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SINE TYPE II TOPP-LEONE GOMPERTZ DISTRIBUTION WITH
APPLICATIONS

SULE OMEIZA BASHIRU∗ AND THATAYAONE MOAKOFI

ABSTRACT. Probability distributions are essential for modeling and analyzing complex
datasets across various scientific disciplines. However, classical distributions often fail
to capture intricate features such as skewness, heavy tails, or high variability observed
in real-world data. To address these limitations, this study proposes the Sine Type II
Topp-Leone Gompertz (STIITLG) distribution, a novel extension of the Gompertz model
based on the sine type II Topp-Leone family. The proposed model enhances the flexibility
of the classical Gompertz distribution by incorporating an additional shape parameter,
enabling it to better accommodate diverse data behaviors. Several key properties of the
model, including moments, inverse moment, mean residual life function, entropy, and
order statistics, were derived to establish its theoretical foundation. The model parameters
were estimated using the maximum likelihood estimation method, and a comprehensive
simulation study confirmed the consistency of these estimators. The practical utility of the
model was demonstrated by applying it to two real-life datasets, where it outperformed
several existing models based on goodness-of-fit criteria. These findings underscore the
potential of the proposed distribution as a robust tool for modeling complex phenomena in
diverse fields.

1. INTRODUCTION

Probability distributions are fundamental tools in statistics and applied mathematics,
playing a crucial role in modeling and analyzing data across various fields such as
engineering, finance, healthcare, environmental science, and reliability studies. By
providing a mathematical framework to describe the likelihood of different outcomes,
these distributions facilitate decision-making processes and enable practitioners to predict,
simulate, and understand complex systems. From risk assessment in insurance to survival
analysis in medical research, probability distributions are indispensable for addressing
real-world challenges.
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However, classical probability distributions often face limitations in capturing the
complexities of modern datasets. These challenges stem from the inherent simplicity of
traditional models, which are typically characterized by fixed hazard rate shapes, limited
skewness, and inflexibility in describing high variability. As data becomes increasingly
intricate such as in fields dealing with heterogeneous populations, catastrophic events, or
rapidly evolving phenomena, the need for extended or compounded distributions becomes
evident. These extensions address the constraints of classical models by providing
enhanced flexibility and improved fit to real-world data.

A particularly effective method for extending classical models is the use of generalized
families of distributions, often referred to as generators. These generators introduce
additional parameters, such as scale or shape parameters, into existing distributions,
thereby increasing their flexibility. Recent examples include the new Lomax generator
by [17], Ristić Balakrishnan Topp–Leone Gompertz generator by [28], Harris-Topp-Leone
generator by [29], tangent exponential generator by [27], DUS Topp-Leone generator by
[11], exponent power sine generator by [32], Marshall–Olkin exponentiated half logistic
generalized-G by [31], extended Modi generator by [30], and cosine inverse Lomax-G by
[33].

The Gompertz distribution, introduced as a model for human mortality rates, is
widely recognized for its applications in demography, reliability engineering, and survival
analysis. Its exponential-like form makes it particularly suitable for modeling increasing
hazard rates, which are common in aging processes and systems experiencing wear and
tear. Despite its usefulness, the Gompertz distribution has limitations when applied
to datasets with more complex structures, such as those exhibiting high variability or
heavy-tailed behavior.

To address these limitations, researchers have developed extensions of the Gompertz
distribution (GD) by incorporating additional parameters or compounding it with other
distribution families. Some notable variants of the Gompertz distribution include the type
I half logistic GD by [25], odd Lindley GD by [18], power GD by [20], Lomax GD by [21],
alpha power GD by [15], Marshall-Olkin GD by [24], extended GD by [12], Topp-Leone
GD by [19], exponentiated generalized extended GD by [16], cosine GD by [34], and new
modified GD by [13].

In this study, the Gompertz distribution is extended using the sine type II Topp-Leone
family of distributions, a versatile framework known for its ability to introduce an
additional shape parameter and capture a wide range of data behaviors. The sine type
II Topp-Leone family has demonstrated significant potential in enhancing the flexibility of
baseline distributions, making it a suitable choice for this purpose. By compounding the
Gompertz distribution with this family, we introduce the sine type II Topp-Leone Gompertz
(STIITLG) distribution, a new model designed to overcome the limitations of the classical
Gompertz distribution while retaining its interpretability and practical relevance.

