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SOME RESULTS ON BICOMPLEX NUMBERS AND BICOMPLEX
FUNCTIONS

MD. NASIRUZZAMAN∗, MOHAMMAD AYMAN-MURSALEEN AND NADEEM RAO

ABSTRACT. In this paper, we obtain some results on infinite products in bi-complex
space, and the exact order of simultaneous results with quantitative estimate for the bi-
complex gamma functions and bi-complex Beta functions. Finally using the specific re-
sults of complex gamma operator and complex beta operator we introduce the bi-complex
gamma functions and bi-complex beta operators and obtain some results.

1. INTRODUCTION

There exist several ways to generalize complex numbers to higher dimensions. The
most well-known extension is given by the quaternions invented by Hamilton [4] which
are mainly used to represent rotations in three-dimensional space. However, quaternions
are not commutative in multiplication. Another extension was found at the end of the 19th

century by Corrado Segre who described special multidimensional algebras and he named
their elements n-complex numbers [14]. These type of numbers are now commonly named
multicomplex numbers which were studied in details by Price [12] and Fleury [3]. In the
recent years there are many investigation on bi-complex modules are given by [9, 10, 11]
and references their in. bi-complex number, just like the quaternion, is a generalization
of complex number to four real dimensions introduced by Segre [14]. These two number
systems differ because:

(i) Quaternions which form a division algebra, while bi-complex numbers do not, and
(ii) bi-complex numbers are commutative, whereas quaternions are not.

For such reasons, the bi-complex number system has been shown to be more attractive
(compared to the quaternions).

f(z0+hi1+hi2) := f(z0)+h(i1+i2)f
′(z0)+h2(i1+i2)

2 f
′′(z0)

2!
+· · ·+hn(i1+i2)

n f
(n)(z0)

n!
+O(h(n+1)).
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We describe how to define elementary functions such as algebra of series of a function on
bi-complex space and Taylor series representation in case of holomorphic functions.

The aim of the present article is to obtain the results on infinite products of series of
a function on bi-complex space of holomorphic functions; and obtain some results for bi-
complex gamma functions and bi-complex beta operators in same space C2. In case of
Gamma functions we define Γ(z), z ∈ C2, in terms of Eulerian integral as

Γ(z) =

∫ ∞

0

e−xxz−1 dz, Re(z) > 0.

The bi-complex Euler’s Beta function B(µ, ν) is defined as

B(µ, ν) =
∫ 1

0

xµ−1(1− x)ν−1 dx µ, ν ∈ C2, Re(µ), Re(ν) > 0,

so for all n ∈ N and z ∈ C2 satisfying 0 < Re(z) < 1, and
the bi-complex Beta operator is defined as

Cn(f, z) =
1

B(nz, n(1− z))

∫ 1

0

xnz−1(1− x)n(1−z)−1f(x) dx.

2. PRELIMINARIES

2.1. Bi-complex numbers. We start with the following basic definition of bi-complex
numbers.

Definition 2.1 (cf. [2], [1]). The set of the bi-complex numbers is defined as

C2 := {z1 + z2i2 | z1, z2 ∈ C1(i1)} (2.1)

where i1, i2 are the imaginary units and governed by the rules

i21 = i22 = −1, i1i2 = i2i1 = j (2.2)

and so,
j2 = 1, i1j = ji1 = −i2, i2j = ji2 = −i1 (2.3)

Note that we define

C1(ik) := {x+ yik | i2k = −1 and x, y ∈ R for k = 1, 2} (2.4)

where C1 is the set of complex numbers with the imaginary units ik for k = 1, 2. Thus
the bi-complex numbers are complex numbers with complex coefficients, which explain
the name of bi-complex, and there is a deep similarities in properties of complex and bi-
complex numbers.
With the addition and the multiplication of two bi-complex numbers defined in the obvious
way, the set C2 makes up a commutative ring. In fact they are the particular case of the so
called multicomplex numbers (denoted by MC ).
Clearly the bi-complex number.

