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SOME RESULTS ON BICOMPLEX NUMBERS AND BICOMPLEX
FUNCTIONS

MD. NASIRUZZAMAN*, MOHAMMAD AYMAN-MURSALEEN AND NADEEM RAO

ABSTRACT. In this paper, we obtain some results on infinite products in bi-complex
space, and the exact order of simultaneous results with quantitative estimate for the bi-
complex gamma functions and bi-complex Beta functions. Finally using the specific re-
sults of complex gamma operator and complex beta operator we introduce the bi-complex
gamma functions and bi-complex beta operators and obtain some results.

1. INTRODUCTION

There exist several ways to generalize complex numbers to higher dimensions. The
most well-known extension is given by the quaternions invented by Hamilton [4]] which
are mainly used to represent rotations in three-dimensional space. However, quaternions
are not commutative in multiplication. Another extension was found at the end of the 19t"
century by Corrado Segre who described special multidimensional algebras and he named
their elements n-complex numbers [14]. These type of numbers are now commonly named
multicomplex numbers which were studied in details by Price [12] and Fleury [3]. In the
recent years there are many investigation on bi-complex modules are given by [9} |10} [11]]
and references their in. bi-complex number, just like the quaternion, is a generalization
of complex number to four real dimensions introduced by Segre [[14]. These two number
systems differ because:

(i) Quaternions which form a division algebra, while bi-complex numbers do not, and
(i1) bi-complex numbers are commutative, whereas quaternions are not.

For such reasons, the bi-complex number system has been shown to be more attractive
(compared to the quaternions).

21" (z0)

(n)
f(Zo-l—hil—l-hig) = f(ZO)-i-h(h+i2)f/(20)+h2(i1+i2) T-‘r' . '+hn(i1—|—7;2)nfT('ZO>+O(h(n+l)).
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We describe how to define elementary functions such as algebra of series of a function on
bi-complex space and Taylor series representation in case of holomorphic functions.

The aim of the present article is to obtain the results on infinite products of series of
a function on bi-complex space of holomorphic functions; and obtain some results for bi-
complex gamma functions and bi-complex beta operators in same space C2. In case of
Gamma functions we define I'(z), 2 € C?, in terms of Eulerian integral as

I'(z) :/ e 2 tdz, Re(z) > 0.
0
The bi-complex Euler’s Beta function B(u, v) is defined as
1
B(p,v) = / "1 — x)""Vdr p,v € C?, Re(u), Re(v) > 0,
0

so foralln € Nand 2 € C? satisfying 0 < Re(z) < 1, and
the bi-complex Beta operator is defined as

1
Wa—» / 7 (1 =2 I (@) de.

2. PRELIMINARIES

Cn(f7 Z) -

2.1. Bi-complex numbers. We start with the following basic definition of bi-complex
numbers.

Definition 2.1 (cf. [2]], [1]]). The set of the bi-complex numbers is defined as
C2 = {21 + 2919 | 21,72 € Cl(ll)} 2.1)

where i1, 79 are the imaginary units and governed by the rules
i? =3 = —1,iyip = igiy = j (2.2)
and so,
3% =1,irj = jiy = —ia,iaj = jiz = —ia (2.3)
Note that we define
C'(ig) := {x +yix | i2 = —1and ,y € Rfor k = 1,2} (2.4)

where C! is the set of complex numbers with the imaginary units i;, for & = 1,2. Thus
the bi-complex numbers are complex numbers with complex coefficients, which explain
the name of bi-complex, and there is a deep similarities in properties of complex and bi-
complex numbers.

With the addition and the multiplication of two bi-complex numbers defined in the obvious
way, the set C? makes up a commutative ring. In fact they are the particular case of the so
called multicomplex numbers (denoted by MIC ).

Clearly the bi-complex number.

