Annals of Communications in Mathematics

Volume 8, Number 2 (2025), 303-316 DOI: 10.62072/acm.2025.080213

ISSN: 2582-0818

https://www.technoskypub.com/journal/acm/

SOME RESULTS ON BICOMPLEX NUMBERS AND BICOMPLEX FUNCTIONS

MD. NASIRUZZAMAN*, MOHAMMAD AYMAN-MURSALEEN AND NADEEM RAO

ABSTRACT. In this paper, we obtain some results on infinite products in bi-complex space, and the exact order of simultaneous results with quantitative estimate for the bi-complex gamma functions and bi-complex Beta functions. Finally using the specific results of complex gamma operator and complex beta operator we introduce the bi-complex gamma functions and bi-complex beta operators and obtain some results.

1. Introduction

There exist several ways to generalize complex numbers to higher dimensions. The most well-known extension is given by the quaternions invented by Hamilton [4] which are mainly used to represent rotations in three-dimensional space. However, quaternions are not commutative in multiplication. Another extension was found at the end of the 19^{th} century by Corrado Segre who described special multidimensional algebras and he named their elements n-complex numbers [14]. These type of numbers are now commonly named multicomplex numbers which were studied in details by Price [12] and Fleury [3]. In the recent years there are many investigation on bi-complex modules are given by [9, 10, 11] and references their in. bi-complex number, just like the quaternion, is a generalization of complex number to four real dimensions introduced by Segre [14]. These two number systems differ because:

(i) Quaternions which form a division algebra, while bi-complex numbers do not, and (ii) bi-complex numbers are commutative, whereas quaternions are not.

For such reasons, the bi-complex number system has been shown to be more attractive (compared to the quaternions).

$$f(z_0+hi_1+hi_2):=f(z_0)+h(i_1+i_2)f'(z_0)+h^2(i_1+i_2)^2\frac{f''(z_0)}{2!}+\cdots+h^n(i_1+i_2)^n\frac{f^{(n)}(z_0)}{n!}+O(h^{(n+1)}).$$

 $^{2020\ \}textit{Mathematics Subject Classification.} \quad 16D10, 30G35, 46C05, 46C50.$

Key words and phrases. Bi-complex number; bi-complex holomorphic function; infinite product on bi-complex space; bi-complex Euler's gamma function; bi-complex Euler's beta operator.

Received: May 28, 2025. Accepted: June 21, 2025. Published: June 30, 2025.

Copyright © 2025 by the Author(s). Licensee Techno Sky Publications. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

^{*}Corresponding author.

We describe how to define elementary functions such as algebra of series of a function on bi-complex space and Taylor series representation in case of holomorphic functions.

The aim of the present article is to obtain the results on infinite products of series of a function on bi-complex space of holomorphic functions; and obtain some results for bi-complex gamma functions and bi-complex beta operators in same space \mathbb{C}^2 . In case of Gamma functions we define $\Gamma(z), z \in \mathbb{C}^2$, in terms of Eulerian integral as

$$\Gamma(z) = \int_0^\infty e^{-x} x^{z-1} dz, \ Re(z) > 0.$$

The bi-complex Euler's Beta function $\mathcal{B}(\mu,\nu)$ is defined as

$$\mathcal{B}(\mu,\nu) = \int_0^1 x^{\mu-1} (1-x)^{\nu-1} dx \, \mu, \nu \in \mathbb{C}^2, Re(\mu), Re(\nu) > 0,$$

so for all $n \in \mathbb{N}$ and $z \in \mathbb{C}^2$ satisfying 0 < Re(z) < 1, and the bi-complex Beta operator is defined as

$$C_n(f,z) = \frac{1}{\mathcal{B}(nz, n(1-z))} \int_0^1 x^{nz-1} (1-x)^{n(1-z)-1} f(x) \, dx.$$

2. PRELIMINARIES

2.1. **Bi-complex numbers.** We start with the following basic definition of bi-complex numbers.

Definition 2.1 (cf. [2], [1]). The set of the bi-complex numbers is defined as

$$\mathbb{C}^2 := \{ z_1 + z_2 i_2 \mid z_1, z_2 \in \mathbb{C}^1(i_1) \}$$
 (2.1)

where i_1, i_2 are the imaginary units and governed by the rules

$$i_1^2 = i_2^2 = -1, i_1 i_2 = i_2 i_1 = j (2.2)$$

and so,

$$j^2 = 1, i_1 j = j i_1 = -i_2, i_2 j = j i_2 = -i_1$$
 (2.3)

Note that we define

$$\mathbb{C}^{1}(i_{k}) := \{ x + yi_{k} \mid i_{k}^{2} = -1 \text{ and } x, y \in \mathbb{R} \text{ for } k = 1, 2 \}$$
 (2.4)

where \mathbb{C}^1 is the set of complex numbers with the imaginary units i_k for k=1,2. Thus the bi-complex numbers are complex numbers with complex coefficients, which explain the name of bi-complex, and there is a deep similarities in properties of complex and bi-complex numbers.

With the addition and the multiplication of two bi-complex numbers defined in the obvious way, the set \mathbb{C}^2 makes up a commutative ring. In fact they are the particular case of the so called multicomplex numbers (denoted by \mathbb{MC}).

Clearly the bi-complex number.

$$\mathbb{C}^2 \cong \mathrm{Cl}_{\mathbb{C}}(1,0) \cong \mathrm{Cl}_{\mathbb{C}}(0,1) \tag{2.5}$$

are unique among the complex Clifford algebras in that they are commutative but not division algebras. It is also convenient to write the set of bi-complex numbers as

$$\mathbb{C}^2 := \{ x_0 + x_1 i_1 + x_2 i_2 + x_3 i_1 i_2 \mid x_0, x_1, x_2, x_3 \in \mathbb{R} \}. \tag{2.6}$$

We know the complex conjugation plays an important role for both algebraic and geometric properties of \mathbb{C}^1 . So for bi-complex numbers there are three possibilities of conjugations. Let $z\in\mathbb{C}^2$ and $z_1,z_2\in\mathbb{C}^1(i_1)$, such that $z:=z_1+z_2i_2$, then we define the three

conjugation as:

$$z^{\dagger_1} = (z_1 + z_2 i_2)^{\dagger_1} = \overline{z}_1 + \overline{z}_2 i_2 \tag{2.7}$$

$$z^{\dagger_2} = (z_1 + z_2 i_2)^{\dagger_2} = z_1 - z_2 i_2 \tag{2.8}$$

$$z^{\dagger_3} = (z_1 + z_2 i_2)^{\dagger_3} = \overline{z}_1 - \overline{z}_2 i_2. \tag{2.9}$$