C2 ∼= ClC(1, 0) ∼= ClC(0, 1) (2.5)

are unique among the complex Clifford algebras in that they are commutative but not divi-
sion algebras. It is also convenient to write the set of bi-complex numbers as

C2 := {x0 + x1i1 + x2i2 + x3i1i2 | x0, x1, x2, x3 ∈ R}. (2.6)

We know the complex conjugation plays an important role for both algebraic and geometric
properties of C1. So for bi-complex numbers there are three possibilities of conjugations.
Let z ∈ C2 and z1, z2 ∈ C1(i1), such that z := z1 + z2i2, then we define the three
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conjugation as:
z†1 = (z1 + z2i2)

†1 = z1 + z2i2 (2.7)
z†2 = (z1 + z2i2)

†2 = z1 − z2i2 (2.8)
z†3 = (z1 + z2i2)

†3 = z1 − z2i2. (2.9)
These three kinds of conjugation have some of the standard properties of conjugations,
such as

(z1 + z2)
†k = z†k1 + z†k2 (2.10)

(z†k1 )†k = z1 (2.11)

(z1.z2)
†k = z†k1 .z†k2 . (2.12)

We know that the product of a standard complex number with its conjugate gives the square
of the Euclidean metric in R2. Thus the analogues of this, for bi-complex numbers, are the
following. Let z1, z2 ∈ C1(i1) and z := z1 + z2i2 ∈ C2, then we have:

| z |2i1= z.z†2 = z21 + z22 ∈ C1(i1) (2.13)

| z |2i2= z.z†1 = (| z1 |2 − | z2 |2) + 2Re(z1z2)i2 ∈ C1(i2) (2.14)

| z |2j= z.z†3 = (| z1 |2 + | z2 |2)− 2Im(z1z2)j ∈ D, (2.15)
where D is the subalgebra of hyperbolic numbers, and is defined as

D := {x+ yj | j2 = 1, x, y ∈ R, } ∼= ClR(0, 1). (2.16)

Note that for z1, z2 ∈ C1(i1) and z := z1+z2i2 ∈ C2, we can define the usual (Euclidean

in R4) norm of z as | z |=
√
| z1 |2 + | z2 |2 =

√
Re(| z |2j ). It is easy to verifying that

z. z†2

|z|2i1
= 1. Hence the inverse of z is given by

z−1 =
z†2

| z |2i1
. (2.17)

2.2. Idempotent basis. bi-complex algebra is considerably simplified by the introduction
of two bi-complex numbers e1 and e2 defined as e1 = 1+i1i2

2 , e2 = 1−i1i2
2 Infact e1 and e2

are hyperbolic numbers (i1i2 = i2i1 = j). They make up the so called idempotent basis
of the bi-complex numbers, and one easily can check that

e21 = e1, e
2
2 = e2, e1 + e2 = 1, e1.e2 = 0, e†3k = ek (for k = 1, 2). (2.18)

Thus any bi-complex number can be written as

z = z1 + z2i2 = α1e1 + α2e2,where α1 = z1 − z2i1, α2 = z1 + z2i1. (2.19)

Definition 2.2 (cf. Definition 5 [13]). For any positive integer n and any z ∈ C2 we define

nz = ez ln(n). (2.20)

As an immediate consequence of this definition it is clear that nz is invertible for each
z ∈ C2. Now we have

az = (exp)z ln a = (exp)(αe1+βe2) ln a = aαe1 + aβe2. (2.21)

Definition 2.3 (cf. [5]). Let A1 and A2 be complex spaces defined as A1 = {z1 − z2i1 |
z1, z2 ∈ C1} and A2 = {z1 + z2i1 | z1, z2 ∈ C1}. Then the Cartesian set determined by
X1 and X2 in A1 and A2 respectively is defined as: X1 ×e X2 = z1 + z2i2 = α1e1 +
α2e2, where α1 ∈ X1, α2 ∈ X2. With the help of idempotent representation we define
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some functions : h1 : C2 → A1, h2 : C2 → A2 as follows

p1(z1+z2i2) = h1[(z1−z2i1)e1+(z1+z2i1)e2] = (z1−z2i1) ∈ A1,∀(z1+z2i2) ∈ C2

(2.22)
p2(z1+z2i2) = h2[(z1−z2i1)e1+(z1+z2i1)e2] = (z1+z2i1) ∈ A2,∀(z1+z2i2) ∈ C2.

(2.23)

Theorem 2.1 (cf. Theorem 2, cf. [2]). Let X1 and X2 be open sets in C1(i1)}. If
fe1 : X1 → C1(i1) and fe2 : X2 → C1(i1) be holomorphic functions of C1(i1) on X1

and X2 respectively. Then the function f : X1 ×e X2 → C2 is defined as

f(z1 + z2i2) = fe1(z1 − z2i1)e1 + fe2(z1 + z2i1)e2,∀z1 + z2i2 ∈ f : X1 ×e X2 (2.24)

which is C2 holomorphic on the open set X1 ×e X2, and

f ′(z1+z2i2) = f ′
e1(z1−z2i1)e1+f ′

e2(z1+z2i1)e2,∀z1+z2i2 ∈ f : X1×eX2. (2.25)

Definition 2.4 (cf. Definition 6 [7]). Let zn = αne1 + βne2 for n ≥ 1. The sequence
{zn}n≥1 is said to be convergent component-wise if the sequence of the complex numbers
{αn} and {βn} are convergent in the complex plane to complex numbers α0 and β0, re-
spectively. In this case, we write zn → z0 = α0e1 + β0e2, and we say that zn has limit
z0.