C? = Cle(1,0) = Cle(0,1) (2.5)

are unique among the complex Clifford algebras in that they are commutative but not divi-
sion algebras. It is also convenient to write the set of bi-complex numbers as

Cz = {IO + Ilil + Igig + Igilig | 2o, T1,T2,X3 € R} (26)

We know the complex conjugation plays an important role for both algebraic and geometric
properties of C. So for bi-complex numbers there are three possibilities of conjugations.
Let z € C2? and 21,20 € C(iy), such that z := z; + 2905, then we define the three
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conjugation as:

21 = (21 + 2202) 1 =71 + Zoia 2.7
212 = (21 + 2202) 12 = 21 — 2002 (2.8)
210 = (21 + 2002) 1 = Z1 — Zaio. 2.9)

These three kinds of conjugation have some of the standard properties of conjugations,
such as

(21 + 22) Tk = 2]% 4 2f* (2.10)
(z1)fe = 2 2.11)
(21.20)TF = 2T% 23k, (2.12)

We know that the product of a standard complex number with its conjugate gives the square
of the Euclidean metric in R2. Thus the analogues of this, for bi-complex numbers, are the
following. Let 21, zo € C!(i1) and 2 := z; + 2215 € C?, then we have:

| z|?1:z.zT2 =2l + 22 € Cl(iy) (2.13)
|2 2=2.2" = (|21 |* — | 22 ) + 2Re(21%2)i2 € C'(42) (2.14)
| z |?: 2.2t = (| 21 |+ | 22 |*) — 2Im(z1Z2)j € D, (2.15)
where D is the subalgebra of hyperbolic numbers, and is defined as
D:={z+yj|j* =12,y €R,}=Clg(0,1). (2.16)

Note that for 21, 2o € C!(i1) and z := 21 + 2212 € C?, we can define the usual (Euclidean

inRY) norm of z as | z |[= /] 21 [2 + | z2 [2 = /Re(] 2 |3). Itis easy to verifying that

T2 . . .
. é = 1. Hence the inverse of z is given by
i1

2
Sl 2 2.17)

IETH

2.2. Idempotent basis. bi-complex algebra is considerably simplified by the introduction
of two bi-complex numbers e; and e, defined as e; = %, ey = HT”Q Infact e; and e3
are hyperbolic numbers (142 = i9t; = j). They make up the so called idempotent basis
of the bi-complex numbers, and one easily can check that

ef = el,e% =eg,e1 +ey=1,e1.e9 = 0,623 =e¢i (for k =1,2). (2.18)
Thus any bi-complex number can be written as

Z = 21 + 2909 = 11 + asey, Where a; = 21 — 2901, g = 21 + 29147. (2.19)

Definition 2.2 (cf. Definition 5 [[13]). For any positive integer n and any z € C? we define
n? = e*nm), (2.20)

As an immediate consequence of this definition it is clear that n* is invertible for each
z € C%. Now we have

z

a? = (exp)zlna

= (exp)@rthezlne — goe, 4 gfe,. @21
Definition 2.3 (cf. [5]). Let A; and A, be complex spaces defined as A; = {21 — 2211 |
21,22 € C1} and Ay = {21 + 2011 | 21,22 € C'}. Then the Cartesian set determined by
X; and X5 in A; and A, respectively is defined as: Xy x. Xo = 21 + 2200 = 61 +
ageq, Where oy € Xp, 0 € Xo. With the help of idempotent representation we define
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some functions : h; : C2 — A, hy : C2 — A, as follows

p1(21 + 22i2) = hi[(21 — 2211)e1 + (21 + 2211 )ea] = (21 — 22i1) € A1, V(21 + 2262) € C
(2.22)

pz(zl +22i2) = hg[(zl 72’22‘1)61 + (2’1 +2’2i1)62} = (2’1 +22i1) c AQ, V(Zl +2’2i2) S CQ.
(2.23)

Theorem 2.1 (cf. Theorem 2, cf. [2). Let X, and Xy be open sets in C'(iy)}. If
fe, : X1 — Cl(iy) and f., : Xo — Cl(i1) be holomorphic functions of C*(i1) on X;
and X respectively. Then the function f : X, x. Xo — C2 is defined as

f(z1+ 22i2) = fo, (21 — 22i1)€1 + fe, (21 + 2211 )e2, V21 + 2002 € f 1 X1 X Xo (2.24)
which is C? holomorphic on the open set X1 x . Xs, and

f/(Zl +2’2i2) = fél (2’1 —Z2i1)61 —|—fé2 (2’1 +22i1)62,vzl + 2919 € f Xy X Xo. (2.25)

Definition 2.4 (cf. Definition 6 [7]]). Let z, = «a,e; + Bpeo for n > 1. The sequence
{#n}n>11is said to be convergent component-wise if the sequence of the complex numbers
{a,} and {f,} are convergent in the complex plane to complex numbers «q and Sy, re-
spectively. In this case, we write z,, — zgp = ape; + Poes, and we say that z,, has limit
Z0.