These three kinds of conjugation have some of the standard properties of conjugations, such as

$$(z_1 + z_2)^{\dagger_k} = z_1^{\dagger_k} + z_2^{\dagger_k} \tag{2.10}$$

$$(z_1^{\dagger_k})^{\dagger_k} = z_1 \tag{2.11}$$

$$(z_1.z_2)^{\dagger_k} = z_1^{\dagger_k}.z_2^{\dagger_k}. \tag{2.12}$$

We know that the product of a standard complex number with its conjugate gives the square of the Euclidean metric in \mathbb{R}^2 . Thus the analogues of this, for bi-complex numbers, are the following. Let $z_1, z_2 \in \mathbb{C}^1(i_1)$ and $z := z_1 + z_2 i_2 \in \mathbb{C}^2$, then we have:

$$|z|_{i_1}^2 = z \cdot z^{\dagger_2} = z_1^2 + z_2^2 \in \mathbb{C}^1(i_1)$$
 (2.13)

$$|z|_{i_2}^2 = z \cdot z^{\dagger_1} = (|z_1|^2 - |z_2|^2) + 2Re(z_1\overline{z}_2)i_2 \in \mathbb{C}^1(i_2)$$
 (2.14)

$$|z|_{j}^{2} = z.z^{\dagger_{3}} = (|z_{1}|^{2} + |z_{2}|^{2}) - 2Im(z_{1}\overline{z}_{2})j \in \mathbb{D},$$
 (2.15)

where $\mathbb D$ is the subalgebra of hyperbolic numbers, and is defined as

$$\mathbb{D} := \{ x + yj \mid j^2 = 1, x, y \in \mathbb{R}, \} \cong \mathrm{Cl}_{\mathbb{R}}(0, 1). \tag{2.16}$$

Note that for $z_1,z_2\in\mathbb{C}^1(i_1)$ and $z:=z_1+z_2i_2\in\mathbb{C}^2$, we can define the usual (Euclidean in \mathbb{R}^4) norm of z as $\mid z\mid=\sqrt{\mid z_1\mid^2+\mid z_2\mid^2}=\sqrt{Re(\mid z\mid_j^2)}$. It is easy to verifying that $z.\frac{z^{\dagger_2}}{|z|_{i_1}^2}=1$. Hence the inverse of z is given by

$$z^{-1} = \frac{z^{\dagger_2}}{\mid z \mid_{i_*}^2}. (2.17)$$

2.2. **Idempotent basis.** bi-complex algebra is considerably simplified by the introduction of two bi-complex numbers e_1 and e_2 defined as $e_1 = \frac{1+i_1i_2}{2}$, $e_2 = \frac{1-i_1i_2}{2}$ Infact e_1 and e_2 are hyperbolic numbers $(i_1i_2 = i_2i_1 = j)$. They make up the so called idempotent basis of the bi-complex numbers, and one easily can check that

$$e_1^2 = e_1, e_2^2 = e_2, e_1 + e_2 = 1, e_1.e_2 = 0, e_k^{\dagger_3} = e_k \text{ (for } k = 1, 2).$$
 (2.18)

Thus any bi-complex number can be written as

$$z = z_1 + z_2 i_2 = \alpha_1 e_1 + \alpha_2 e_2$$
, where $\alpha_1 = z_1 - z_2 i_1$, $\alpha_2 = z_1 + z_2 i_1$. (2.19)

Definition 2.2 (cf. Definition 5 [13]). For any positive integer n and any $z \in \mathbb{C}^2$ we define

$$n^z = e^{z \ln(n)}. (2.20)$$

As an immediate consequence of this definition it is clear that n^z is invertible for each $z \in \mathbb{C}^2$. Now we have

$$a^z = (exp)^{z \ln a} = (exp)^{(\alpha e_1 + \beta e_2) \ln a} = a^{\alpha} e_1 + a^{\beta} e_2.$$
 (2.21)

Definition 2.3 (cf. [5]). Let A_1 and A_2 be complex spaces defined as $A_1 = \{z_1 - z_2i_1 \mid z_1, z_2 \in \mathbb{C}^1\}$ and $A_2 = \{z_1 + z_2i_1 \mid z_1, z_2 \in \mathbb{C}^1\}$. Then the Cartesian set determined by X_1 and X_2 in A_1 and A_2 respectively is defined as: $X_1 \times_e X_2 = z_1 + z_2i_2 = \alpha_1e_1 + \alpha_2e_2$, where $\alpha_1 \in X_1, \alpha_2 \in X_2$. With the help of idempotent representation we define

some functions : $h_1: \mathbb{C}^2 \to A_1, h_2: \mathbb{C}^2 \to A_2$ as follows

$$p_1(z_1 + z_2 i_2) = h_1[(z_1 - z_2 i_1)e_1 + (z_1 + z_2 i_1)e_2] = (z_1 - z_2 i_1) \in A_1, \forall (z_1 + z_2 i_2) \in \mathbb{C}^2$$
(2.22)

$$p_2(z_1 + z_2 i_2) = h_2[(z_1 - z_2 i_1)e_1 + (z_1 + z_2 i_1)e_2] = (z_1 + z_2 i_1) \in A_2, \forall (z_1 + z_2 i_2) \in \mathbb{C}^2.$$
(2.23)

Theorem 2.1 (cf. Theorem 2, cf. [2]). Let X_1 and X_2 be open sets in $\mathbb{C}^1(i_1)$ }. If $f_{e_1}: X_1 \to \mathbb{C}^1(i_1)$ and $f_{e_2}: X_2 \to \mathbb{C}^1(i_1)$ be holomorphic functions of $\mathbb{C}^1(i_1)$ on X_1 and X_2 respectively. Then the function $f: X_1 \times_e X_2 \to \mathbb{C}^2$ is defined as

$$f(z_1 + z_2 i_2) = f_{e_1}(z_1 - z_2 i_1)e_1 + f_{e_2}(z_1 + z_2 i_1)e_2, \forall z_1 + z_2 i_2 \in f : X_1 \times_e X_2$$
 (2.24) which is \mathbb{C}^2 holomorphic on the open set $X_1 \times_e X_2$, and

$$f'(z_1 + z_2 i_2) = f'_{e_1}(z_1 - z_2 i_1)e_1 + f'_{e_2}(z_1 + z_2 i_1)e_2, \forall z_1 + z_2 i_2 \in f : X_1 \times_e X_2.$$
 (2.25)

Definition 2.4 (cf. Definition 6 [7]). Let $z_n = \alpha_n e_1 + \beta_n e_2$ for $n \ge 1$. The sequence $\{z_n\}_{n\ge 1}$ is said to be convergent component-wise if the sequence of the complex numbers $\{\alpha_n\}$ and $\{\beta_n\}$ are convergent in the complex plane to complex numbers α_0 and β_0 , respectively. In this case, we write $z_n \to z_0 = \alpha_0 e_1 + \beta_0 e_2$, and we say that z_n has limit z_0 .