Theorem 2.2 (cf. Theorem 12 [13]). Let {zn = z1,n+ z2,ni2}∞n=1 ⊆ C2 be invertible for
each positive integer n. Then

∏∞
n=1 zn converges if and only if both (

∏∞
n=1 z1,n − z2,ni1)

and (
∏∞

n=1 z1,n + z2,ni1) converge. Further, when convergent, we obtain the identity.
∞∏

n=1

zn = (

∞∏
n=1

z1,n − z2,ni1)e1 + (

∞∏
n=1

z1,n + z2,ni1)e2.

2.3. bi-complex holomorphic functions. It is also possible to define differentiability of
a function at a point of C2.

Definition 2.5 (cf. Definition 1 [2]). Let U be an open set of C2 and z0 ∈ U . Then, f :
U ⊂ C2 → C2 is said to be C2- differentiable at z0 with derivative equal to f ′(z0) ∈ C2 if

lim
z→z0

z−z0 inv.

f(z)− f(z0)

z − z0
= f ′(z0). (2.26)

We also say that the function f is bi-complex holomorphic (C2- holomorphic) on an
open set U if and only if f is C2- differentiable at each point of U . Using z = z1 +
z2i2, a bi-complex number z can be seen as an element (z1, z2) of C2, so a function
f(z1 + z2i2) = f1(z1, z2) + f2(z1, z2)i2 of C2 can be seen as a mapping f(z1, z2) =
(f1(z1, z2), f2(z1, z2)) of C2.

Theorem 2.3 (cf. Theorem 2 [6]). Let f : U ⊂ C2 → C2 be a function, and f(z1 +
z2i2) = f1(z1, z2) + f2(z1, z2)i2, where z1, z2 ∈ C1. Then the following are equivalent

(i) f is holomorphic in U .
(ii) f1 and f2 are holomorphic in z1 and z2 and satisfying the bi-complex Cauchy-

Riemann equations:
∂f1
∂z1

=
∂f2
∂z2

, and
∂f2
∂z1

= −∂f1
∂z2

(2.27)

(iii) f can be represented, near every point z0 ∈ U , by a Taylor series.
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Theorem 2.4 (Weierstrass factorization theorem for complex number). Given an infinite
sequences of complex numbers a0 = 0, a1, · · · , an, · · · with no finite point of accumula-
tion, the most general entire function having zeros at those points only (at zero an, n ≥ 1,
of multiplicity α being repeated α times in the sequence)is given by

F (w) = eh(w)wm
∞∏

n=1

E(
w

an
; kn), (2.28)

where h(w) is an arbitrary entire function, (m ≥ 0), is the order of multiplicity a0 = 0
and kn are non negative integers such that the series

∞∑
n=1

| w

an
|kn+1 (2.29)

converges for each finite value of w.

The Weierstrass factorization theorem for the complex numbers gives

F (w) = eh(w)w

∞∏
n=1

(1 +
w

n
)e−

w
n (2.30)

as the most general entire function having the prescribed zeros. By taking h(w) = γw
where the constant γ is chosen so that F (1) = 1, {as w = 1 }, a particular entire function
F1(w) is given by

F1(w) =
1

Γ(w)
= eγww

∞∏
n=1

(1 +
w

n
)e−

w
n . (2.31)

We define Γ(w) in terms of the Eulerian integral as

Γ(w) =

∫ ∞

0

e−xxw−1 dx, Re(w) > 0. (2.32)

Theorem 2.5 (cf. [5]). Let z = z1 + z2i2 = αe1 + βe2, f(z) = f1(α)e1 + f2(β)e2. Then
f(z) is convergent in a domain D if and only if f1(α) and f2(β) are convergent in domain
p1 : D → D1 and p2 : D → D2 respectively, and we can write∫

D

f(z)dz =

∫
D1

f(α)dαe1 +

∫
D2

f(β)dβe2 (2.33)

3. CONVERGENCE OF SEQUENCE OF BI-COMPLEX NUMBERS

With the help of Theorem 2.4, we have the following result.