Theorem 2.2 (cf. Theorem 12 [13])). Let {z, = 21, + 22,002 }°2; C C? be invertible for
each positive integer n. Then [, 2, converges if and only if both ([ [}~ 21, — 22,n11)
and (I])_; z1,n + 22,ni1) converge. Further, when convergent, we obtain the identity.

oo o0 o0
II 2 = (I] 210 = z2min)er + (] 21m + 22.ni1)e2.

n=1 n=1 n=1

2.3. bi-complex holomorphic functions. It is also possible to define differentiability of
a function at a point of C2.

Definition 2.5 (cf. Definition 1 [2]). Let U be an open set of C? and zy € U. Then, f :
U C C% — C? is said to be C2- differentiable at 2o with derivative equal to f/(zg) € C? if
. f(z)ff(z())i /

We also say that the function f is bi-complex holomorphic (C2- holomorphic) on an
open set U if and only if f is C2- differentiable at each point of U. Using z = z; +
2912, a bi-complex number z can be seen as an element (21, z3) of C?, so a function
f(z1 + 22i2) = fi(21,22) + fa(21, z2)ip of C? can be seen as a mapping f(z1,22) =

(f1(z1, 22), fa(z1, 22)) of C2.

Theorem 2.3 (cf. Theorem 2 [6]). Let f : U C C? — C? be a function, and f(z +
29i9) = f1(z1, 22) + fa(21, 22)ia, where 21, 2o € CL. Then the following are equivalent
(i) f is holomorphic inU.
(ii) f1 and f2 are holomorphic in z1 and zo and satisfying the bi-complex Cauchy-
Riemann equations:

oh _0f ,0f  Oh
021 322, 0z1 0z

(iii) f can be represented, near every point zo € U, by a Taylor series.

(2.27)
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Theorem 2.4 (Weierstrass factorization theorem for complex number). Given an infinite
sequences of complex numbers ay = 0,a1,- -+ ,an, -+ with no finite point of accumula-
tion, the most general entire function having zeros at those points only (at zero a,,n > 1,
of multiplicity o being repeated « times in the sequence)is given by

F(w) = "@w™ [ E(aﬂ; k), (2.28)
n=1 n

where h(w) is an arbitrary entire function, (m > 0), is the order of multiplicity ag = 0
and k., are non negative integers such that the series

= w
Z | — |Fntt (2.29)
an
n=1
converges for each finite value of w.

The Weierstrass factorization theorem for the complex numbers gives

w

F(w) = eh®) 1+ Dye=% 2.30

(w) =" };[1( + o Je (2.30)
as the most general entire function having the prescribed zeros. By taking h(w) = yw
where the constant y is chosen so that F'(1) = 1, {as w = 1 }, a particular entire function
Fi(w) is given by

1 = W, _w
F; =——=¢" 14+ —)e ». 2.31

We define I'(w) in terms of the Eulerian integral as

I'(w) = / e 2" tdz, Re(w) > 0. (2.32)
0

Theorem 2.5 (cf. [3]). Let z = 21 + 2205 = ey + Bea, f(2) = fi(a)er + f2(B)es. Then
f(2) is convergent in a domain D if and only if f1(c) and f2(B) are convergent in domain
p1: D — Dy and ps : D — Dy respectively, and we can write

/ f(z)dz = fla)dae; + f(B)dBes (2.33)
D D, Doy

3. CONVERGENCE OF SEQUENCE OF BI-COMPLEX NUMBERS

With the help of Theorem 2.4, we have the following result.