Theorem 2.2 (cf. Theorem 12 [13]). Let $\{z_n=z_{1,n}+z_{2,n}i_2\}_{n=1}^{\infty}\subseteq\mathbb{C}^2$ be invertible for each positive integer n. Then $\prod_{n=1}^{\infty}z_n$ converges if and only if both $(\prod_{n=1}^{\infty}z_{1,n}-z_{2,n}i_1)$ and $(\prod_{n=1}^{\infty}z_{1,n}+z_{2,n}i_1)$ converge. Further, when convergent, we obtain the identity.

$$\prod_{n=1}^{\infty} z_n = (\prod_{n=1}^{\infty} z_{1,n} - z_{2,n} i_1) e_1 + (\prod_{n=1}^{\infty} z_{1,n} + z_{2,n} i_1) e_2.$$

2.3. **bi-complex holomorphic functions.** It is also possible to define differentiability of a function at a point of \mathbb{C}^2 .

Definition 2.5 (cf. Definition 1 [2]). Let U be an open set of \mathbb{C}^2 and $z_0 \in U$. Then, $f: U \subset \mathbb{C}^2 \to \mathbb{C}^2$ is said to be \mathbb{C}^2 - differentiable at z_0 with derivative equal to $f'(z_0) \in \mathbb{C}^2$ if

$$\lim_{\substack{z \to z_0 \\ z - z_0 \text{ inv.}}} \frac{f(z) - f(z_0)}{z - z_0} = f'(z_0). \tag{2.26}$$

We also say that the function f is bi-complex holomorphic (\mathbb{C}^2 - holomorphic) on an open set U if and only if f is \mathbb{C}^2 - differentiable at each point of U. Using $z=z_1+z_2i_2$, a bi-complex number z can be seen as an element (z_1,z_2) of \mathbb{C}^2 , so a function $f(z_1+z_2i_2)=f_1(z_1,z_2)+f_2(z_1,z_2)i_2$ of \mathbb{C}^2 can be seen as a mapping $f(z_1,z_2)=(f_1(z_1,z_2),f_2(z_1,z_2))$ of \mathbb{C}^2 .

Theorem 2.3 (cf. Theorem 2 [6]). Let $f: U \subset \mathbb{C}^2 \to \mathbb{C}^2$ be a function, and $f(z_1 + z_2i_2) = f_1(z_1, z_2) + f_2(z_1, z_2)i_2$, where $z_1, z_2 \in \mathbb{C}^1$. Then the following are equivalent

- (i) f is holomorphic in U.
- (ii) f_1 and f_2 are holomorphic in z_1 and z_2 and satisfying the bi-complex Cauchy-Riemann equations:

$$\frac{\partial f_1}{\partial z_1} = \frac{\partial f_2}{\partial z_2}, \text{ and } \frac{\partial f_2}{\partial z_1} = -\frac{\partial f_1}{\partial z_2}$$
 (2.27)

(iii) f can be represented, near every point $z_0 \in U$, by a Taylor series.

Theorem 2.4 (Weierstrass factorization theorem for complex number). Given an infinite sequences of complex numbers $a_0 = 0, a_1, \dots, a_n, \dots$ with no finite point of accumulation, the most general entire function having zeros at those points only (at zero $a_n, n \ge 1$, of multiplicity α being repeated α times in the sequence) is given by

$$F(w) = e^{h(w)} w^m \prod_{n=1}^{\infty} E(\frac{w}{a_n}; k_n),$$
 (2.28)

where h(w) is an arbitrary entire function, $(m \ge 0)$, is the order of multiplicity $a_0 = 0$ and k_n are non negative integers such that the series

$$\sum_{n=1}^{\infty} \left| \frac{w}{a_n} \right|^{k_n + 1} \tag{2.29}$$

converges for each finite value of w.

The Weierstrass factorization theorem for the complex numbers gives

$$F(w) = e^{h(w)}w \prod_{n=1}^{\infty} (1 + \frac{w}{n})e^{-\frac{w}{n}}$$
 (2.30)

as the most general entire function having the prescribed zeros. By taking $h(w) = \gamma w$ where the constant γ is chosen so that F(1) = 1, {as w = 1}, a particular entire function $F_1(w)$ is given by

$$F_1(w) = \frac{1}{\Gamma(w)} = e^{\gamma w} w \prod_{n=1}^{\infty} (1 + \frac{w}{n}) e^{-\frac{w}{n}}.$$
 (2.31)

We define $\Gamma(w)$ in terms of the Eulerian integral as

$$\Gamma(w) = \int_0^\infty e^{-x} x^{w-1} dx, \ Re(w) > 0.$$
 (2.32)

Theorem 2.5 (cf. [5]). Let $z = z_1 + z_2i_2 = \alpha e_1 + \beta e_2$, $f(z) = f_1(\alpha)e_1 + f_2(\beta)e_2$. Then f(z) is convergent in a domain D if and only if $f_1(\alpha)$ and $f_2(\beta)$ are convergent in domain $p_1: D \to D_1$ and $p_2: D \to D_2$ respectively, and we can write

$$\int_{D} f(z)dz = \int_{D_1} f(\alpha)d\alpha e_1 + \int_{D_2} f(\beta)d\beta e_2$$
 (2.33)

3. CONVERGENCE OF SEQUENCE OF BI-COMPLEX NUMBERS

With the help of Theorem 2.4, we have the following result.

Theorem 3.1. Let $z=z_1+z_2i_2=\alpha e_1+\beta e_2$ be any bi-complex number where as $\alpha=\{z_1-z_2i_1\mid z_1,z_2\in\mathbb{C}^1\}$ and $\beta=\{z_1+z_2i_1\mid z_1,z_2\in\mathbb{C}^1\}$, and let X_1 and X_2 be open sets in $\mathbb{C}^1(i_1)$. If $f_{e_1},g_{e_1}:X_1\to\mathbb{C}^1(i_1)$ and $f_{e_2},g_{e_2}:X_2\to\mathbb{C}^1(i_1)$ are holomorphic functions of $\mathbb{C}^1(i_1)$ on X_1 and X_2 respectively, then $\forall z_1+z_2i_2\in\mathbb{C}^2$ we have $f,g:X_1\times_eX_2\to\mathbb{C}^2$ defined as

$$f(z) = f_{e_1}(\alpha)e_1 + f_{e_2}(\beta)e_2$$

$$g(z) = g_{e_1}(\alpha)e_1 + g_{e_2}(\beta)e_2$$

are \mathbb{C}^2 holomorphic on the open set $X_1 \times_e X_2$ and

$$f'(z) = f'_{e_1}(\alpha)e_1 + f'_{e_2}(\beta)e_2$$

$$g'(z) = g'_{e_1}(\alpha)e_1 + g'_{e_2}(\beta)e_2.$$

Moreover we have the following

$$f(z) \pm g(z) = (f_{e_1}(\alpha) \pm g_{e_1}(\alpha))e_1 + (f_{e_2}(\beta) \pm g_{e_2}(\beta))e_2$$
(3.1)

$$f'(z) \pm g'(z) = (f'_{e_1}(\alpha) \pm g'_{e_1}(\alpha))e_1 + (f'_{e_2}(\beta) \pm g'_{e_2}(\beta))e_2$$
(3.2)

$$f(z).g(z) = f_{e_1}(\alpha)g_{e_1}(\alpha)e_1 + f_{e_2}(\beta)g_{e_2}(\beta)e_2$$
(3.3)

$$\frac{f(z)}{g(z)} = \frac{f_{e_1}(\alpha)}{g_{e_1}(\alpha)} e_1 + \frac{f_{e_2}(\beta)}{g_{e_2}(\beta)} e_2.$$
(3.4)

Proof. Easy.