Theorem 3.1. Let z = z1 + z2i2 = αe1 + βe2 be any bi-complex number where as
α = {z1 − z2i1 | z1, z2 ∈ C1} and β = {z1 + z2i1 | z1, z2 ∈ C1}, and let X1 and
X2 be open sets in C1(i1). If fe1 , ge1 : X1 → C1(i1) and fe2 , ge2 : X2 → C1(i1) are
holomorphic functions of C1(i1)} on X1 and X2 respectively, then ∀z1 + z2i2 ∈ C2 we
have f, g : X1 ×e X2 → C2 defined as

f(z) = fe1(α)e1 + fe2(β)e2

g(z) = ge1(α)e1 + ge2(β)e2

are C2 holomorphic on the open set X1 ×e X2 and

f ′(z) = f ′
e1(α)e1 + f ′

e2(β)e2

g′(z) = g′e1(α)e1 + g′e2(β)e2.
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Moreover we have the following

f(z)± g(z) = (fe1(α)± ge1(α))e1 + (fe2(β)± ge2(β))e2 (3.1)

f ′(z)± g′(z) = (f ′
e1(α)± g′e1(α))e1 + (f ′

e2(β)± g′e2(β))e2 (3.2)
f(z).g(z) = fe1(α)ge1(α)e1 + fe2(β)ge2(β)e2 (3.3)

f(z)

g(z)
=

fe1(α)

ge1(α)
e1 +

fe2(β)

ge2(β)
e2. (3.4)

Proof. Easy. □

If put k = 2 in Definition 3 of [6], we get the following.

Definition 3.1. Let C2 := {z = z1 + z2ik | z1, z2 ∈ C1} be a bi-complex number, and let
f : U ⊂ C2 → C2 be a bi-complex holomorphic function in U . Then about a point z0, the
Taylor series can be expressed as :

f(z0+hi1+hi2) := f(z0)+h(i1+i2)f
′(z0)+h2(i1+i2)

2 f
′′(z0)

2!
+· · ·+hn(i1+i2)

n f
(n)(z0)

n!
+O(h(n+1))

(3.5)
where fn denotes the nth order derivative, and

(i1 + i2)
k :=

∑
x1,x2

x1+x2=k

n!

x1!x2!
ix1
1 ix2

2 . (3.6)

Theorem 3.2. Let z = z1 + z2i2 be any bi-complex number with | z |< 1 and z =
{αe1 + βe2 | α, β ∈ C1}, where e1, e2 are idempotent basis. Then the series

∑∞
n=0 z

n

is convergent to 1
1−z , if

∑∞
n=0 α

n converges to 1
1−α and

∑∞
n=0 β

n converges to 1
1−β ,

provided | α |, | β |< 1.

Proof. Simply from [8], we have
∑∞

n=0 α
n = 1

1−α and
∑∞

n=0 β
n = 1

1−β .

Using Theorem 2.4 we have
∞∑

n=0

αne1 + βne2 =
1

1− α
e1 +

1

1− β
e2.

Hence
∞∑

n=0

zn =
1

1− z
,

where if | α |, | β |< 1, then we have | z |< 1. □

Corollary 3.3. Let z = z1 + z2i2 be any bi-complex number with | z |> 1 and {z =
αe1 + βe2 | α, β ∈ C1}, where e1, e2 are idempotent basis. Then the series

∑∞
n=1 z

−n

is convergent to 1
z−1 , if

∑∞
n=1 α

−n converges to 1
α−1 and

∑∞
n=1 β

−n converges to 1
β−1 ,

provided | α |, | β |> 1.

Proof. Simply
∑∞

n=1 α
−n = 1

α−1 and
∑∞

n=1 β
−n = 1

β−1 imply that
∞∑

n=1

α−ne1 + β−ne2 =
1

α− 1
e1 +

1

β − 1
e2.

Hence
∞∑

n=0

z−n =
1

z − 1
.

□
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Theorem 3.4. Let f : U ⊂ C2 → C2 be holomorphic in U , and f(z) =
∑∞

n=0 z
n, with

C2 = {z :| z |< 1}. Then at any point z0 ∈ C2, we have

f(z) =
1

1− z0
+

1

(1− z0)2
(z−z0)+

1

(1− z0)3
(z−z0)

2+· · ·+ 1

(1− z0)n+1
(z−z0)

n+O(n+1).

(3.7)

Proof. We have

f(z) =

∞∑
n=0

zn =
1

1− z
,

which implies that

f (n)(z) =
n!

(1− z)n+1
, n = 1, 2, · · · .

Now put nth derivative of f about a point z0 in (3.5), we have

f(z0+h(i1+i2)) =
1

1− z0
+h(i1+i2)

1

(1− z0)2
+(h(i1+i2))

2 1

(1− z0)3
+· · ·+(h(i1+i2))

n 1

(1− z0)n+1
+O(hn+1).