Theorem 3.1. Let z = 21 + 2902 = ae; + [es be any bi-complex number where as
a = {2z — 201 | 21,22 € C'}and B = {21 + 2201 | 21,22 € C'}, and let X, and
Xy be open sets in C1(i1). If fe,,ge, : X1 — Cl(i1) and fe,, ge, : Xo — Cl(iy) are
holomorphic functions of C1(i1)} on X1 and X respectively, then ¥z, + z2ia € C? we
have f,qg: X1 x. Xo — C? defined as

f(Z) = f61 (05)61 + er(ﬂ)GQ

9(2) = ge, (@)e1 + ge, (B)e2
are C? holomorphic on the open set X1 x . Xo and

f'(2) = fe, (@)er + fe, (Bez

9'(2) = g., (@)er + g, (B)ea.
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Moreover we have the following

[(2) £ 9(2) = (fe, (@) £ ge, (@))er + (fer (B) £ gen (B))e2 3.1)
f(2) £4'(2) = (fi, (@) £ ., ()er + (fL,(B) £ g.,(8))ea (3.2)
[(2).9(2) = fe, (@)ge, (@)er + fe, (B)ge, (B)e2 (3.3)
f(z) f61( ) f62(5)
1) " 0@ T 9a® G5
Proof. Easy. (]

If put k£ = 2 in Definition 3 of [6], we get the following.

Definition 3.1. Let C? := {z = 21 + 29} | 21, 22 € C'} be a bi-complex number, and let
f:U C C? — C? be a bi-complex holomorphic function in U. Then about a point zg, the
Taylor series can be expressed as :

2 " (20) n ™ (20)

f(zo+his+hiz) := f(20)+h(iy+ia) f(z0)+h? (i1 +iz)? o TR i) +O(R" D)
(3.5)
where f™ denotes the nt" order derivative, and
L n!
(i1 +i2)" = ;; PR (3.6)
Zlﬂ-lizzzkl

Theorem 3.2. Let z = z1 + 2212 be any bi-complex number with | z |< 1 and z =

{aer + Bes | a, B € C'}, where ey, e5 are idempotent basis. Then the series Y .-, 2"

[e%¢) n 1 o n 1
no @™ converges to 1~ and )~ " converges to 3

1-2z’

provided | o |,| B |< 1.

Proof. Simply from [8], we have >~ o™ = ﬁ and > 7 B" = ﬁ
Using Theorem 2.4 we have

@

Zae—i—b’e + L
1 2 = et 52.
Hence -
S
=0
where if | a |,| B |< 1, then we have | z |< 1. O

Corollary 3.3. Let z = z1 + 2202 be any bi-complex number with | z |> 1 and {z =
aey + PBes | a, B 6 C'}, where 61, eo are idempotent basis. Then the series > -, 2"
is convergent to - 1, if Y02 a~" converges to — and oo L BT converges to ﬁl I
provided | « |, | B |> 1.

Proof. Simply > ;o™ " = s and > " 7" = %1 imply that

1 1
Za e+ 47" 61+5 12~

Hence

o0
Seme
—
n=0
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Theorem 3.4. Let f : U C C? — C? be holomorphic in U, and f(z) = Y ", 2", with
C?% = {z:| z |< 1}. Then at any point zy € C?, we have

1 1 1

1 2
= — — (2= ot ——————(2—29)"+0O 1).
L e R A () EA A (P Tl A
(3.7)
Proof. We have
oo " 1
f(z):n;z =—,
which implies that
F7e) = (1 — z)nt+1’ n=12,--
Now put nt” derivative of f about a point zg in (3.5), we have
1 1 1 1
h(iy+is)) = h(ig+is) ————+(h(i1+i))? ———++ - 4 (h(i141i2))" ——————+O(R" ).
f(zo+h(i1+iz)) 1—z0+ (21+12)(1_ZO)2+( (41+12)) (1—z0)3+ +(h(i1+iz)) (1= 2g) 1 +0O( )
If zg + h(i1 + iz) = z, then we have
1 1 9 1 1
= ) — — T (e ——— 1O 1).
f(z) 1_20+(Z ZO)(l—z())2+(Z 20) (1_20)3+ +(2—20) (1 _Zo)n+1+ (n+1)
O

Now we define the following:

Definition 3.2 (cf. Definition 3 [13]}). For any sequence {a,}°; C C2, the infinite
product Hfle a, is said to be convergent provided only a finite number of terms in the
sequence are non-invertible and the product formed by the invertible terms in the sequence

tend to a finite limit.

