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ON JERUSALEM SQUARE FRACTAL, ITS CONSTRUCTION AND
PROPERTIES

AKHLAQ HUSAIN

ABSTRACT. This short communication proposes a novel Iterated Function System (IFS)
to construct the Jerusalem square fractal, a two-dimensional projection of the Jerusalem
cube, characterized by its cross-like self-similar structure. We provide a step-by-step con-
struction, a proof of its fractal nature, and Python code for visualization. Properties such as
self-similarity, fractal dimension, and connectivity are analyzed with formal proofs. The
IFS offers a new perspective on Jerusalem square fractal generation. Results demonstrate
the fractal’s intricate geometry, with applications in computer graphics and geometric mod-
eling.

1. INTRODUCTION

Fractals are geometric objects exhibiting self-similarity across scales and have been ex-
tensively studied since Mandelbrot’s seminal work [8]. Iterated Function Systems (IFSs),
introduced by Hutchinson [6], provide a mathematical framework for generating frac-
tals through iterative application of contractive mappings. The Jerusalem cube, a three-
dimensional fractal with cross-shaped protrusions, inspires the Jerusalem square fractal, a
2D projection preserving its self-similar cross motif. While the Jerusalem cube has been
explored [2], its 2D square variant is still not discussed much in the literature. This short ar-
ticle proposes a unique IFS to generate the Jerusalem square fractal, including its construc-
tion, visualization, and properties, contributing to fractal geometry and computer graphics.

2. PRELIMINARIES

Definition 2.1. Let (X, d) be a complete metric space. Let H(X) be the set of non-empty
compact subsets of X . H(X) is called ‘space of fractals’.

The space H(X) is a metric space with respect to the Hausdorff metric h defined by

h(A,B) = max {d(A,B), d(B,A)}
where, d(A,B) = sup

x∈A
{ inf
y∈B

{d(x, y)}} and A,B ∈ H(X) [2].
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Definition 2.2. Let (X, d) be a complete metric space. An iterated function system (in
short IFS) on X is a finite set of contraction mappings ϕi : X → X , having contractivity
factors si, for i = 1, 2, . . . , n. The number s = max

1≤i≤n
si is called ‘contractivity’ factor of

the IFS.

Theorem 2.1. Let (X, d) be a complete metric space and {X,ϕi : i = 1, 2, . . . , ϕn} be
an IFS with contractivity factor s. Then the transformation W : H(X) → H(X) (called
Hutchinson operator) defined by

W (B) =

n⋃
i=1

ϕi(B) (2.1)

for all B ∈ H(X) is a contraction mapping on H(X,h(d)) with contractivity factor s.
Moreover, by the contraction mapping theorem its unique fixed point A ∈ H(X), called
the ‘attractor’ of the IFS, satisfies

A = W (A) =

n⋃
i=1

ϕi(A). (2.2)

The attractor A described in Theorem 2.1 is obtained by taking the limit of the sequence
of forward iterates of W i.e. A = lim

n→∞
W ◦n(K) for any K ∈ H(X).

We recall a classical result from the theory of iterated function systems by Hutchinson
[6]

Theorem 2.2 (Hutchinson’s Theorem (1981)). Let {ϕi}ni=1 be an IFS consisting of con-
traction mappings on a complete metric space (X, d). If K ⊂ X is compact and con-
nected, and F(K) =

⋃
i

ϕi(K) is connected, then the attractor A = lim
n→∞

Fn(K) is also

connected.

3. A NOVEL IFS FOR THE CONSTRUCTION OF JERUSALEM SQUARE FRACTAL

The Jerusalem square fractal is constructed within the unit square A0 = [0, 1]2. The
IFS comprises eight affine transformations, reflecting the cube’s face projection, where
each face forms a fractal resembling a Jerusalem cross [1]. The Jerusalem square’s face
is described as a 2D fractal cross pattern where four corner squares of size k and four
small square of size k2 (interlaced in between two corner squares on each side of A0) are
retained, satisfying the equation k + k2 + k = 1 for the scaling factor. Thus, the scaling
factor k =

√
2 − 1 satisfies k2 + 2k − 1 = 0, ensuring the fractal fits within the previous

iteration’s space [3]. This suggests 8 scaled (and translated) copies in the IFS (4 at scale k,
4 at scale k2).

Therefore, the desired IFS is given by {ϕi(x)}, 1 ≤ i ≤ 8, where each ϕi : R2 → R2

is an affine transformation of the form:

ϕi(x) = Aix+ bi, x ∈ R2 (3.1)
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where Ai = kI2 (scaling by k) for 1 ≤ i ≤ 4, Ai = k2I2 for 5 ≤ i ≤ 8 (scaling by k2)
and bi are translation vectors. The explicit transformations are

ϕ1(x) = kx, ϕ2(x) = kx+

[
1− k
0

]
,

ϕ3(x) = kx+

[
0

1− k

]
, ϕ4(x) = kx+

[
1− k
1− k

]
,

ϕ5(x) = k2x+

[
1
2 − k2

2
0

]
, ϕ6(x) = k2x+

[
0

1
2 − k2

2

]
,

ϕ7(x) = k2x+

[
1
2 − k2

2
1− k2

]
, ϕ8(x) = k2x+

[
1− k2

1
2 − k2

2

]
,

Here, k =
√
2 − 1 ≈ 0.414213562, and k2 = 3 − 2

√
2 ≈ 0.171572175. Starting with

the initial set A0 (Figure 1(a)), these mappings place eight scaled squares in a cross-like
pattern, as shown in Figure 1(b) and the corresponding Jerusalem square fractal is shown
in Figure 1(c) (obtained with the Python code given in Appendix A using deterministic
algorithm). A fractal enthusiast can construct this attractor using IFS construction kit [11]
(an easy to use GUI program to render high resolution images of fractals) without going
into intricacy of knowing Python language.