If z0 + h(i1 + i2) = z, then we have

f(z) =
1

1− z0
+(z−z0)

1

(1− z0)2
+(z−z0)

2 1

(1− z0)3
+· · ·+(z−z0)

n 1

(1− z0)n+1
+O(n+1).

□

Now we define the following:

Definition 3.2 (cf. Definition 3 [13]). For any sequence {an}∞n=1 ⊂ C2, the infinite
product

∏∞
n=1 an is said to be convergent provided only a finite number of terms in the

sequence are non-invertible and the product formed by the invertible terms in the sequence
tend to a finite limit.

Definition 3.3. Let {an}∞n=1 be a sequence in bi-complex space C2, where an = αne1 +
βne2, and an ̸= −1 for all n ∈ N. Then the infinite product

∏∞
n=1(1 + an) is said to

be absolutely convergent iff the series
∑∞

n=1 log(1 + an) is absolutely convergent, where∑∞
n=1 log(1 + an) =

∑∞
n=1 log(1 + αn)e1 +

∑∞
n=1 log(1 + βn)e2.

Theorem 3.5. Let {zn}∞n=1 be a sequence in bi-complex space C2, where zn = αne1 +
βne2, and zn ̸= −1 for all n ∈ N. Then the infinite product

∏∞
n=1(1 + zn) is abso-

lutely convergent iff the series
∑∞

n=1 αn and
∑∞

n=1 βn are absolutely convergent, i.e., if∑∞
n=1 zn is absolutely convergent.

Proof. If | α |< 1, z ̸= 0, then we have

log(1 + α) = α− α2

2
+

α3

3
− · · · . (3.8)

Here

| log(1 + α)

α
− 1 |≤ | α |

2
+

| α |2

3
+

| α |3

4
+ · · · ≤ 1

2

∞∑
m=1

| α |m . (3.9)

For all n > N, such that αn ̸= 0, let α = αn in (3.9), we obtain

| log(1 + αn)

αn
− 1 |≤ 1

2

∞∑
m=1

| αn |m≤ 1

2

∞∑
m=1

1

2m
=

1

2
.

So we have
1

2
≤| log(1 + αn)

αn
≤ 3

2
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1

2
| αn |≤| log(1 + αn) |≤

3

2
| αn | . (3.10)

This inequality holds also for αn = 0. So that the equation (3.10) is valid for all n > N.
Hence,

1

2

∞∑
n=N+1

| αn |≤
∞∑

n=N+1

| log(1 + αn) |≤
3

2

∞∑
n=N+1

| αn | . (3.11)

Similarly
1

2

∞∑
n=N+1

| βn |≤
∞∑

n=N+1

| log(1 + βn) |≤
3

2

∞∑
n=N+1

| βn | . (3.12)

Using Theorem 2.4 and equations (3.11) and (3.12), we have

1

2

∞∑
n=N+1

(| αn | e1+ | βn | e2) ≤
∞∑

n=N+1

(| log(1+αn) | e1+ | log(1+βn) | e2) ≤
3

2

∞∑
n=N+1

(| αn | e1+ | βn | e2).

1

2

∞∑
n=N+1

| zn |≤
∞∑

n=N+1

| log(1 + zn) |≤
3

2

∞∑
n=N+1

| zn | . (3.13)

Therefore, if
∑∞

n=1 | αn |and
∑∞

n=1 | βn | converge then
∑∞

n=1 | log(1 + αn) |and∑∞
n=1 | log(1+βn) | converge. Hence if

∑∞
n=1 | zn | converges then

∑∞
n=1 | log(1+zn) |

converges and conversely. □

Example. Consider
∏∞

n=1(1 +
1

(2+i1+i2+i1i2)n
).

We have
∞∑

n=1

| 1

(2 + i1 + i2 + i1i2)n
|=

∞∑
n=1

1

(
√
7)n

.

Since the last series converges, the given product converges absolutely.

4. EULER’S GAMMA FUNCTION FOR BI-COMPLEX NUMBERS

We prove the following theorems on Euler’s Gamma functions for the bi-complex num-
bers.

Theorem 4.1. Let z = {z1 + z2i2 | z1, z2 ∈ C1(i1)} = αe1 + βe2. Then the Eulerian
gamma integral for bi-complex number z is Γ(z) =

∫∞
0

e−xxz−1 dz, Re (z) > 0, if we
have Γ(α) =

∫∞
0

e−xxα−1 dx and Γ(β) =
∫∞
0

e−xxβ−1 dx, provided Re (α) > 0 and
Re (β) > 0.