Definition 3.3. Let {a,,}22; be a sequence in bi-complex space C?, where a,, = ane1 +
Bnea, and a,, # —1 for all n € N. Then the infinite product Hzozl(l + ay,) is said to
be absolutely convergent iff the series ZZO:l log(1 + a,,) is absolutely convergent, where
Yoo log(1+an) =307 log(14 ay)er + > or log(1+ By)es.

Theorem 3.5. Let {z,}°2 , be a sequence in bi-complex space C?, where z, = anei +
Brea, and z, # —1 for all n € N. Then the infinite product [[°~_, (1 + z) is abso-
lutely convergent iff the series E;ozl oy, and E;ozl Br are absolutely convergent, i.e., if
Z;’;l zn, is absolutely convergent.

Proof. If | a |< 1, z # 0, then we have

2 3
log(l+a)=a— 2+ ..., (3.8)
2 3
Here
log(1 + ) lal  |af Jaf 1 ¢
— 1< — <= m., 3.
| = IR R R SES PO (3.9)
For all n > N, such that av,, # 0, let & = «, in (3.9), we obtain
log(1 + a,) 1 & 11 1
— " 1< = a < = — =,
= |—2;|a‘—2;2m 2

So we have
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1 3

§\an|§|log(1+an)|§§|an|. (3.10)
This inequality holds also for o, = 0. So that the equation (3.10) is valid for all n > N.
Hence,

1 oo oo 3 oo
3 2 lawls Do Jlogltan)|<s Do fan]. 3.11)
n=N+1 n=N+1 n=N+1
Similarly
1 oo oo 3 oo
5 2 1Buls Y log(l+Bu) <5 > 16ul. (3.12)
n=N+1 n=N+1 n=N+1
Using Theorem 2.4 and equations (3.11) and (3.12), we have
1 oo oo 3 oo
5 2 (anlent Balea) < Y (Hog(l+an) |ert [log(1+8,) [e2) 5 D7 ([an | e+ | fu | e2).
n=N+1 n=N+1 n=N+1
1 oo oo 3 oo
3 2 el D0 Nog(l+z) <y Do lal. (3.13)
n=N-+1 n=N+1 n=N+1

Therefore, if 2, | a;, |and Y07, | B, | converge then > | log(1 + ) |and
>0 | log(143,) | converge. Henceif Y - | | 2, | convergesthen >~ | | log(1+2y,) |
converges and conversely. d

Example. Consider []°7, (1 + m)
We have

- 1 — 1

Nl =Y
n=1 (2 + g + 2 + 7/122)” n=1 (\ﬁ)n

Since the last series converges, the given product converges absolutely.

4. EULER’S GAMMA FUNCTION FOR BI-COMPLEX NUMBERS

We prove the following theorems on Euler’s Gamma functions for the bi-complex num-
bers.

Theorem 4.1. Let z = {z + 2312 | 21,22 € Cl(i1)} = aey + Bes. Then the Eulerian
gamma integral for bi-complex number z is I'(z) = [~ e *z*~1dz, Re (z) > 0, if we
have T'(o) = [ e "z Vdx and T(8) = [;° e~"aP~! du, provided Re (a) > 0 and
Re (B) > 0.

Proof. z1 = x1 + 2211, 22 = X2 + Y211
a =21 — 2201 = (21 +yo) + (y1 — @2)i1, B = 21 + 2001 = (w1 — y2) + (y1 + 22)i1
Re(a) > 0, Re(8) > 0 = Re(z) > 0, where z = 21 + y1i1 + Zais + yairia

we have -
INa) = / e " L dr, Re(a) >0
0

B = /OO e 2Pt dx, Re(B) >0
0
I(z) =T(a)er + T'(B)ea 4.1)
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o o0
/ e Tz Vdze, + / e 2P drey
0 0