The primary objective of this research is to develop a new compound distribution that
not only generalizes the Gompertz distribution but also provides a better fit to complex
datasets encountered in various fields. This study derives the mathematical properties
of the proposed distribution, estimates its parameters using the maximum likelihood
estimation method, and evaluates its performance using real-life datasets. The findings
are expected to demonstrate the advantages of this extension, offering a robust tool for
researchers and practitioners dealing with sophisticated modeling challenges.

The structure of this study is as follows: Section 2 outlines the construction of the
STIITLG model and presents its reliability measures. Section 3 details the linear expansion
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of the model’s probability density function (PDF) and cumulative distribution function
(CDF). Statistical properties are derived in Section 4, while Section 5 describes the
parameter estimation method. The results of the simulation study are provided in Section
6. Application results are given in Section 7. Finally, concluding remarks are presented in
Section 8.

2. PROPOSED MODEL FORMULATION

The cumulative distribution function (CDF) of the sine type II Topp-Leone generator as
proposed by [1] is given as:

F(x) = sin
{π
2

[
1−

(
1− (G(x))

2
)κ]}

(2.1)

and the corresponding probability density function (PDF) is given as

f(x) =
π

2
2κg(x)G(x)

[
1− (G(x))

2
]κ−1

cos
{π
2

[
1−

(
1− (G(x))

2
)κ]}

;x > 0,

(2.2)
where κ > 0 is a shape parameter, g(x) and G(x) denote the PDF and CDF of a baseline

distribution, respectively.
The PDF and CDF of the Gompertz distribution are given in Equations (2.3) and (2.4).

g (x) = τeδxe−
τ
δ (e

δx−1), (2.3)

G (x) = 1− e−
τ
δ (e

δx−1), (2.4)
where τ > 0 is the shape parameter and δ > 0 is a scale parameter.

By substituting Equation (2.4) into Equation (2.1), the CDF of the STIITLG distribution
is obtained as:

F(x) = sin

{
π

2

[
1−

(
1−

(
1− e−

τ
δ (e

δx−1)
)2)κ]}

. (2.5)

The corresponding PDF is obtained by substituting Equations (2.3) and (2.4) into Equation
(2.2), and is given as:

f(x) =
π

2
2κ

(
τeδxe−

τ
δ (e

δx−1)

)(
1− e−

τ
δ (e

δx−1)
)

×
[
1−

(
1− e−

τ
δ (e

δx−1)
)2]κ−1

cos

{
π

2

[
1−

(
1−

(
1− e−

τ
δ (e

δx−1)
)2)κ

]}
,

(2.6)
for κ, τ, δ > 0, and x ≥ 0.

The PDF and CDF plots of the STIITLG model are given in figure 1. From the PDF
plot it can be seen that the proposed model is right skewed. The CDF plot, ranging from 0
to 1, confirms that the model is properly defined, as it satisfies the fundamental property of
a cumulative distribution function by being non-decreasing and bounded between 0 and 1.
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FIGURE 1. PDF and CDF Plots of the STIITLG distribution

2.1. Reliability Measures. The survival function (SF) gives the probability that a system
or component will function beyond a certain time x. The survival function of the STIITLG
distribution is defined as:

s(x) = 1− sin

{
π

2

[
1−

(
1−

(
1− e−

τ
δ (e

δx−1)
)2)κ]}

. (2.7)

The hazard rate function (hrf), also known as the failure rate function, describes the
instantaneous likelihood of an event occurring at a given time x, given that it has not yet
occurred. The hrf of the STIITLG distribution is given by:

h(x) =

π
2 · 2κ

(
τeδxe−

τ
δ (e

δx−1)
)(

1− e−
τ
δ (e

δx−1)
)[

1−
(
1− e−

τ
δ (e

δx−1)
)2]κ−1

1− sin
{

π
2

[
1−

(
1−

(
1− e−

τ
δ (e

δx−1)
)2)κ]}

× cos

{
π

2

[
1−

(
1−

(
1− e−

τ
δ (e

δx−1)
)2)κ]}

. (2.8)

The SF and hrf plots of the proposed model are shown in Figure 2. The SF decreases over
time, as expected, indicating the diminishing probability of survival. The hrf exhibits a
monotonically increasing pattern.
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FIGURE 2. Survival and hazard function plots of the STIITLG distribution
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The cumulative hazard function (CHF) that follows the STIITLG model is given as:

CHF (x) = − log

(
1− sin

{
π

2

[
1−

(
1−

(
1− e−

τ
δ (e

δx−1)
)2)κ]})

.