If put k = 2 in Definition 3 of [6], we get the following.

Definition 3.1. Let $\mathbb{C}^2 := \{z = z_1 + z_2 i_k \mid z_1, z_2 \in \mathbb{C}^1\}$ be a bi-complex number, and let $f: U \subset \mathbb{C}^2 \to \mathbb{C}^2$ be a bi-complex holomorphic function in U. Then about a point z_0 , the Taylor series can be expressed as:

$$f(z_0+hi_1+hi_2) := f(z_0)+h(i_1+i_2)f'(z_0)+h^2(i_1+i_2)^2\frac{f''(z_0)}{2!}+\dots+h^n(i_1+i_2)^n\frac{f^{(n)}(z_0)}{n!}+O(h^{(n+1)})$$

where f^n denotes the n^{th} order derivative, and

$$(i_1 + i_2)^k := \sum_{\substack{x_1, x_2 \\ x_1 + x_2 = k}} \frac{n!}{x_1! x_2!} i_1^{x_1} i_2^{x_2}.$$
(3.6)

Theorem 3.2. Let $z=z_1+z_2i_2$ be any bi-complex number with |z|<1 and $z=\{\alpha e_1+\beta e_2\mid \alpha,\beta\in\mathbb{C}^1\}$, where e_1,e_2 are idempotent basis. Then the series $\sum_{n=0}^\infty z^n$ is convergent to $\frac{1}{1-z}$, if $\sum_{n=0}^\infty \alpha^n$ converges to $\frac{1}{1-\alpha}$ and $\sum_{n=0}^\infty \beta^n$ converges to $\frac{1}{1-\beta}$, provided $|\alpha|, |\beta| < 1$.

Proof. Simply from [8], we have $\sum_{n=0}^{\infty} \alpha^n = \frac{1}{1-\alpha}$ and $\sum_{n=0}^{\infty} \beta^n = \frac{1}{1-\beta}$. Using Theorem 2.4 we have

$$\sum_{n=0}^{\infty} \alpha^n e_1 + \beta^n e_2 = \frac{1}{1-\alpha} e_1 + \frac{1}{1-\beta} e_2.$$

Hence

$$\sum_{n=0}^{\infty} z^n = \frac{1}{1-z},$$

where if $|\alpha|$, $|\beta|$ < 1, then we have |z| < 1.

Corollary 3.3. Let $z=z_1+z_2i_2$ be any bi-complex number with |z|>1 and $\{z=\alpha e_1+\beta e_2\mid \alpha,\beta\in\mathbb{C}^1\}$, where e_1,e_2 are idempotent basis. Then the series $\sum_{n=1}^\infty z^{-n}$ is convergent to $\frac{1}{z-1}$, if $\sum_{n=1}^\infty \alpha^{-n}$ converges to $\frac{1}{\alpha-1}$ and $\sum_{n=1}^\infty \beta^{-n}$ converges to $\frac{1}{\beta-1}$, provided $|\alpha|, |\beta|>1$.

Proof. Simply $\sum_{n=1}^{\infty} \alpha^{-n} = \frac{1}{\alpha-1}$ and $\sum_{n=1}^{\infty} \beta^{-n} = \frac{1}{\beta-1}$ imply that

$$\sum_{n=1}^{\infty} \alpha^{-n} e_1 + \beta^{-n} e_2 = \frac{1}{\alpha - 1} e_1 + \frac{1}{\beta - 1} e_2.$$

Hence

$$\sum_{n=0}^{\infty} z^{-n} = \frac{1}{z-1}.$$

Theorem 3.4. Let $f: U \subset \mathbb{C}^2 \to \mathbb{C}^2$ be holomorphic in U, and $f(z) = \sum_{n=0}^{\infty} z^n$, with $\mathbb{C}^2 = \{z : |z| < 1\}$. Then at any point $z_0 \in \mathbb{C}^2$, we have

$$f(z) = \frac{1}{1 - z_0} + \frac{1}{(1 - z_0)^2} (z - z_0) + \frac{1}{(1 - z_0)^3} (z - z_0)^2 + \dots + \frac{1}{(1 - z_0)^{n+1}} (z - z_0)^n + O(n+1).$$
(3.7)

Proof. We have

$$f(z) = \sum_{n=0}^{\infty} z^n = \frac{1}{1-z},$$

which implies that

$$f^{(n)}(z) = \frac{n!}{(1-z)^{n+1}}, \ n = 1, 2, \cdots.$$

Now put n^{th} derivative of f about a point z_0 in (3.5), we have

$$f(z_0+h(i_1+i_2)) = \frac{1}{1-z_0} + h(i_1+i_2) \frac{1}{(1-z_0)^2} + (h(i_1+i_2))^2 \frac{1}{(1-z_0)^3} + \dots + (h(i_1+i_2))^n \frac{1}{(1-z_0)^{n+1}} + O(h^{n+1}).$$

If $z_0 + h(i_1 + i_2) = z$, then we have

$$f(z) = \frac{1}{1 - z_0} + (z - z_0) \frac{1}{(1 - z_0)^2} + (z - z_0)^2 \frac{1}{(1 - z_0)^3} + \dots + (z - z_0)^n \frac{1}{(1 - z_0)^{n+1}} + O(n+1).$$

Now we define the following:

Definition 3.2 (cf. Definition 3 [13]). For any sequence $\{a_n\}_{n=1}^{\infty} \subset \mathbb{C}^2$, the infinite product $\prod_{n=1}^{\infty} a_n$ is said to be convergent provided only a finite number of terms in the sequence are non-invertible and the product formed by the invertible terms in the sequence tend to a finite limit.

Definition 3.3. Let $\{a_n\}_{n=1}^{\infty}$ be a sequence in bi-complex space \mathbb{C}^2 , where $a_n=\alpha_ne_1+\beta_ne_2$, and $a_n\neq -1$ for all $n\in\mathbb{N}$. Then the infinite product $\prod_{n=1}^{\infty}(1+a_n)$ is said to be absolutely convergent iff the series $\sum_{n=1}^{\infty}\log(1+a_n)$ is absolutely convergent, where $\sum_{n=1}^{\infty}\log(1+a_n)=\sum_{n=1}^{\infty}\log(1+\alpha_n)e_1+\sum_{n=1}^{\infty}\log(1+\beta_n)e_2$.