Proof. z1 = x1 + x2i1, z2 = x2 + y2i1

α = z1 − z2i1 = (x1 + y2) + (y1 − x2)i1, β = z1 + z2i1 = (x1 − y2) + (y1 + x2)i1

Re(α) > 0, Re(β) > 0 ⇒ Re(z) > 0, where z = x1 + y1i1 + x2i2 + y2i1i2

we have

Γ(α) =

∫ ∞

0

e−xxα−1 dx, Re(α) > 0

Γ(β) =

∫ ∞

0

e−xxβ−1 dx, Re(β) > 0

Γ(z) = Γ(α)e1 + Γ(β)e2 (4.1)
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Γ(α)e1 + Γ(β)e2 =

∫ ∞

0

e−xxα−1 dxe1 +

∫ ∞

0

e−xxβ−1 dxe2

=

∫ ∞

0

e−xx(α−1)e1+(β−1)e2 dx

=

∫ ∞

0

e−xxαe1+βe2−1 dx

=

∫ ∞

0

e−xxz−1 dz = Γ(z), Re(z) > 0.

□

Theorem 4.2. Let z = z1 + z2i2 = αe1 + βe2. Then the Γ - function for bi-complex
number z is

1

Γ(z)
= eγzz

∞∏
n=1

(1 +
z

n
)e−

z
n . (4.2)

If for any α, β ∈ C1(i1) or C1(i2), we have

1

Γ(α)
= eγαα

∞∏
n=1

(1 +
α

n
)e−

α
n ,

1

Γ(β)
= eγββ

∞∏
n=1

(1 +
β

n
)e−

β
n ,

where the constant γ is Euler constant and is chosen so that Γ(e1 + e2) = e1 + e2.

Proof. We have

Γ(αe1 + βe2) = Γ(α)e1 + Γ(β)e2
1

Γ(αe1 + βe2)
=

1

Γ(α)
e1 +

1

Γ(β)
e2

1

Γ(α)
e1 +

1

Γ(β)
e2 = eγαα

∞∏
n=1

(1 +
α

n
)e−

α
n e1 + eγββ

∞∏
n=1

(1 +
β

n
)e−

β
n e2

= (eγααe1 + eγββe2)(

∞∏
n=1

(1 +
α

n
)e−

α
n e1 +

∞∏
n=1

(1 +
β

n
)e−

β
n e2)

⇒ 1

Γ(αe1 + βe2)
= eγ(αe1+βe2)(αe1 + βe2)

∞∏
n=1

(1 +
αe1 + βe2

n
)e−

αe1+βe2
n

⇒ 1

Γ(z)
= eγzz

∞∏
n=1

(1 +
z

n
)e−

z
n , where z ∈ C2.

□

Lemma 4.3. let zn = 1 + 1
2 + · · ·+ 1

n . Then we have

lim
n→∞

(zn − lnn) = γ,

where γ is Euler constant and chosen as Γ(e1 + e2) = e1 + e2.

Proof. Put z = e1 + e2 in (4.2), we have

e1 + e2 = eγ
∞∏

n=1

(1 +
1

n
)e−

1
n .
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Hence,

−γ =

∞∑
n=1

(ln
n+ 1

n
− 1

n
)

= lim
n→∞

(ln
2

1
− 1

1
+ ln

3

2
− 1

2
+ · · ·+ ln

n+ 1

n
− 1

n
)

= lim
n→∞

{ln(2
1
.
3

2
. · · · n

n− 1
) + ln

n+ 1

n
− (1 +

1

2
+ · · ·+ 1

n
)}

= lim
n→∞

(lnn− zn).

□

Theorem 4.4. Let z = z1 + z2i2 = αe1 + βe2. Then the Euler’s function for bi-complex
number z is

Γ(z) = lim
n→∞

n!nz

z(z + 1)(z + 2) · · · (z + n)
. (4.3)

Proof. Using Lemma 4.3 and equation (4.2), we get the result. □

Corollary 4.5. Let z = z1 + z2i2 = αe1 + βe2 be any bi-complex number. Then we have

Γ(z + 1) = zΓ(z), z ̸= 0,−1,−2, · · · , (4.4)

Γ(z)Γ(1− z) =
π

sinπz
. (4.5)

Theorem 4.6. For any α, β ∈ C1(i1) or C1(i2), if we have α
∏∞

n=1(1−
α2

n2 ) =
sinπα

π and

β
∏∞

n=1(1−
β2

n2 ) =
sinπβ

π . Then for a bi-complex number z = z1 + z2i2 we have

z

∞∏
n=1

(1− z2

n2
) =

sinπz

π
. (4.6)

Proof. We have

α

∞∏
n=1

(1− α2e1
n2

)e1 =
sinπα

π
e1

β

∞∏
n=1

(1− β2e2
n2

)e2 =
sinπβ

π
e2.