(a) Initial set A0 (b) Basic IFS design (A1) (c) Jerusalem square fractal A =

lim
n→∞

An

FIGURE 1. (a) Initial set, (b) basic IFS design, and (c) the Jerusalem
square fractal.

Step-by-Step Construction:
(1) Start with the unit square A0 = [0, 1]2.

(2) Apply IFS to A0, yielding A1 =

8⋃
i=1

ϕi(A0), having four large squares of side

length k and four small squares of side length k2.

(3) For n ≥ 1, compute An+1 =

8⋃
i=1

ϕi(An). The Hutchinson operator H(S) =

8⋃
i=1

ϕi(S) ensures convergence to the fractal attractor A.
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(4) The Jerusalem square fractal is the limit A = lim
n→∞

An, a compact set in R2.

Theorem 3.1. The attractor of the IFS in (3.1) is the Jerusalem square and a self-similar
fractal.

Proof. Each ϕi is contractive with scaling factor k = (
√
2 − 1) < 1 or k2 < 1. By the

contraction mapping theorem [2], there exists a unique non-empty compact set A such that
H(A) = A and the self-similarity equation is given by

A =

8⋃
i=1

ϕi(A).

The mappings are similitudes (being combinations of scaling and translation), confirming
A as a self-similar fractal. □

4. PROPERTIES OF THE JERUSALEM SQUARE

Theorem 4.1. The Jerusalem square fractal is self-similar.

Proof. The Jerusalem square fractal exhibits strict self-similarity, because each ϕi(A) is a
scaled copy of A. This is evident from the IFS definition and visualization in the iterative
construction (Figure 1). □

Theorem 4.2 (Similarity dimension). The similarity (Hausdorff) dimension of the Jerusalem
square fractal is 1.786440.

Proof. For a self-similar fractal defined by an IFS with Ni copies at scaling factor ri, the
similarity dimension D satisfies the Moran equation [9, 4]

8∑
i=1

rDi = 1. (4.1)

The Jerusalem square has 4 copies scaled by ri = k =
√
2 − 1, 1 ≤ i ≤ 4 and 4 copies

scaled by rj = k2 = (
√
2− 1)2 = 3− 2

√
2, 5 ≤ j ≤ 8. Thus, the similarity dimension D

is the solution of non-linear equation

4kD + 4k2D = 1. (4.2)

Taking kD = u, we can write this equation as 4u2+4u−1 = 0 having roots u = − 1
2±

√
2
2 .

Neglecting the negative root (which gives D < 0, not possible) and substituting back for
k, we get

kD = −1

2
+

√
2

2
=

k

2
. (4.3)

Solving for D (see Appendix-B for a Python code), the similarity dimension of the Jerusalem
square (face of the Jerusalem cube) is

D ≈ 1.786440.

The non-integer value of the fractal dimension reflects the fractal’s complexity, driven by
the irrational scaling factor and the cross pattern. Since the mappings are non-overlapping
(squares touch only at boundaries), the Hausdorff dimension equals the similarity dimen-
sion [5]. □

Theorem 4.3. The Jerusalem square fractal is connected.
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Proof. Let A denotes the attractor of the IFS in equation (3.1). For any compact and

connected set K ⊂ R2, let F denote the Hutchinson operator F(K) =

8⋃
i=1

ϕi(K), and let

A be the unique non-empty compact set such that

A = F(A) =

8⋃
i=1

ϕi(A).

Appealing to Theorem 2.2, it is enough to show that F(K) is connected.
Choose K = A0 = [0, 1]2. Then K is compact and connected. Now, each map ϕi is a

similarity and hence continuous. The images ϕi(K) are all compact squares placed at the
corners and midpoints of the unit square. The geometry of the mappings is such that

(1) The first 4 mappings (ϕ1 through ϕ4) place smaller squares in the 4 corners of K.
(2) The next 4 mappings (ϕ5 through ϕ8) place even smaller squares at the midpoints

of the sides of K.
(3) The images ϕi(K) are either adjacent or overlapping at edges or vertices.

Hence, the set F(K) =

8⋃
i=1

ϕi(K) is connected. Since F(K) is connected, Hutchinson’s

theorem implies that the attractor A = limn→∞ Fn(K) is connected. □

5. CONCLUSIONS AND DISCUSSIONS

The Jerusalem square fractal exhibits a fractal dimension of approximately 1.786440,
indicating a complexity between a line and a plane, suitable for modeling intricate patterns.
The Python visualization confirms the cross-like structure, with increasing detail at higher
iterations. The connected nature ensures its applicability in network modeling. Unlike
the Sierpinski carpet [2], the Jerusalem square has a denser central region, offering unique
aesthetic and structural properties for architectural design [7] and has also been used in
fractal shaped antenna designs due to its compact and intricate structure [10].

This brief communication presented a novel IFS for constructing the Jerusalem square
fractal, a 2D fractal inspired by the Jerusalem cube. The step-by-step construction, sup-
ported by a proof of its fractal nature, and Python visualization demonstrate its feasibil-
ity. We also established the properties such as fractal dimension and connectivity for the
Jerusalem fractal. Future work could explore 3D extensions or applications in fractal an-
tenna generation and texture synthesis.
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