Theorem 3.5. Let $\{z_n\}_{n=1}^{\infty}$ be a sequence in bi-complex space \mathbb{C}^2 , where $z_n = \alpha_n e_1 + \beta_n e_2$, and $z_n \neq -1$ for all $n \in \mathbb{N}$. Then the infinite product $\prod_{n=1}^{\infty} (1+z_n)$ is absolutely convergent iff the series $\sum_{n=1}^{\infty} \alpha_n$ and $\sum_{n=1}^{\infty} \beta_n$ are absolutely convergent, i.e., if $\sum_{n=1}^{\infty} z_n$ is absolutely convergent.

Proof. If $|\alpha| < 1, z \neq 0$, then we have

$$\log(1+\alpha) = \alpha - \frac{\alpha^2}{2} + \frac{\alpha^3}{3} - \cdots$$
 (3.8)

Here

$$\left|\frac{\log(1+\alpha)}{\alpha} - 1\right| \le \frac{|\alpha|}{2} + \frac{|\alpha|^2}{3} + \frac{|\alpha|^3}{4} + \dots \le \frac{1}{2} \sum_{m=1}^{\infty} |\alpha|^m. \tag{3.9}$$

For all $n > \mathbb{N}$, such that $\alpha_n \neq 0$, let $\alpha = \alpha_n$ in (3.9), we obtain

$$\left| \frac{\log(1+\alpha_n)}{\alpha_n} - 1 \right| \le \frac{1}{2} \sum_{m=1}^{\infty} \left| \alpha_n \right|^m \le \frac{1}{2} \sum_{m=1}^{\infty} \frac{1}{2^m} = \frac{1}{2}.$$

So we have

$$\frac{1}{2} \le |\frac{\log(1+\alpha_n)}{\alpha_n} \le \frac{3}{2}$$

$$\frac{1}{2} \mid \alpha_n \mid \leq \mid \log(1 + \alpha_n) \mid \leq \frac{3}{2} \mid \alpha_n \mid . \tag{3.10}$$

This inequality holds also for $\alpha_n = 0$. So that the equation (3.10) is valid for all $n > \mathbb{N}$. Hence,

$$\frac{1}{2} \sum_{n=N+1}^{\infty} |\alpha_n| \le \sum_{n=N+1}^{\infty} |\log(1+\alpha_n)| \le \frac{3}{2} \sum_{n=N+1}^{\infty} |\alpha_n|.$$
 (3.11)

Similarly

$$\frac{1}{2} \sum_{n=N+1}^{\infty} |\beta_n| \le \sum_{n=N+1}^{\infty} |\log(1+\beta_n)| \le \frac{3}{2} \sum_{n=N+1}^{\infty} |\beta_n|.$$
 (3.12)

Using Theorem 2.4 and equations (3.11) and (3.12), we have

$$\frac{1}{2} \sum_{n=N+1}^{\infty} (\mid \alpha_n \mid e_1 + \mid \beta_n \mid e_2) \leq \sum_{n=N+1}^{\infty} (\mid \log(1+\alpha_n) \mid e_1 + \mid \log(1+\beta_n) \mid e_2) \leq \frac{3}{2} \sum_{n=N+1}^{\infty} (\mid \alpha_n \mid e_1 + \mid \beta_n \mid e_2).$$

$$\frac{1}{2} \sum_{n=N+1}^{\infty} |z_n| \le \sum_{n=N+1}^{\infty} |\log(1+z_n)| \le \frac{3}{2} \sum_{n=N+1}^{\infty} |z_n|.$$
 (3.13)

Therefore, if $\sum_{n=1}^{\infty} |\alpha_n|$ and $\sum_{n=1}^{\infty} |\beta_n|$ converge then $\sum_{n=1}^{\infty} |\log(1+\alpha_n)|$ and $\sum_{n=1}^{\infty} |\log(1+\beta_n)|$ converge. Hence if $\sum_{n=1}^{\infty} |z_n|$ converges then $\sum_{n=1}^{\infty} |\log(1+z_n)|$ converges and conversely.

Example. Consider $\prod_{n=1}^{\infty} (1 + \frac{1}{(2+i_1+i_2+i_1i_2)^n})$.

We have

$$\sum_{n=1}^{\infty} \left| \frac{1}{(2+i_1+i_2+i_1i_2)^n} \right| = \sum_{n=1}^{\infty} \frac{1}{(\sqrt{7})^n}.$$

Since the last series converges, the given product converges absolutely.

4. EULER'S GAMMA FUNCTION FOR BI-COMPLEX NUMBERS

We prove the following theorems on Euler's Gamma functions for the bi-complex numbers.

Theorem 4.1. Let $z=\{z_1+z_2i_2\mid z_1,z_2\in\mathbb{C}^1(i_1)\}=\alpha e_1+\beta e_2$. Then the Eulerian gamma integral for bi-complex number z is $\Gamma(z)=\int_0^\infty e^{-x}x^{z-1}\,dz$, $Re\ (z)>0$, if we have $\Gamma(\alpha)=\int_0^\infty e^{-x}x^{\alpha-1}\,dx$ and $\Gamma(\beta)=\int_0^\infty e^{-x}x^{\beta-1}\,dx$, provided $Re\ (\alpha)>0$ and $Re\ (\beta)>0$.

Proof. $z_1 = x_1 + x_2i_1, z_2 = x_2 + y_2i_1$

$$\alpha = z_1 - z_2 i_1 = (x_1 + y_2) + (y_1 - x_2) i_1, \beta = z_1 + z_2 i_1 = (x_1 - y_2) + (y_1 + x_2) i_1$$

$$Re(\alpha) > 0, Re(\beta) > 0 \Rightarrow Re(z) > 0$$
, where $z = x_1 + y_1i_1 + x_2i_2 + y_2i_1i_2$

we have

$$\Gamma(\alpha) = \int_0^\infty e^{-x} x^{\alpha - 1} dx, \ Re(\alpha) > 0$$

$$\Gamma(\beta) = \int_0^\infty e^{-x} x^{\beta - 1} dx, \ Re(\beta) > 0$$

$$\Gamma(z) = \Gamma(\alpha)e_1 + \Gamma(\beta)e_2 \tag{4.1}$$

$$\begin{split} \Gamma(\alpha)e_1 + \Gamma(\beta)e_2 &= \int_0^\infty e^{-x} x^{\alpha - 1} \, dx e_1 + \int_0^\infty e^{-x} x^{\beta - 1} \, dx e_2 \\ &= \int_0^\infty e^{-x} x^{(\alpha - 1)e_1 + (\beta - 1)e_2} \, dx \\ &= \int_0^\infty e^{-x} x^{\alpha e_1 + \beta e_2 - 1} \, dx \\ &= \int_0^\infty e^{-x} x^{z - 1} \, dz = \Gamma(z), \; Re(z) > 0. \end{split}$$

Theorem 4.2. Let $z=z_1+z_2i_2=\alpha e_1+\beta e_2$. Then the Γ - function for bi-complex number z is

$$\frac{1}{\Gamma(z)} = e^{\gamma z} z \prod_{n=1}^{\infty} (1 + \frac{z}{n}) e^{-\frac{z}{n}}.$$
 (4.2)

If for any $\alpha, \beta \in \mathbb{C}^1(i_1)$ or $\mathbb{C}^1(i_2)$, we have

$$\frac{1}{\Gamma(\alpha)} = e^{\gamma\alpha}\alpha \prod_{n=1}^{\infty} (1 + \frac{\alpha}{n})e^{-\frac{\alpha}{n}}, \ \frac{1}{\Gamma(\beta)} = e^{\gamma\beta}\beta \prod_{n=1}^{\infty} (1 + \frac{\beta}{n})e^{-\frac{\beta}{n}},$$

where the constant γ is Euler constant and is chosen so that $\Gamma(e_1 + e_2) = e_1 + e_2$.