3. LINEAR EXPANSION

In this section, we utilize an expansion technique to reformulate the density functions in
equations (2.5) and (2.6), making them more accessible for analysis and the derivation of
statistical properties. By employing a suitable series expansion, we express the CDF and
PDF in a more computationally convenient form.
The CDF in Equation (2.5) above can be expanded using Taylor’s series expression as
follows:
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The last part of Equation (3.1) can be expanded using binomial expansion as follows:
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Hence the CDF in Equation (2.5), can be written as:
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By considering the last part of the PDF (2.6),we have
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The last term in Equation (3.3) can be expanded using binomial expansion as follows:[
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The PDF in (2.6) can be written as:

f(x) =

∞∑
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4. STATISTICAL PROPERTIES

Several statistical properties of the proposed distribution are presented in this section.

4.1. Quantile Function. The quantile function, defined as the inverse of the cumulative
distribution function (CDF), plays a crucial role in statistical analysis. It provides a direct
way to generate random samples from a distribution and facilitates the computation of
various statistical measures, including percentiles and interquartile ranges. For more
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insights, see [26]. The quantile function of the proposed model is given by:

Q (F ) =

ln

1− δ
τ

ln

1−

(
1−

(
1− sin−1(u)

π
2

)1/κ)1/2



δ
. (4.1)

4.2. Moments. Moments are fundamental statistical measures that provide insights into
the shape, central tendency, and variability of a probability distribution. The rth moment
of the proposed model is given as:

µ′
r =

∫ ∞

−∞
xrf(x) dx =

∞∑
q,s,t,u,v,w=0

φ

∫ ∞

0

xreδx(w+1)dx =
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φ
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[−(δ(w + 1))]
r+1 .

(4.2)
By setting r = 1, 2, 4 and 4 in Equation (4.2), the first four moments can be expressed

as:

µ′
1=
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q,s,t,u,v,w=0

φ
Γ(2)

[−(δ(w + 1))]
2 ,

µ′
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∞∑
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φ
Γ(3)

[−(δ(w + 1))]
3 ,
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3=

∞∑
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φ
Γ(4)

[−(δ(w + 1))]
4 ,

µ′
4=

∞∑
q,s,t,u,v,w=0

φ
Γ(5)

[−(δ(w + 1))]
5 .

The skewness (Sk) and kurtosis (Ku) of the proposed model are given by:

Sk =
µ′
3 − 3µµ′

2 + 2µ3

(µ′
2 − µ2)

3/2
,

Ku =
µ′
4 − 4µµ′

3 + 6µ2µ′
2 − 3µ4

(µ′
2 − µ2)

2 .

Figure 3 presents the skewness and kurtosis plots of the STIITLG distribution. It is
evident that, for a fixed value of δ, both skewness and kurtosis increase as κ and τ vary. A
similar pattern is observed when τ is fixed and κ and δ vary.
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FIGURE 3. 3D plots of skewness and kurtosis for the STIITLG distribution

4.3. Inverse Moments. Inverse moments provide insights into the expected values of the
reciprocal of a random variable, which are particularly useful in reliability analysis and
risk assessment. The inverse moment of the proposed model is given by:

µ′
−r =

∫ ∞

−∞
x−rf(x) dx =

∞∑
q,s,t,v,w=0

φ

∫ ∞

0

x−reδx(w+1) dx

=

∞∑
q,s,t,u,v,w=0

φ(−(δ(w + 1)))
r−1

Γ(1− r).

4.4. Mean Residual Life Function. The mean residual life (MRL) function quantifies
the expected remaining lifetime of a system or component, given that it has survived up
to a specific time. It plays a crucial role in reliability analysis, maintenance planning, and
replacement strategies. For the proposed distribution, the MRL function is given by:

MRLF (m) =
1

S (m)

∞∫
m

xf (x)dx−m =
1

S (m)

∞∑
q,s,t,u,v,w=0

φ

∞∫
m

xeδx(w+1)dx−m,

=
1

S (m)

∞∑
q,s,t,u,v,w=0

φ
eδ(w+1)m(δ(w + 1)m− 1)

δ2(w + 1)
2 −m,

where S(m) is the survival function of the STIITLG distribution.

