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A PROOF OF THE DIMENSION THEOREM FOR VECTOR SPACES

FRANCESCO SICA

ABSTRACT. We provide a proof of the theorem that, assuming Zorn’s lemma, two Hamel
bases of a vector space have equal cardinality.

The purpose of this work is to present an original and self-contained, apart from the
Cantor-Schöder-Bernstein theorem, exposition of the fact that two bases of a vector space
have the same cardinality, assuming Zorn’s lemma. A similar result, albeit following a
different approach, appeared in [3]. In the following, “almost all” means all except finitely
many.

Recall that in a (left) vector space V over a field F , given X ⊆ V , a relation∑
v∈X

avv = 0

where almost all (but not all) av ∈ F are equal to zero is called a relation of linear de-
pendence among the {v}v∈X and the v’s are said linear dependent. If a relation like above
implies that av = 0 for all v ∈ X , then the v’s are said linearly independent or that X
is a linearly independent set. Note that the empty set, ∅, is vacuously linear independent.
Elements of a set W ⊆ V are said to generate (are generators of) V if any v ∈ V can be
written as a linear combination

v =
∑
w∈W

bww

with bw ∈ F almost all zero. We will also say that v lies in the (linear) span of W .
Without further reminding, we will henceforth suppose that all such sums involve only a
finite number of nonzero terms.

By definition, a basis of V is a set of independent vectors which also generate V . We
want to show that a basis always exists, but we have to rely on the axiom of choice, in the
form of Zorn’s lemma.

Recall that a partial order on a set S is a binary relation ⪯ such that, for any s, s′, s′′ ∈
S, the following are true: s ⪯ s (reflexivity), s ⪯ s′ and s′ ⪯ s implies s = s′ (antisym-
metry), s ⪯ s′ and s′ ⪯ s′′ implies s ⪯ s′′ (transitivity). The order is called total if given
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s, s′ ∈ S either s ⪯ s′ or s′ ⪯ s is true. A maximal element of S is σ ∈ S such that s ∈ S
and σ ⪯ s implies σ = s.

Axiom (Zorn’s Lemma). Let S be a partially ordered set. If any chain (i.e., a subset of
totally ordered elements of S) admits an upper bound in S, then S has a maximal element.

Theorem 1. Let V ̸= 0 be a vector space over a field F . Then V admits a basis.

Proof. Let

S = {I ⊆ V : I consists of linearly independent vectors} .

S is a nonempty partially ordered set (by inclusion). We show that any chain in S is upper
bounded. Let {Ii}i∈I be an arbitrary chain. Define

I =
⋃
i∈I

Ii .

If I contains linearly dependent vectors, say v1, . . . vn, with vk ∈ Iik . Since in any to-
tally ordered set any finite subset contains a maximum element, there exists a k̄ such that
Iik ⊆ Iik̄ for all k = 1, . . . , n. But then Iik̄ would contain the linearly dependent vectors
v1, . . . vn, absurd. Therefore I is an upper bound of the chain.

By Zorn’s lemma, S contains a maximal element Im ̸= ∅ since V ̸= 0. We claim that
this maximal element is a set of generators of V (i.e. a basis, which is a set of linearly
independent vectors that generate V ). Indeed, if v ∈ Im, then v is generated by the
elements of Im. On the other hand, if v ∈ V − Im, then Im ∪ {v} cannot be a set of
linearly independent vectors, by the maximality of Im. Therefore there exists coefficients
a, au ∈ F almost all zero such that∑

u∈Im

auu+ av = 0 ⇐⇒ v =
∑
u∈Im

(−au/a)u

since a ̸= 0 (otherwise we would get a relation of linear dependence among elements of
Im). Again v is generated by elements of Im.

□

Next we show the familiar (in finite dimensional vector spaces) fact that two bases have
equal cardinality (i.e. they are in bijection with one another). This can be generalized to
arbitrary vector spaces by another use of Zorn’s lemma. We will also need the Cantor-
Schröder-Bernstein Theorem [1, Theorem 4 p.134].

Theorem 2 (Cantor-Schröder-Bernstein). Given any two sets A and B, if there exists an
injection from A to B and an injection from B to A, then there is a bijection between the
two sets.

We will now show the following fact, which implies that two bases have equal cardinal-
ity, since a basis is both a set of linearly independent vectors and a set of generators.

Theorem 3. Let I and G be respectively a linearly independent set and a set of generators
of a vector space V ̸= 0 over F . There exists an injection f : I ↪→ G with the additional
property that f(I) is a linearly independent set.

Proof. Let us define

S = {(I ′, f ′) : I ∩ G ⊆ I ′ ⊆ I, f ′ : I ′ ↪→ G is an injection with f ′(x) = x

(∀x ∈ I ∩ G) and
(
I − I ′) ∪ f ′(I ′) is a linearly independent set} .
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S is nonempty, since, if I ∩ G = ∅, then (∅, f ′) ∈ S, where f ′ : ∅ → G is the empty
function. If I ∩ G ̸= ∅, then (I ∩ G, f ′) ∈ S, where f ′ : I ∩ G → G is the inclusion map.
This set is partially ordered by the following order relation, where (I ′, f ′) ⪯ (I ′′, f ′′) if
by definition I ′ ⊆ I ′′ and f ′′

∣∣
I′ = f ′.