Proof. We have

$$\begin{split} &\Gamma(\alpha e_1 + \beta e_2) &= \Gamma(\alpha)e_1 + \Gamma(\beta)e_2 \\ &\frac{1}{\Gamma(\alpha e_1 + \beta e_2)} &= \frac{1}{\Gamma(\alpha)}e_1 + \frac{1}{\Gamma(\beta)}e_2 \\ &\frac{1}{\Gamma(\alpha)}e_1 + \frac{1}{\Gamma(\beta)}e_2 &= e^{\gamma\alpha}\alpha\prod_{n=1}^{\infty}(1+\frac{\alpha}{n})e^{-\frac{\alpha}{n}}e_1 + e^{\gamma\beta}\beta\prod_{n=1}^{\infty}(1+\frac{\beta}{n})e^{-\frac{\beta}{n}}e_2 \\ &= (e^{\gamma\alpha}\alpha e_1 + e^{\gamma\beta}\beta e_2)(\prod_{n=1}^{\infty}(1+\frac{\alpha}{n})e^{-\frac{\alpha}{n}}e_1 + \prod_{n=1}^{\infty}(1+\frac{\beta}{n})e^{-\frac{\beta}{n}}e_2) \\ &\Rightarrow \frac{1}{\Gamma(\alpha e_1 + \beta e_2)} &= e^{\gamma(\alpha e_1 + \beta e_2)}(\alpha e_1 + \beta e_2)\prod_{n=1}^{\infty}(1+\frac{\alpha e_1 + \beta e_2}{n})e^{-\frac{\alpha e_1 + \beta e_2}{n}} \\ &\Rightarrow \frac{1}{\Gamma(z)} &= e^{\gamma z}z\prod_{n=1}^{\infty}(1+\frac{z}{n})e^{-\frac{z}{n}}, \text{ where } z \in \mathbb{C}^2. \end{split}$$

Lemma 4.3. let $z_n = 1 + \frac{1}{2} + \cdots + \frac{1}{n}$. Then we have

$$\lim_{n \to \infty} (z_n - \ln n) = \gamma,$$

where γ is Euler constant and chosen as $\Gamma(e_1 + e_2) = e_1 + e_2$.

Proof. Put $z = e_1 + e_2$ in (4.2), we have

$$e_1 + e_2 = e^{\gamma} \prod_{n=1}^{\infty} (1 + \frac{1}{n}) e^{-\frac{1}{n}}.$$

Hence,

$$-\gamma = \sum_{n=1}^{\infty} \left(\ln \frac{n+1}{n} - \frac{1}{n} \right)$$

$$= \lim_{n \to \infty} \left(\ln \frac{2}{1} - \frac{1}{1} + \ln \frac{3}{2} - \frac{1}{2} + \dots + \ln \frac{n+1}{n} - \frac{1}{n} \right)$$

$$= \lim_{n \to \infty} \left\{ \ln \left(\frac{2}{1} \cdot \frac{3}{2} \cdot \dots \cdot \frac{n}{n-1} \right) + \ln \frac{n+1}{n} - \left(1 + \frac{1}{2} + \dots + \frac{1}{n} \right) \right\}$$

$$= \lim_{n \to \infty} \left(\ln n - z_n \right).$$

Theorem 4.4. Let $z = z_1 + z_2i_2 = \alpha e_1 + \beta e_2$. Then the Euler's function for bi-complex number z is

$$\Gamma(z) = \lim_{n \to \infty} \frac{n! n^z}{z(z+1)(z+2)\cdots(z+n)}.$$
(4.3)

Proof. Using Lemma 4.3 and equation (4.2), we get the result.

Corollary 4.5. Let $z=z_1+z_2i_2=\alpha e_1+\beta e_2$ be any bi-complex number. Then we have

$$\Gamma(z+1) = z\Gamma(z), z \neq 0, -1, -2, \cdots,$$
 (4.4)

$$\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin \pi z}.$$
(4.5)

Theorem 4.6. For any $\alpha, \beta \in \mathbb{C}^1(i_1)$ or $\mathbb{C}^1(i_2)$, if we have $\alpha \prod_{n=1}^{\infty} (1 - \frac{\alpha^2}{n^2}) = \frac{\sin \pi \alpha}{\pi}$ and $\beta \prod_{n=1}^{\infty} (1 - \frac{\beta^2}{n^2}) = \frac{\sin \pi \beta}{\pi}$. Then for a bi-complex number $z = z_1 + z_2 i_2$ we have

$$z\prod_{n=1}^{\infty} (1 - \frac{z^2}{n^2}) = \frac{\sin \pi z}{\pi}.$$
 (4.6)

Proof. We have

$$\alpha \prod_{n=1}^{\infty} (1 - \frac{\alpha^2 e_1}{n^2}) e_1 = \frac{\sin \pi \alpha}{\pi} e_1$$
$$\beta \prod_{n=1}^{\infty} (1 - \frac{\beta^2 e_2}{n^2}) e_2 = \frac{\sin \pi \beta}{\pi} e_2.$$

On adding and using Theorem 3.1, we get

$$\begin{split} \alpha \prod_{n=1}^{\infty} (1 - \frac{\alpha^2}{n^2}) e_1 + \beta \prod_{n=1}^{\infty} (1 - \frac{\beta^2}{n^2}) e_2 &= \frac{\sin \pi \alpha}{\pi} e_1 + \frac{\sin \pi \alpha}{\pi} e_2 \\ (\alpha e_1 + \beta e_2) (\prod_{n=1}^{\infty} (1 - \frac{\alpha^2}{n^2}) e_1 + \prod_{n=1}^{\infty} (1 - \frac{\beta^2}{n^2}) e_2) &= \frac{\sin \pi (\alpha e_1 + \beta e_2)}{\pi} \\ (\alpha e_1 + \beta e_2) \prod_{n=1}^{\infty} ((1 - \frac{\alpha^2}{n^2}) e_1 + (1 - \frac{\beta^2}{n^2}) e_2) &= \frac{\sin \pi (\alpha e_1 + \beta e_2)}{\pi} \\ z \prod_{n=1}^{\infty} (1 - \frac{z^2}{n^2}) &= \frac{\sin \pi z}{\pi}, \text{ where } z \in \mathbb{C}^2. \end{split}$$