00
_ / e—xx(a—l)el+(,8—1)ez dr
0

_ / e—wxael+ﬁez—l dr
0

= / e 2" 1 dz =T(2), Re(z) >0
0

T(a)e; + T'(B)es

3

O

Theorem 4.2. Let z = z1 + 2902 = aey + [Bes. Then the T' - function for bi-complex

number z is
— o7 (1 . 4.2
) =e z}_ll —|— 4.2)
If for any « ,8 € Ci(iy) or (Cl(z ), we have
=% H 1 —|— 5, = H %
where the constant vy is Euler constant and is chosen so that (61 +e2) =e1 +eo.
Proof. We have
D(aer + Bes) = T(a)er +T(B)es
1 1 L 1
= e e
[(aei +Bes) — T(a) rw) ’
1 1 i 5 8
€1+ e = Ye mep +e7P3 1+ Je mey
M) " T3) a0 H
« B - /8 _B
= (e'y CK@]_"’@’Y 662 H e nel+H 1+ e 11,82)
n=1 n=1
= 1 — e"/(aelJrﬁ(:‘z) Oé(i 4 Be ﬁ ae; + B62)677a61+ﬁ€2
I'(aer + Beg) ! 2 oot
= L €”z ﬁ 1+ 3)67% where z € C?
I'(z) n ’ '
[l

Lemma4.3. let z, =1+ § + -+ L. Then we have
lim (z, —lnn) =7,

n—oo

where v is Euler constant and chosen as T'(e1 + e2) = e1 + ea.

Proof. Put z = e; + eg in (4.2), we have

oo

e1 + ey = H

3\»—‘
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Hence,
= n+1 1
- = Z(ln n —ﬁ)
n=1
2 1 3 1 n+1 1
= 1 In-—-4+In-—— -1 —
g (Ing =3 4+mg -2 th—=——0)
23 n n—+ 1
= hm{ln(ii 1) 1 —(1+§—|—~-+*)}

Theorem 4.4. Let z = z1 + 2219 = aey + [Bea. Then the Euler’s function for bi-complex

number z is |
. nln?
P = I e o) rn) (4-3)

Proof. Using Lemma 4.3 and equation (4.2), we get the result. (I

Corollary 4.5. Let z = z1 + 2912 = aey + Beq be any bi-complex number. Then we have
I'z+4+1) =2I'(2),z #0,—1, -2, -, 4.4)
T(:)I(1—2) = — (4.5)

sinmz’
Theorem 4.6. Forany o, 3 € C(i1) or C(i2), if we have a [~ (1 — aj) = ST gng

n2
82 " . .
I Hn (1= n2) = % Then for a bi-complex number z = z| + 2915 we have

Hl_* _sinﬂ'z. 4.6)

s

Proof. We have

o0 .
H o? 61 sin To

5Hu_fmzqu
=1

On adding and using Theorem 3.1, we get

sin wa sin Ta
1 _ — =
aH e1+ﬁH - e1 + - €2
sinm(ae; + Beg)
+ +Ta-5 = ——_—
(cer + Bes) 1;[ — ey H )ea) -
oo 2 2 .
_ sinm(ae; + PBes)
(cve1 + Pea) H —Jer+(1——)e2x) = —
n=1
ad 22 sinz
1-—) = , where z € C?.
zg( nQ) — W z
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Corollary 4.7. Let z = z1 + 2912 = aey + [eq be any bi-complex number. Then we have

lim (z 4 n)[(z) = (_1)n,n =0,1,2,---, (4.7)

2——n n!
i L&)

A T ) =1,2# —n. (4.8)

Theorem 4.8. Let z = z1 + 2915 = ey + Bes be any bi-complex number. Then there is
just one function F(z) in C* — {0, —1,—2, - - - } which satisfies the following conditions

(i) F(1) =1;

(i) F((a+1)er + (B+ 1)e2) = (aeq + Bea) F(aeq + Bea);
. F((a+n)e e
(747) im0 ((n(tﬁ)ﬂl?;;()ij(n; 2=t

Proof. We have already seen that the I'- function satisfies the above equations. Suppose
that there exits a function F'(z) which also satisfies all three equations.
From condition (ii) it follows that

F((a+n)e1+(B4+n)es) = (ae1+Bes)((a+1)e1+(B+1)es) - - - ((a+n—1)e;+(S+n—1)es) F (e +Bes).
4.9)
Put z = e1 + e in (4.9) and using condition (i) we find
Fin+1)=nlor F(n)=(n—-1)!(n>1).
Now taking condition (iii) into account, as well as from (4.3) and (4.9), we have
o F((a—i—n)el + (ﬂ—i—n)ez)
1= nlg{.lo noeitBe: F(n)