4.5. Mean Inactive Time function. The mean inactivity time (MIT) function provides a
measure of the expected time a system or component has been inactive before a specified
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time point. It is a crucial reliability metric used to analyze failure patterns and predict
system behavior. The MIT function has diverse applications in reliability theory, survival
analysis, biomedical research, and actuarial science. For the STIITLG model, the MIT
function is given by:

MIT = p− 1

F (p)

p∫
0

xf(x) dx = p− 1

F (p)

∞∑
q,s,t,u,v,w=0

φ

p∫
0

xeδx(w+1) dx,

= p− 1

F (p)

∞∑
q,s,t,u,v,w=0

φ
eδp(w+1)(δp(w + 1)− 1) + 1

δ2(w + 1)
2 ,

where F (p) is the CDF of the STIITLG distribution.

4.6. Entropy. Entropy measures the uncertainty or randomness associated with a
probability distribution, providing insights into the amount of information required to
describe a random variable. Rényi entropy, a generalized form of Shannon entropy, is
widely applied in various fields. The Rényi entropy of the proposed model is given by:

R.Eλ(x) =
1

1− λ
log

∫ ∞

0

f(x)λdx =
1

1− λ
log

∞∫
0

( ∞∑
q,s,t,u,v,w=0

φeδx(w+1)

)λ

dx.

4.7. Order Statistics. Suppose that x1, x2, . . . , xn are n random samples from the
STIITLG model, which has the CDF in (3.2) and the PDF in (3.4). Let x(1), x(2), . . . , x(n)
be the observed order statistics. The PDF of the kth order statistic is computed as follows:

fX(k)
(x) =

n!

(k − 1)!(n− k)!
f(x; γ, ω, α)[F (x; γ, ω, α)]

k−1
[1− F (x; γ, ω, α)]

n−k
.

(4.3)
Substituting equations (3.2) and (3.4) into equation (4.3), we obtain the PDF of the kth

order statistic for the STIITLG model as follows:

fX(k)
(x) =

n!

(k − 1)!(n− k)!

( ∞∑
q,s,t,u,v,w=0

φeδx(w+1)

) ∞∑
i,j,l,m,n,p=0

ψeδxp

k−1

×

1− ∞∑
i,j,l,m,n,p=0

ψeδxp

n−k

. (4.4)

5. METHOD OF ESTIMATION

This section presents the approach used to estimate the parameters of the STIITLG
model.

5.1. Maximum Likelihood Estimation Method. Let X1, X2...Xn be a random sample
from the STIITLG distribution, and let x1, x2...xn denote to the observed values of the
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sample. In this case, the log-likelihood function is given by:

ℓ(τ, δ, κ) = ln
(π
2

)
+ ln 2 + lnκ+ ln τ + δ

n∑
i=1

xi −
τ

δ

n∑
i=1

(
eδxi − 1

)
+

n∑
i=1

ln
(
1− e−

τ
δ (e

δxi−1)
)

+ (κ− 1)

n∑
i=1

ln

(
1−

(
1− e−

τ
δ (e

δxi−1)
)2)

+

n∑
i=1

ln cos

{
π

2

[
1−

(
1−

(
1− e−

τ
δ (e

δxi−1)
)2)κ]}

. (5.1)

To obtain the maximum likelihood estimates (MLEs) of the parameters τ , δ and κ, we
differentiate the log-likelihood function with respect to each parameter and set the resulting
score equations to zero:

∂ℓ

∂τ
= 0,

∂ℓ

∂δ
= 0,

∂ℓ

∂κ
= 0.

These nonlinear equations generally do not have closed-form solutions; therefore,
numerical methods such as the Newton-Raphson algorithm or expectation-maximization
(EM) algorithm are employed to obtain the estimates.