Corollary 4.7. Let $z = z_1 + z_2i_2 = \alpha e_1 + \beta e_2$ be any bi-complex number. Then we have

$$\lim_{z \to -n} (z+n)\Gamma(z) = \frac{(-1)^n}{n!}, n = 0, 1, 2, \cdots,$$
(4.7)

$$\lim_{n \to \infty} \frac{\Gamma(z+n)}{n^z \Gamma(z)} = 1, z \neq -n. \tag{4.8}$$

Theorem 4.8. Let $z=z_1+z_2i_2=\alpha e_1+\beta e_2$ be any bi-complex number. Then there is just one function F(z) in $\mathbb{C}^2 - \{0, -1, -2, \dots\}$ which satisfies the following conditions

- (ii) $F((\alpha + 1)e_1 + (\beta + 1)e_2) = (\alpha e_1 + \beta e_2)F(\alpha e_1 + \beta e_2);$ (iii) $\lim_{n\to\infty} \frac{F((\alpha + n)e_1 + (\beta + n)e_2)}{n(\alpha e_1 + \beta e_2)F(n)} = 1.$

Proof. We have already seen that the Γ - function satisfies the above equations. Suppose that there exits a function F(z) which also satisfies all three equations.

From condition (ii) it follows that
$$F((\alpha+n)e_1+(\beta+n)e_2) = (\alpha e_1+\beta e_2)((\alpha+1)e_1+(\beta+1)e_2)\cdots((\alpha+n-1)e_1+(\beta+n-1)e_2)F(\alpha e_1+\beta e_2).$$

Put $z = e_1 + e_2$ in (4.9) and using condition (i) we find

$$F(n+1) = n!$$
 or $F(n) = (n-1)!, (n \ge 1)$.

Now taking condition (iii) into account, as well as from (4.3) and (4.9), we have

$$1 = \lim_{n \to \infty} \frac{F((\alpha+n)e_1 + (\beta+n)e_2)}{n^{\alpha e_1 + \beta e_2}F(n)}$$

$$= F(\alpha e_1 + \beta e_2) \lim_{n \to \infty} \frac{(\alpha e_1 + \beta e_2)((\alpha + 1)e_1 + (\beta + 1)e_2) \cdots ((\alpha + n - 1)e_1 + (\beta + n - 1)e_2) F(\alpha e_1 + \beta e_2)}{n! n! (\alpha - 1)e_1 + (\beta - 1)e_1}$$

$$F(\alpha e_1 + \beta e_2)$$

$$=\frac{F(\alpha e_1+\beta e_2)}{\Gamma(\alpha e_1+\beta e_2)}$$

5. EULER'S BETA OPERATOR FOR BI-COMPLEX NUMBERS

We know that the Euler's beta function in complex plane is defined as

$$\mathcal{B}(\mu,\nu) = \int_0^1 x^{\mu-1} (1-x)^{\nu-1} dx \ \mu, \nu \in \mathbb{C}^1, Re(\mu), Re(\nu) > 0.$$
 (5.1)

Then for all $n \in \mathbb{N}$ and $z_1 \in \mathbb{C}^1(i_1)$ or $\mathbb{C}^1(i_2)$, the complex beta operator is

$$C_n(f, z_1) = \frac{1}{\mathcal{B}(nz_1, n(1-z_1))} \int_0^1 x^{nz_1 - 1} (1-x)^{n(1-z_1) - 1} f(x) \, \mathrm{d}x, \ 0 < Re(z_1) < 1.$$
(5.2)

We have following theorem in bi-complex space \mathbb{C}^2 .

Theorem 5.1. Let $z = \{z_1 + z_2 i_2 = \alpha e_1 + \beta e_2 \mid \alpha, \beta \in \mathbb{C}^1(i_1) \text{ or } \mathbb{C}^1(i_2)\}$. Then a beta operator for a bi-complex number z is

$$\mathcal{B}(nz, n(1-z)) = \int_0^1 x^{nz-1} (1-x)^{n(1-z)-1} dx, \ \forall n \in \mathbb{N}, \ \textit{and} \ Re(z, 1-z) > 0, \ (5.3)$$

where

$$\mathcal{B}(n\alpha, n(1-\alpha)) = \int_0^1 x^{n\alpha-1} (1-x)^{n(1-\alpha)-1} dx$$

$$\mathcal{B}(n\beta, n(1-\beta)) = \int_0^1 x^{n\beta-1} (1-x)^{n(1-\beta)-1} dx,$$

provided $\forall n \in \mathbb{N}$, and $Re(\alpha, 1 - \alpha) > 0$, $Re(\beta, 1 - \beta) > 0$.

Proof. We have

$$\mathcal{B}(nz, n(1-z)) = \mathcal{B}(n\alpha, n(1-\alpha))e_1 + \mathcal{B}(n\beta, n(1-\beta))e_2 \qquad (5.4)$$

$$\mathcal{B}(n\alpha, n(1-\alpha)) = \int_0^1 x^{n\alpha-1} (1-x)^{n(1-\alpha)-1} dx$$

$$\mathcal{B}(n\beta, n(1-\beta)) = \int_0^1 x^{n\beta-1} (1-x)^{n(1-\beta)-1} dx$$

$$\mathcal{B}(nz, n(1-z)) = \int_0^1 x^{n\alpha-1} (1-x)^{n(1-\alpha)-1} dx e_1 + \int_0^1 x^{n\beta-1} (1-x)^{n(1-\beta)-1} dx e_2$$

$$= \int_0^1 (x^{n\alpha-1}e_1 + x^{n\beta-1}e_2)((1-x)^{n(1-\alpha)-1}e_1 + (1-x)^{n(1-\beta)-1}e_2) dx$$

$$= \int_0^1 x^{(n\alpha-1)e_1 + n\beta-1)e_2} (1-x)^{(n(1-\alpha)-1)e_1 + n(1-\beta)-1)e_2} dx$$

$$= \int_0^1 x^{n(\alpha e_1 + \beta e_2)-1} (1-x)^{n(1-\alpha e_1 + \beta e_2)-1} dx$$

$$= \int_0^1 x^{n(\alpha e_1 + \beta e_2)-1} (1-x)^{n(1-\alpha e_1 + \beta e_2)-1} dx$$

$$= \int_0^1 x^{nz-1} (1-x)^{n(1-z)-1} dx$$

for all $z \in \mathbb{C}^2$, and Re(z, 1-z) > 0. whereas $Re(\alpha, 1-\alpha) > 0$, $Re(\beta, 1-\beta) > 0$ imply that Re(z, 1-z) > 0.