— Flacy+Bea) iy CELEBERN( LG (o bort (on 1)) e )

_ F(aey + Bea)
~ T(ae; + Bea)

O
5. EULER’S BETA OPERATOR FOR BI-COMPLEX NUMBERS
We know that the Euler’s beta function in complex plane is defined as
1
B(u,v) = / 271 — )"V dx p,v € CY, Re(u), Re(v) > 0. 5.1
0

Then for all n € N and 27 € C!(i1) or C!(iy), the complex beta operator is

1
B(nzy,n(

1
[—2)) /0 27 (1 - )"0~ f(2) de, 0 < Re(z) < 1.
5.2)

Cn(f? Zl) =

We have following theorem in bi-complex space C2.

Theorem 5.1. Let z = {z1 + 2212 = aey + Bea | o, B € C'(i1) or C(i2)}. Then a beta
operator for a bi-complex number z is

1
B(nz,n(l—=z)) = / "1 —2)"( =" 4y, Vn e N, and Re(z,1—2) > 0, (5.3)
0

where

1
B(na,n(l — o)) = / 2" (1 — )=l gy
0
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1
Bngin(1= ) = [ 11009
0
provided¥n € N, and Re(a,1 — ) > 0, Re(8,1— ) > 0.

Proof. We have
B(nz,n(l —z)) = B(na,n(l — a))e; + B(nB,n(l — 5))ea (5.4)

1
/ xnafl(l _ x)n(lfoz)fl dx
0

1

B(na,n(l — «a))

Il
S S S—S—s———

B(ng,n(l—73)) P11 — )P gy

1

1
B(nz,n(l —z)) = "1 — )" e 4 / 271 — )" (A1 e,
0

1
(xna—lel + xnﬂ—le2)((1 _ x)n(l—a)—lel + (1 _ x)n(l—[i)—leQ) dr

x(na71)61+nﬂ71)62(1 _ x)(n(lfa)fl)elen(lfB)fl)eg dx

—

mn(aelJrﬂeg)fl(l _ x)n(lfaelJrﬁeg)fl dx

[y

wn(ael—i-,Beg)—l(l _ x)n(l—ael-i-ﬂeg)—l dr

1

xnzfl(l o x)n(lfz)fl dx

forall z € C2, and Re(z,1 — z) > 0.
whereas Re(a,1 — ) > 0, Re(8,1 — ) > 0 imply that Re(z,1 — z) > 0. O

Theorem 5.2. Let z = {z; + 2205 = aey + Bes | a, 8 € C(iy) or C(ix)}. Then fora
bi-complex number z

1
Cn(f,2)= m/o 2 (1—z)"IA 7 f(2) dz Vn € N, and ,0 < Re(z) < 1,
(5.5)
if we have
— 1 ! na—1 n(l—a)—1
C”(f’a)B(m)z,MMa))/o " (1 - ) f(z) dx
C18) = gz |+ ) de
e B(ns,n(1-p)) Jo ’
provided¥n € N, and 0 < Re(a) < 1,0 < Re(8) < 1.
Proof. We have
1
Co(f,a) = m/o " (1—z) = f () de Vn € Ny € C10 < Re(a) < 1
— 1 ! nB—1 n(l-8)—1 1

Cn(faz) :Cn(faa)el +Cn(f7ﬂ)€2 (56)
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1
Cu(f.)er +Calf, Bes = m/o 2 (1 = 2y () daey

1 1
BT, * e w) daes

1 ! na—1 7xn(1fa)71 ) dze
<n5,n<1_5)>62></0 (1~ ) f(z) drey

+ /1 271 — )DL (1) daey)
0

(B(na,n(l - oz))el * B

1 1
— n(aei1+pLez)—1 1— n(l—aei—fes)—1
B(nz,n(1 — z)) /0 v (1-=2) f(w) de

1 1 1
e nz—1c1 _ n(l—z)—1 d 2 1
B(nz,n(l—z))/o v (1-2) f(x)drxVn e N,z € C*,0 < Re(z) <

whereas 0 < Re(a) < 1,0 < Re(f8) < 1= 0< Re(z) < 1.
(]
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