kl Tile)x (W“"f*") dp - BI0G /k2 Ta(e)x (mliﬂ“"f}“") dip
Ti 0 Y161 T2 0 w10y

BrBairtnér [F* - w,E1 ﬁ1ﬂ2l‘1v161 YpU1
—7/ %(w)x(wlc dep — / Ta(e P dep

822,12 24 A2 i,
1”%”)1/ Tilp <y1$*"”“")dso Bmvl 0 T(@)x (y;m)dw

Y2101 Ta 1
BQxlcl/ ~ W1 T,HCy ﬁ%i‘léf ks Wy Cy
o s Ta(p)x e, dyp 7 Ta(e)x Brc dp.

Hence, if ?RO > 1 then djﬁ < 0 for all T y,w c,v > 0. Moreover, < dt =0whenz = 1,
and x (.) = 0. The model solutions (3.1)-(3.5) converge to Y% , where x (¢) = & and

Y1TpCy _ wlmwv@ _ wwcl _ ywvl _ ylxwv@ _ wlchw
yl‘lél wi‘lﬁl wlc Qﬂ} yl‘l’ﬁl wi‘lél

=1, forall ¢t €[0,¢].
(3.18)
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If = (t) = 21, then from Eq. (3.18), we obtain y (t) = ¢1, w (t) = w1, ¢(t) = ¢, and
v (t) = 01, for all ¢. This produces that Y5 = {ﬂl}, and by using LaSalle’s invariance

principle we get that I, is globally asymptotically stable. [

4. NUMERICAL SIMULATIONS

In this section, we perform the numerical simulations for systems (2.1)-(2.5) and (3.1))-
to confirm the theoretical findings. Besides, the effect of time delays on the model
dynamics (3.1)-(3.5) will be studied. To numerically solve systems (2.1)-(2.3) and (3.1)-

, we use parameter values listed in Table-1. The analytical conclusions obtained in
Sections 2 and 3 will also be illustrated by changing a few parameter values that signif-
icantly affect the threshold parameters, and consequently, the stability behavior of their
associated steady states

Parameter Value Source
A 10 [241, 1371
dy 0.01 (21, 131]
q 0.95 81, [144]
dy 0.5  [32], 138, [51]
dy 2.4 1370, 1511, 5]
Ao 0.75 (1531, 16]
de 6.6 [44], 1481, [15]
Ov 38 (131, [16]
e 15 [44]
m 0.1 [46l, 53]
Mo, M3 0.1 Assumed
My 0.1 [53]]

TABLE 1. The values of parameters of model (2.1)-(2.3)) and (3.1)-(3.5).

4.1. Numerical simulations for model (2.1)-(2.5). Here, numerical simulation are per-
formed to demonstrate the outcomes of Theorems 1 and 2.

4.1.1. Stability of the steady states. We will illustrate the analytic results given in Section
2. The following distinct initial values will be used:

L1: (2(0),y(0),w(0),c(0),v(0)) = (600,9,5,20,80),

L.2: (2(0),y(0),w(0), c(0),v(0)) = (400, 6, 3, 15,50) ,

L.3: (z(0), y(0),w(0), ¢(0),v(0)) = (100, 2, 2, 5, 20).

Under initials I.1-1.3, we choose different parameter values of 5, and (5, which give
the following scenarios:

Stability of ITj: 5; = 0.00001 and B2 = 0.0001. These values give g = 0.23174 < 1
with the fact that the steady state I, = (1000, 0,0, 0,0) is globally asymptotically stable
as presented in Figure[I] The results of the numerical solutions that illustrated in Figure I]
are consistent with the study’s findings in Theorem 1. This implies the eventual eradication
of HIV-1 particles.