Theorem 5.2. Let $z = \{z_1 + z_2i_2 = \alpha e_1 + \beta e_2 \mid \alpha, \beta \in \mathbb{C}^1(i_1) \text{ or } \mathbb{C}^1(i_2)\}$. Then for a bi-complex number z

$$C_n(f,z) = \frac{1}{\mathcal{B}(nz, n(1-z))} \int_0^1 x^{nz-1} (1-x)^{n(1-z)-1} f(x) \, \mathrm{d}x \, \forall n \in \mathbb{N}, \text{ and } 0 < Re(z) < 1,$$
(5.5)

if we have

$$C_n(f,\alpha) = \frac{1}{\mathcal{B}(n\alpha, n(1-\alpha))} \int_0^1 x^{n\alpha-1} (1-x)^{n(1-\alpha)-1} f(x) dx$$
$$C_n(f,\beta) = \frac{1}{\mathcal{B}(n\beta, n(1-\beta))} \int_0^1 x^{n\beta-1} (1-x)^{n(1-\beta)-1} f(x) dx,$$

provided $\forall n \in \mathbb{N}$, and $0 < Re(\alpha) < 1, 0 < Re(\beta) < 1$.

Proof. We have

$$C_n(f,\alpha) = \frac{1}{\mathcal{B}(n\alpha, n(1-\alpha))} \int_0^1 x^{n\alpha-1} (1-x)^{n(1-\alpha)-1} f(x) \, dx \, \forall n \in \mathbb{N}, \alpha \in \mathbb{C}^1, 0 < Re(\alpha) < 1$$

$$C_n(f,\beta) = \frac{1}{\mathcal{B}(n\beta, n(1-\beta))} \int_0^1 x^{n\beta-1} (1-x)^{n(1-\beta)-1} f(x) \, dx \, \forall n \in \mathbb{N}, \beta \in \mathbb{C}^1, 0 < Re(\beta) < 1$$

$$C_n(f,z) = C_n(f,\alpha) e_1 + C_n(f,\beta) e_2 \tag{5.6}$$

$$\begin{split} \mathcal{C}_{n}(f,\alpha)e_{1} + \mathcal{C}_{n}(f,\beta)e_{2} &= \frac{1}{\mathcal{B}(n\alpha,n(1-\alpha))} \int_{0}^{1} x^{n\alpha-1}(1-x)^{n(1-\alpha)-1}f(x)\,dxe_{1} \\ &+ \frac{1}{\mathcal{B}(n\beta,n(1-\beta))} \int_{0}^{1} x^{n\beta-1}(1-x)^{n(1-\beta)-1}f(x)\,dxe_{2} \\ &= (\frac{1}{\mathcal{B}(n\alpha,n(1-\alpha))}e_{1} + \frac{1}{\mathcal{B}(n\beta,n(1-\beta))}e_{2})(\int_{0}^{1} x^{n\alpha-1}(1-x)^{n(1-\alpha)-1}f(x)\,dxe_{1} \\ &+ \int_{0}^{1} x^{n\beta-1}(1-x)^{n(1-\beta)-1}f(x)\,dxe_{2}) \\ &= \frac{1}{\mathcal{B}(nz,n(1-z))} \int_{0}^{1} x^{n(\alpha e_{1}+\beta e_{2})-1}(1-x)^{n(1-\alpha e_{1}-\beta e_{2})-1}f(x)\,dx \\ &= \frac{1}{\mathcal{B}(nz,n(1-z))} \int_{0}^{1} x^{nz-1}(1-x)^{n(1-z)-1}f(x)\,dx\,\forall n\in\mathbb{N}, z\in\mathbb{C}^{2}, 0< Re(z)< 1 \\ \text{whereas } 0< Re(\alpha)< 1, 0< Re(\beta)< 1 \Rightarrow 0< Re(z)< 1. \end{split}$$

Acknowledgment. The authors of the manuscript gratefully extend their appreciation to reviewers for their positive feedback and their relevant constructive comments.

Funding: Not applicable.

Availability of data and materials: Not applicable.

Competing interests: The author declares no competing interests.

REFERENCES

- [1] D. Alpay, M. Elena Luna-Elizarrarás, M. Shapiro and D.C. Struppa Basics of Functional Analysis with bi-complex Scalars and bi-complex Schur Analysis, SpringerBriefs, 2014.
- [2] K.S. Charak, D. Rochon and N. Sharma, Normal families of bi-complex holomorphic functions, arXiv:0806.4403v1 [math.CV] 26 June 2008.
- [3] N. Fleury, M. R. Detraubenberg and R. M. Yamaleev, Commutative extended complex numbers and connected trigonometry, Jour. Math. Anal. Appl., 180 (1993), 431-457.
- [4] W. R. Hamilton, On Quaternions; or On A New System of Imaginaries in Algebra, The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, 15 (1844), 489-495.
- [5] A. Kumar and P. Kumar, bi-complex version of laplace transform, International Journal of Engineering and Technology, 3(3) (2011), 225-232.
- [6] G. Lantoine, R.P. Russell and T. Dargent, Using multicomplex variables for automatic computation of highorder derivatives, ACM Transactions on Mathematical Software, 38(3), Article 16, April 2012, 21 pages.
- [7] M.E. Luna-Elizarrarás and M. Shapiro, bi-complex numbers and their elementary functions, CUBO A Mathematical Journal, 14(2) (2012), 61-80.
- [8] J.H. Mathews and R.W. Howell, Complex Analysis for Mathematics and Engineering, Narosa Publication House, 2006.
- [9] M. Mursaleen, M. Nasiruzzaman and H.M. Srivastava, Approximation by bi-complex beta operators in compact BC-disks, Math. Meth. Appl. Sci., 2016, 39 2916–2929.
- [10] Md. Nasiruzzaman and M. Mursaleen, Some properties of fundamental formulation of tricomplex polynomials, Annals of Communications in Mathematics Volume 8, Number 1 (2025), 137–149 DOI: 10.62072/acm.2025.080111
- [11] M. Nasiruzzaman and M. Mursaleen, The multicomplex numbers and their properties on some elementary functions Thai Journal of Mathematics Volume 21 Number 1 (2023) Pages 77–100.
- [12] G.B. Price, An Introduction to Multicomplex Spaces and Functions, Marcel Dekker, 1991.

- [13] F.L. Reid and R.A. Van Gorder, A multicomplex Riemann Zeta function, Adv. Appl. Clifford Algebras, 23 (2013), 237-251.
- [14] C. Segre, The real representation of complex elements and hyperalgebraic entities (Italian), Mathematische Annalen, 40 (1892), 413-467.

MD. NASIRUZZAMAN

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, UNIVERSITY OF TABUK, PO BOX 4279, TABUK 71491, SAUDI ARABIA.

ORCID: 0000-0003-4823-0588

Email address: mfarooq@ut.edu.sa; nasir3489@gmail.com

MOHAMMAD AYMAN-MURSALEEN

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OSTRAVA, MLÝNSKÁ 702/5, 702 00 MORAVSKÁ OSTRAVA, CZECHIA.

ORCID: 0000-0002-2566-3498

Email address: mohdaymanm@gmail.com, ayman.mursaleen@osu.cz

NADEEM RAO

DEPARTMENT OF MATHEMATICS, UNIVERSITY CENTER FOR RESEARCH AND DEVELOPMENT CHANDIGARH UNIVERSITY, MOHALI-140243, PUNJAB, INDIA.

ORCID: 0000-0002-5681-9563

Email address: nadeemrao1990@gmail.com