Lemma 4. Let (I ′, f ′) ∈ S. For any v ∈ I − I ′, there exists w ∈ G − f ′(I ′) such that(
I − (I ′ ∪ {v})

)
∪ (f ′(I ′) ∪ {w}) is a linearly independent set.

This means that if we define I ′′ = I ′ ∪ {v} and f ′′ by extending f ′ with f ′′(v) = w,
then (I ′′, f ′′) ∈ S and (I ′, f ′) ⪯ (I ′′, f ′′).

Proof of Lemma 4. The lemma is shown by contradiction. Note initially that f ′(I ′) ̸= G
as long as I − I ′ ̸= ∅. Indeed if

(
I − I ′) ∪ f ′(I ′) =

(
I − I ′) ∪ G then any v ∈ I − I ′

would be a linear combination of elements of G and therefore
(
I −I ′)∪ f ′(I ′) would not

be a linearly independent set.
Choose an arbitrary v ∈ I −I ′ and suppose that any w ∈ G − f ′(I ′) lies in the span of(

I − (I ′ ∪ {v})
)
∪ f ′(I ′). Note that

v =
∑
w∈G

aww =
∑

w∈G−f ′(I′)

aww +
∑

w∈f ′(I′)

aww ,

since G generates V . Let X = {w ∈ G − f ′(I ′) : aw ̸= 0}. By assumption, any w ∈ X
lies in the span of

(
I − (I ′ ∪ {v})

)
∪ f ′(I ′). Any linear combination of elements of X

is also in the span of
(
I − (I ′ ∪ {v})

)
∪ f ′(I ′) and so is also v, by the above equation.

Therefore we obtain

v =
∑

w∈(I−(I′∪{v}))

bww +
∑

w∈f ′(I′)

bww .

Note that v on the left-hand side of the previous equation cannot equal any w on the right-
hand side: it is clear for the first sum, which excludes v explicitly, and also in the second
sum w ∈ G but v ∈ I − I ′ implies v /∈ G. Therefore the equation gives rise to a relation
of linear dependence in

(
I −I ′)∪ f ′(I ′), contradicting the definition of S and the lemma

is proved. □

We now show that every chain in S is upper bounded by an element of S. Start from an
arbitrary chain {(Ii, fi)}i∈I ⊆ S. Define (I ′, f ′) by

I ′ =
⋃
i∈I

Ii, f ′∣∣
Ii

= fi .

Note that if (Ii, fi) ⪯ (Ij , fj), then for all v ∈ Ii ⊆ Ij we have f ′(v) = fi(v) = fj(v)
which shows that f ′ is well defined. We remark in what follows that (I ′, f ′) ∈ S:

(1) I ∩ G ⊆ I ′ ⊆ I: this is clear.
(2) f ′ is the identity on I ∩ G (clear) and f ′ is injective: if v1, v2 ∈ I ′ with v1 ̸= v2,

then there exists i ∈ I such that v1, v2 ∈ Ii. But then f ′(v1) = fi(v1) ̸= fi(v2) =
f ′(v2), since fi is injective.

(3)
(
I − I ′) ∪ f ′(I ′) is a set of linearly independent vectors: otherwise v1, . . . vn,

say, are linearly dependent. Since

f ′(I ′) =
⋃
i∈I

f ′(Ii)
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and {f ′(Ii)}i∈I is a chain because Ii ⊆ Ij ⇒ f ′(Ii) ⊆ f ′(Ij), there exists i ∈ I
for which

v1, . . . , vn ∈
(
I − I ′) ∪ f ′(Ii) ⊆

(
I − Ii

)
∪ f ′(Ii) =

(
I − Ii

)
∪ fi(Ii)

but this leads to a contradiction, since this last set consists of linearly independent
vectors.

Finally, note that (Ii, fi) ⪯ (I ′, f ′) for all i ∈ I by construction, so (I ′, f ′) ∈ S is an
upper bound of our chain.

Invoking Zorn’s lemma, S has a maximal element, say (Im, f). We claim that in fact,
Im = I. Since otherwise Lemma 4 applied to (I ′, f ′) = (Im, f), would violate maximal-
ity. The theorem is thus proved. □

Remark. The difficulty in the previous theorem consisted in defining an appropriate con-
dition on a set S. Otherwise, one cannot show that a maximal injection is defined on all of
I; in fact, it could well result in a bijection from a strict subset of I to G. This is a natural
difficulty, arising from the fact that an infinite set can always be put in bijection with a
strict subset.

Remark. The same argument as in Theorem 1 allows to prove the existence of Hilbert
bases in Hilbert spaces (i.e., orthonormal sets which span a dense subspace). However,
Zorn’s lemma is not needed to show that all Hilbert bases of a Hilbert space have equal
cardinality [2, Theorem IV.4.14].
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