6. SIMULATION

With the maximum likelihood estimation (MLE) method discussed in Section 5, the
performance of the STIITLG distribution is examined by conducting various simulations
for different sizes (n=25, 50, 100, 200, 400, 800, 1200) via the R package. We simulate
N = 3000 samples for the true parameters values of (κ, τ, δ) given in Table 1 and Table
2. These tables report the mean estimates, average bias (ABIAS), and root mean squared
errors (RMSEs) of the MLEs across different sample sizes. The ABIAS and RMSE for an
estimated parameter, say κ̂, are computed as follows:

ABIAS(κ̂) =

∑N
i=1 κ̂i
N

− κ, and RMSE(κ̂) =

√∑N
i=1(κ̂i − κ)2

N
,

respectively.
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TABLE 1. Monte Carlo Simulation Results
(0.2, 0.8, 0.2) (0.8, 0.2, 0.8)

Parameter Sample Size Mean RMSE ABIAS Mean RMSE ABIAS
κ 25 0.8551 0.4782 0.6551 0.6027 0.5503 -0.1972

50 0.7168 0.3865 0.5168 0.6327 0.4952 -0.1672
100 0.5361 0.3217 0.3361 0.6418 0.4480 -0.1581
200 0.5067 0.2683 0.3067 0.6475 0.4107 -0.1524
400 0.3354 0.2045 0.1354 0.6652 0.3487 -0.1347
800 0.2421 0.1473 0.0621 0.6978 0.2852 -0.1021

1200 0.2380 0.1261 0.0380 0.7194 0.2421 -0.0805
τ 25 1.1002 0.5950 0.3002 0.4905 0.4809 0.2905

50 0.9889 0.4797 0.1889 0.3517 0.2292 0.1517
100 0.9019 0.4172 0.1019 0.3202 0.2909 0.1202
200 0.7278 0.3239 -0.0721 0.3188 0.2150 0.1188
400 0.8479 0.2923 0.0479 0.3019 0.1982 0.1019
800 0.8409 0.2391 0.0409 0.2589 0.1466 0.0589

1200 0.7855 0.2004 -0.0144 0.2284 0.1293 0.0284
δ 25 0.2938 0.1168 -0.0938 0.6149 0.3533 -0.1850

50 0.1100 0.1065 -0.0899 0.6653 0.3017 -0.1346
100 0.1326 0.0862 -0.0673 0.6747 0.2594 -0.1252
200 0.1296 0.0884 -0.0703 0.6769 0.2330 -0.1230
400 0.1584 0.0626 -0.0415 0.6904 0.1954 -0.1095
800 0.1733 0.0422 -0.0266 0.7132 0.1573 -0.0868

1200 0.1829 0.0400 -0.0171 0.7391 0.1244 -0.0608
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TABLE 2. Monte Carlo Simulation Results
(0.6, 0.6, 0.6) (1.2, 0.6, 1.2)

Parameter Sample Size Mean RMSE ABIAS Mean RMSE ABIAS
κ 25 0.7255 0.6932 0.1255 1.3107 0.5433 0.1107

50 0.6803 0.6498 0.0803 1.2742 0.4459 0.0742
100 0.6646 0.5577 0.0646 1.2509 0.3713 0.0509
200 0.6540 0.5196 0.0540 1.2385 0.3161 0.0385
400 0.6487 0.4577 0.0487 1.2380 0.2823 0.0380
800 0.6377 0.3844 0.0377 1.2244 0.2492 0.0244
1200 0.6207 0.3325 0.0207 1.2144 0.2378 0.0144

τ 25 0.6753 0.3962 0.0753 0.7750 0.6576 0.1750
50 0.6696 0.3233 -0.0696 0.7313 0.5919 0.1313

100 0.6574 0.2901 -0.0574 0.7175 0.4923 0.1175
200 0.64728 0.2581 -0.0471 0.7123 0.4524 0.1123
400 0.5612 0.2301 -0.0387 0.6862 0.3925 0.0862
800 0.5751 0.2021 -0.0248 0.6790 0.3567 0.0790
1200 0.5968 0.1769 -0.0031 0.6698 0.3224 0.0698

δ 25 1.0852 0.8630 0.4852 1.6126 1.0657 0.4126
50 0.8381 0.6479 0.2381 1.3561 0.8579 0.1561

100 0.7778 0.5787 0.1778 1.2807 0.7688 0.0807
200 0.7567 0.5058 0.1567 1.2682 0.6996 0.0682
400 0.6855 0.4473 0.0855 1.2284 0.6377 0.0284
800 0.6363 0.3780 0.0363 1.2262 0.5567 0.0262
1200 0.6017 0.3331 0.0017 1.1938 0.5059 -0.0061

The results in Tables 1 and 2 indicate that as the sample size (n) increases, the mean
estimates of the parameters converge towards the true values. Additionally, both ABIAS
and RMSE decrease towards zero, highlighting the stability of the STIITLG distribution.