On adding and using Theorem 3.1, we get

α

∞∏
n=1

(1− α2

n2
)e1 + β

∞∏
n=1

(1− β2

n2
)e2 =

sinπα

π
e1 +

sinπα

π
e2

(αe1 + βe2)(

∞∏
n=1

(1− α2

n2
)e1 +

∞∏
n=1

(1− β2

n2
)e2) =

sinπ(αe1 + βe2)

π

(αe1 + βe2)

∞∏
n=1

((1− α2

n2
)e1 + (1− β2

n2
)e2) =

sinπ(αe1 + βe2)

π

z

∞∏
n=1

(1− z2

n2
) =

sinπz

π
, where z ∈ C2.

□
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Corollary 4.7. Let z = z1 + z2i2 = αe1 + βe2 be any bi-complex number. Then we have

lim
z→−n

(z + n)Γ(z) =
(−1)n

n!
, n = 0, 1, 2, · · · , (4.7)

lim
n→∞

Γ(z + n)

nzΓ(z)
= 1, z ̸= −n. (4.8)

Theorem 4.8. Let z = z1 + z2i2 = αe1 + βe2 be any bi-complex number. Then there is
just one function F (z) in C2 − {0,−1,−2, · · · } which satisfies the following conditions

(i) F (1) = 1;
(ii) F ((α+ 1)e1 + (β + 1)e2) = (αe1 + βe2)F (αe1 + βe2);

(iii) limn→∞
F ((α+n)e1+(β+n)e2)

n(αe1+βe2)F (n)
= 1.

Proof. We have already seen that the Γ- function satisfies the above equations. Suppose
that there exits a function F (z) which also satisfies all three equations.
From condition (ii) it follows that

F ((α+n)e1+(β+n)e2) = (αe1+βe2)((α+1)e1+(β+1)e2) · · · ((α+n−1)e1+(β+n−1)e2)F (αe1+βe2).
(4.9)

Put z = e1 + e2 in (4.9) and using condition (i) we find
F (n+ 1) = n! or F (n) = (n− 1)!, (n ≥ 1).
Now taking condition (iii) into account, as well as from (4.3) and (4.9), we have

1 = lim
n→∞

F ((α+ n)e1 + (β + n)e2)

nαe1+βe2F (n)

= F (αe1+βe2) limn→∞
(αe1+βe2)((α+1)e1+(β+1)e2)···((α+n−1)e1+(β+n−1)e2)F (αe1+βe2)

n!n(α−1)e1+(β−1)e1

=
F (αe1 + βe2)

Γ(αe1 + βe2)

□

5. EULER’S BETA OPERATOR FOR BI-COMPLEX NUMBERS

We know that the Euler’s beta function in complex plane is defined as

B(µ, ν) =
∫ 1

0

xµ−1(1− x)ν−1 dx µ, ν ∈ C1, Re(µ), Re(ν) > 0. (5.1)

Then for all n ∈ N and z1 ∈ C1(i1) or C1(i2), the complex beta operator is

Cn(f, z1) =
1

B(nz1, n(1− z1))

∫ 1

0

xnz1−1(1− x)n(1−z1)−1f(x) dx, 0 < Re(z1) < 1.

(5.2)
We have following theorem in bi-complex space C2.

Theorem 5.1. Let z = {z1 + z2i2 = αe1 + βe2 | α, β ∈ C1(i1) or C1(i2)}. Then a beta
operator for a bi-complex number z is

B(nz, n(1− z)) =

∫ 1

0

xnz−1(1−x)n(1−z)−1 dx, ∀n ∈ N, and Re(z, 1− z) > 0, (5.3)

where

B(nα, n(1− α)) =

∫ 1

0

xnα−1(1− x)n(1−α)−1 dx
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B(nβ, n(1− β)) =

∫ 1

0

xnβ−1(1− x)n(1−β)−1 dx,

provided ∀n ∈ N, and Re(α, 1− α) > 0, Re(β, 1− β) > 0.