Stability of IT1;: 5, = 0.0001 and B2 = 0.001. These choices give Ry = 2.31742 > 1.
Further, they ensure the existence of the infected steady state II; =( 431.514, 0.5684,
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10 .
—11 —1
---12 ---12
13]1 - 139
¥
200§
0 | | | | | | :
0 100 200 300 400 500 600 700 0 5 10 15 20 25 30
t t
(a)Healthy CD4 7T cells (b)Active HIV-1-infected CD4 T cells
5 . . . . 20 . . . . .
—11 —11
---12 ---12
4 1.3 e 13 |
10 15 20 25 30 10 15 20 25 30
t t
(c)Abortive HIV-1-infected CD41 T cells (d)Inflammatory cytokines
120 . . . . .
—11
| ---12]
80
? 60 1,
40+
20
0
15 20 25 30

(e)Free HIV-1 particles

FIGURE 1. Illustration of the solution trajectories of system (2.I)-
(233) corresponding to initial conditions I.1, 1.2, and 1.3. In each
case, the system evolves toward the infection-free steady state IIy =
(1000, 0,0, 0,0), confirming global stability when Ry < 1.

7.283, 12.2741, 9.00104) . It can be seen that solutions starting from different states even-
tually tend to II;, as shown in Figure |Zl As a result, we summarize a correspondence
between this finding and the conclusions of Theorem 2, indicating that the infection will
spread and become endemic.
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FIGURE 2. Illustration of the solution trajectories of system (2.I)-
(233) corresponding to initial conditions 1.1, 1.2, and L3. In each

case, the system evolves toward

the infected steady state II; =

(431.514,0.5684, 7.283,12.2741,9.00104), confirming global stability

when Ry > 1.

4.2. Numerical simulations for model (3.1)-(3.5). In this section, we will run a few nu-
merical simulations for model (3.I)-(3.3) using the following specific form for the proba-

bility distribution functions:
bi(y) =<

(90790]')7
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where ¢ (-) is the Dirac delta function and ¢; € [0, k;], j = 1,2, 3,4 are constants. Let k;
tend to oo, we obtain

/000 bi(p)dp =1, T, = /Oooq (p—@j)e Mi%dp=e"™%  §=12.,4.

Therefore, model (3-1)-(3-3)) becomes :
T =X—dzx—z[f1v+ P,
y=(10—-q) e ™ ay, [Brvg, + Bace,] — dyy,
W= qe”"P2x,, [f1Us, + P2ty | — dww, 4.1)
¢ = Nedye” " w,, — dec,
0 = 0ye” TPy, — dvv.

For the new model 4.1} the threshold parameter is

: X [B1 (1= ) Budee™mertmaen) 1 Goqn dyd e~ (maesmags)]

Mogp = dyd,ded,
Delay parameter Steady state Ro
0 IT; = (431.514,0.5684,7.283,12.2741,9.00104) 2.31742
R @.1p
1 113 = (527.052,0.42794, 5.42059, 8.36037,6.13094) 1.89735
.
4.20228 Ho = (1000, 0,0,0,0) 1
. . 1))
20 Hodﬂb = (1000, 0,0,0,0) 0.076
TABLE 2. Impact of the delay parameter ¢ on the basic reproduction
number Rg__ .

4.2.1. Time delays’ effect on HIV-1 dynamics. In this section, the delay parameters ;,
j =1,2,3,4 will be varied, and fix the 8; = 0.0001 and B2 = 0.001 parameters. Alter-
natively, the value of other parameters is listed in the Table-1. For simplicity, let us take

1 = Y2 = p3 = @4 = . The basic reproduction number Ro o becomes
o A (B = @) dudeeMHTIP 4 Bogued,dye(m4ma))
‘e dyd,d,.d, '

We notice that §R0 dependlng on ¢, and it will be a decreasing function of ¢. Therefore,
the stability of the steady states will renew if ¢ changed. The stability of the infection-free
steady state Ho is important for this studying. Let ¢, is the solution of Ro =1as:

R — A (51 (1-4q) Syde (mitma)eer 4 B2qncdvdyei(m2+m3)%r)
‘@ — dydydedy

By finding the solution of Equation {.2)), we obtain ¢., =4.20228. Then, it is easily to

notice that 3%0 < 1if ¢>4.20228. This ensures that HO is globally asymptotically

=1. (4.2

stable and the virus will be eradicated from the body. Now, we study the impact of delay
parameter ¢ on the system solutions (&.1I)) with the following initial state:
L4:(z(0),y(0), w(0),c(0),v(0)) = (600,4, 30,50, 80), where 0 € [—,0].
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The effect of ¢ on the system’s solutions is illustrated in Figure |3| and Table-2. We
found that while the levels of other compartments decrease, the number of healthy CD4TT
cells increases as ¢ increases. Time delays play a crucial role in the progression of HIV-1
and provide valuable insights for managing the viral infection. Adequate time lags can
slow down the development of HIV-1, help keep it under control, and potentially lead to its
extinction. This suggests a promising strategy for developing new HIV-1 treatments aimed
at extending these delay periods.