7. APPLICATIONS

In this section, we illustrate the performance of the STIITLG distribution by fitting it to
two real data sets. We compared the STIITLG distribution with several other non-nested
models, namely Topp-Leone inverse Gompertz (TLIG) by [2], generalized Weibull (GW)
by [4], Type I Half Logistic-Weibull (TIHL-W) by [6], alpha power Weibull (APW)
distribution by [5], generalized Weibull-Gompertz (GWGom) distribution by [3] and
Harris extended Gompertz (HEGom) distribution by [8]. The pdfs of these distributions
are given as follows:

fTIHL−W (x;λ, δ, γ) =
2λδγxγ−1e−λδxγ

[1 + e−λδxγ ]2
,

for λ, δ, γ > 0 and x > 0,
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fTLIG(x;α, λ, β) = 2αλx−2 exp

(
β

x

)
exp

(
−λ
β

exp

(
β

x
− 1

))
×

[
1− exp

(
−λ
β

exp

(
β

x
− 1

))]

×

(
1−

[
1− exp

(
−λ
β

exp

(
β

x
− 1

))]2)α−1

,

for α, λ, β > 0, and x > 0,

fGW (x;w, λ, γ) = wλγxλ−1
(
1 + γxλ

)w−1
exp

(
1−

(
1 + γxλ

)w)
,

for w, λ, γ > 0, and x > 0,

fAPW (x;α, β, λ) =
λβα1−exp(−λxβ) exp(−λxβ)xβ−1 log(α)

α− 1
,

for α, β, λ > 0, and x ≥ 0,

fGWGom(x; a, b, c, d) = abxb−1 exp
(
−axb

[
exp(cxd)− 1

]
+ cxd

)(
1 +

(
cd

b

)
xd − exp(−cxd)

)
for a, b, c, d > 0, and x > 0, and

fHEGom(x; θ, k, β, c) = θ1/kβcx exp

(
−β c

x − 1

log(c)

)[(
1− (1− θ) exp

(
−kβ c

x − 1

log(c)

))1+ 1
k

]−1

for θ, k, β, c > 0, and x > 0.
The performance of the models were assessed using the well recognized goodness-of-fit

statistics, namely, -2loglikelihood (-2 log (L)), Akaike Information Criterion (AIC),
Consistent Akaike Information Criterion (CAIC), Bayesian Information Criterion (BIC),
Cramer-Von Mises (W ∗) and Andersen-Darling (A∗) as described by Chen and
Balakrishnan [10]. We also computed the Kolmogorov-Smirnov (K-S) goodness-of-fit
statistic. The model with the smallest values of these goodness-of-fit statistics and a higher
p-value for the K-S statistic, is regarded as the best fitting model.

We present plots of fitted densities, histograms of the data, and probability plots for
each example to show how well our model fits the observed data sets. To obtain the

probability plot, we plotted FSTIITLG(x(j); κ̂, τ̂ , δ̂) against
j − 0.375

n+ 0.25
, j = 1, 2, · · · , n,

where x(j) are the ordered values of the observed data. The measures of closeness are

given by the sum of squares SS =
∑n

j=1

[
FSTIITLG(x(j); κ̂, τ̂ , δ̂)−

(
j − 0.375

n+ 0.25

)]2
.

7.1. Waiting Times data. The dataset presented below contains the waiting times (in
minutes) before service for 100 bank customers. It was recently used by [9] and [14]. The
data are as follows:

0.8, 0.8, 1.3, 1.5, 1.8, 1.9, 1.9, 2.1, 2.6, 2.7, 2.9, 3.1, 3.2, 3.3, 3.5, 3.6, 4.0, 4.1, 4.2,
4.2, 4.3, 4.3, 4.4, 4.4, 4.6, 4.7, 4.7, 4.8, 4.9, 4.9, 5.0, 5.3, 5.5, 5.7, 5.7, 6.1, 6.2, 6.2,
6.2, 6.3, 6.7, 6.9, 7.1, 7.1, 7.1, 7.1, 7.4, 7.6, 7.7, 8.0, 8.2, 8.6, 8.6, 8.6, 8.8, 8.8, 8.9, 8.9,
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9.5, 9.6, 9.7, 9.8, 10.7, 10.9, 11.0, 11.0, 11.1, 11.2, 11.2, 11.5, 11.9, 12.4, 12.5, 12.9,
13.0, 13.1, 13.3, 13.6, 13.7, 13.9, 14.1, 15.4, 15.4, 17.3, 17.3, 18.1, 18.2, 18.4, 18.9,
19.0, 19.9, 20.6, 21.3, 21.4, 21.9, 23.0, 27.0, 31.6, 33.1, 38.5.