Proof. We have

B(nz, n(1− z)) = B(nα, n(1− α))e1 + B(nβ, n(1− β))e2 (5.4)

B(nα, n(1− α)) =

∫ 1

0

xnα−1(1− x)n(1−α)−1 dx

B(nβ, n(1− β)) =

∫ 1

0

xnβ−1(1− x)n(1−β)−1 dx

B(nz, n(1− z)) =

∫ 1

0

xnα−1(1− x)n(1−α)−1 dxe1 +

∫ 1

0

xnβ−1(1− x)n(1−β)−1 dxe2

=

∫ 1

0

(xnα−1e1 + xnβ−1e2)((1− x)n(1−α)−1e1 + (1− x)n(1−β)−1e2) dx

=

∫ 1

0

x(nα−1)e1+nβ−1)e2(1− x)(n(1−α)−1)e1+n(1−β)−1)e2 dx

=

∫ 1

0

xn(αe1+βe2)−1(1− x)n(1−αe1+βe2)−1 dx

=

∫ 1

0

xn(αe1+βe2)−1(1− x)n(1−αe1+βe2)−1 dx

=

∫ 1

0

xnz−1(1− x)n(1−z)−1 dx

for all z ∈ C2, and Re(z, 1− z) > 0.
whereas Re(α, 1− α) > 0, Re(β, 1− β) > 0 imply that Re(z, 1− z) > 0. □

Theorem 5.2. Let z = {z1 + z2i2 = αe1 + βe2 | α, β ∈ C1(i1) or C1(i2)}. Then for a
bi-complex number z

Cn(f, z) =
1

B(nz, n(1− z))

∫ 1

0

xnz−1(1−x)n(1−z)−1f(x) dx ∀n ∈ N, and , 0 < Re(z) < 1,

(5.5)
if we have

Cn(f, α) =
1

B(nα, n(1− α))

∫ 1

0

xnα−1(1− x)n(1−α)−1f(x) dx

Cn(f, β) =
1

B(nβ, n(1− β))

∫ 1

0

xnβ−1(1− x)n(1−β)−1f(x) dx,

provided ∀n ∈ N, and 0 < Re(α) < 1, 0 < Re(β) < 1.

Proof. We have

Cn(f, α) =
1

B(nα, n(1− α))

∫ 1

0

xnα−1(1−x)n(1−α)−1f(x) dx ∀n ∈ N, α ∈ C1, 0 < Re(α) < 1

Cn(f, β) =
1

B(nβ, n(1− β))

∫ 1

0

xnβ−1(1−x)n(1−β)−1f(x) dx ∀n ∈ N, β ∈ C1, 0 < Re(β) < 1

Cn(f, z) = Cn(f, α)e1 + Cn(f, β)e2 (5.6)
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Cn(f, α)e1 + Cn(f, β)e2 =
1

B(nα, n(1− α))

∫ 1

0

xnα−1(1− x)n(1−α)−1f(x) dxe1

+
1

B(nβ, n(1− β))

∫ 1

0

xnβ−1(1− x)n(1−β)−1f(x) dxe2

= (
1

B(nα, n(1− α))
e1 +

1

B(nβ, n(1− β))
e2)(

∫ 1

0

xnα−1(1− x)n(1−α)−1f(x) dxe1

+

∫ 1

0

xnβ−1(1− x)n(1−β)−1f(x) dxe2)

=
1

B(nz, n(1− z))

∫ 1

0

xn(αe1+βe2)−1(1− x)n(1−αe1−βe2)−1f(x) dx

=
1

B(nz, n(1− z))

∫ 1

0

xnz−1(1− x)n(1−z)−1f(x) dx ∀n ∈ N, z ∈ C2, 0 < Re(z) < 1

whereas 0 < Re(α) < 1, 0 < Re(β) < 1 ⇒ 0 < Re(z) < 1.
□
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TRAVA, CZECHIA.
ORCID: 0000-0002-2566-3498

Email address: mohdaymanm@gmail.com, ayman.mursaleen@osu.cz

NADEEM RAO

DEPARTMENT OF MATHEMATICS, UNIVERSITY CENTER FOR RESEARCH AND DEVELOPMENT CHANDI-
GARH UNIVERSITY, MOHALI-140243, PUNJAB, INDIA.
ORCID: 0000-0002-5681-9563

Email address: nadeemrao1990@gmail.com

https://orcid.org/0000-0003-4823-0588
https://orcid.org/0000-0002-2566-3498
https://orcid.org/0000-0002-5681-9563

	1.  Introduction
	2.  Preliminaries
	2.1.  Bi-complex numbers
	2.2.  Idempotent basis
	2.3.  bi-complex holomorphic functions

	3.  Convergence of sequence of bi-complex numbers
	4.  Euler's gamma function for bi-complex numbers
	5.  Euler's beta operator for bi-complex numbers
	References