800 Fd s (p=4.2023 | | 351
3
- _ 25|
% =
1.5
200 1
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0 | | | | | | P B A S S R S
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
t t
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E T
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(e)Free HIV-1 particles

FIGURE 3. Impact of the delay parameter  on the HIV-1 dynamics

model @T).

4.3. Sensitivity analysis. In this subsection, we aim to determine the parameter that has
the most impact on ¥, by using direct differentiation. The normalized forward sensitivity



338 ABDELLATIF ET AL.

index for Ry with respect to a parameter « is given by:

- o 8%0
20 = R Ba (4.3)

We determine the sensitivity indices based on the value of parameters listed in Table-1.

4.3.1. Sensitivity analysis for model (2.1)-(2.3). Here, we consider the values 3; = 0.0001
and f2 = 0.001 and utilize Eq. with respect to . The results are presented in Table-
3.

As shown in Table-3 and Figure ] increasing the parameters with positive indices, A,
51, B2, 1. and 0, results in higher Ry, thereby intensifying the HIV-1 disease endemic.
On the other hand, increasing the remaining parameters decreases Ry. Notably, A, 52 and
7. are the most significant parameters, while d,, d. and ¢ have the least impact on the
threshold parameter.

Parameters a Value of =, Parameters a Value of =,
A 1 de —0.931677
dy -1 Oy 0.06832298
051 0.068322981 Ne 0.93167701
B 0.931677518 dy —0.06832298

q —0.366459 dy —0.0683229
TABLE 3. Sensitivity index of i of model (2.1)-(2.5).

Forward sensitivity indices

Parameters

FIGURE 4. Sensitivity analysis of Ry of model (2.1)-(2.5).

4.3.2. Sensitivity analysis for model . We applied Eq. with respect to Ro
with the following parameter: 8; = 0.0001, 55 = 0.001, m; = 0.1, my = 0.1, mg = 0.1,
my = 0.1 and ¢ = 1. Figure [5| and Table4 are present the sensitivity index values for
Ry __ . From Table-4 and Figure |5| we notice that increasing the parameters with positive

indices will increase §Eo . The most significant parameters are A\, 51 and 4.
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T T T T T T
AN de B P oq de 0y me dy dy mp my my My @

Forward sensitivity indices

Parameters
FIGURE 5. Sensitivity analysis of R system (4.1).

5. CONCLUSIONS

This study developed two mathematical models of HIV-1 infection to explore the influ-
ence of inflammatory cytokines and abortively infected CD4™ T cells. The second model
extends the first by incorporating four types of distributed time delays to better reflect bio-
logical processes. We first established key properties of the models, including nonnegativ-
ity, boundedness, and well-posedness of solutions. Two equilibrium states were identified:
the infection-free state and the infected (endemic) state. The basic reproduction number
(Jp) was derived and shown to govern the existence and global stability of these equilibria.
Global asymptotic stability of both steady states was proven using Lyapunov functionals
and LaSalle’s invariance principle. Numerical simulations were performed to validate the
analytical findings, showing strong agreement with the theoretical predictions. Addition-
ally, sensitivity analysis highlighted the impact of various parameters on . Notably, the
results suggest that increasing the time delays can lower R and potentially suppress HIV-1
replication.

Parameters « Value of =, Parameters « Value of =,
A 1 Ne 0.931677
dy -1 dy —0.068322
51 0.068322981 dy —0.068322
Ba 0.931677518 my —0.0068322
q —0.36645 mo —0.0931677
d. —0.931677 ms —0.0931677
Oy 0.068322 my —0.0006832298
%) —0.200

.. . . - A
TABLE 4. Sensitivity index of R for system 1|
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