TABLE 3. Parameter Estimates and Goodness-of-Fit Statistics for
Various Models Fitted to the Waiting Times Data

Estimates Statistics
Model κ τ δ −2 log L AIC AICC BIC W ∗ A∗ K-S p-value

STIITLG 0.7036 0.1258 2.2961×10−09 635.2183 641.2184 641.4684 649.0339 0.0322 0.2072 0.0629 0.8224
(0.3154) (0.0355) (0.0120)

λ δ γ
TIHLW 1.6402×10−04 1.4636×1003 8.0447×10−01 663.5575 669.5578 669.8078 677.3733 0.0355 0.2263 0.190 0.0013

(3.1919×10−05) (6.8591×10−09) (6.9384×10−02)
α λ β

TLIG 4.1166×10−01 1.6168×1001 4.4063×10−08 654.3819 660.3819 660.6319 668.1974 0.2256 1.5436 0.0915 0.3722
(1.8900×10−01) (6.0799) (2.5275×10−02)

w λ γ
GW 0.2442 3.3820 0.0062 644.5253 650.5253 650.7753 658.3408 0.0482 0.3332 0.0934 0.3466

(0.0704) (0.5547) (0.0026)
α β γ

APW 1.0647×1011 5.1064×10−01 1.3453 649.9905 655.9901 656.2401 663.8056 0.0645 0.4694 0.1369 0.0469
(5.8543×10−14) (3.8749×10−02) (1.1917×10−01)

a b c d
GWGom 1.4738×1002 5.7825×10−01 5.3742×10−04 5.1797×10−01 649.782 657.7825 658.2035 668.2032 0.0327 0.2129 0.1438 0.0318

(5.7146×10−07) (4.4948×10−02) (1.3538×10−04) ( 4.5057×10−02)
θ k β c

HEGom 1.6033 0.0261 0.1181 1.0383 648.107 656.107 656.5281 666.5277 0.1201 0.7576 0.1130 0.1555
(2.0870) (0.1072) (0.1692) (0.0279)

Table 3 presents the maximum likelihood estimates (MLEs) of the fitted distributions,
along with their standard errors (in parentheses) and the corresponding goodness-of-fit
statistics. Based on the results in Table 3, the STIITLG distribution demonstrated the
best fit for the waiting times data set among the competing models. This conclusion
is supported by the goodness-of-fit measures: AIC,AICC,BIC,W ∗, A∗, and K-S,
which yielded the lowest values for the STIITLG distribution. Additionally, the STIITLG
distribution exhibited the highest p-value among the fitted models, further distinguishing
it from the alternatives.

FIGURE 4. Fitted densities, probability plots, fitted hazard rate function
(hrf) and Scaled TTT-Transform plots for the STIITLG distribution for
waiting times data
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Figure 4 presents the fitted density plots, probability plots, total time on test (TTT)
plot, and hazard rate function (hrf) plot. These visualizations indicate that the STIITLG
distribution provided a better fit to the data compared to other models. The hrf follows an
increasing pattern in the TTT scaled plot. Furthermore, the estimated hrf of the STIITLG
distribution exhibits an increasing trend, reinforcing its compatibility with the waiting
times data set.

7.2. Carbon Fibres data. The second dataset consists of the breaking stress values (in
GPa) for carbon fibres with a length of 50 mm. These data were previously analyzed by
[7], [22], and [23]. The observed values are as follows:

0.39, 0.85, 1.08, 1.25, 1.47, 1.57, 1.61, 1.61, 1.69, 1.80, 1.84, 1.87, 1.89, 2.03, 2.03,
2.05, 2.12, 2.35, 2.41, 2.43, 2.48, 2.50, 2.53, 2.55, 2.55, 2.56, 2.59, 2.67, 2.73, 2.74,
2.79, 2.81, 2.82, 2.85, 2.87, 2.88, 2.93, 2.95, 2.96, 2.97, 3.09, 3.11, 3.11, 3.15, 3.15,
3.19, 3.22, 3.22, 3.27, 3.28, 3.31, 3.31, 3.33, 3.39, 3.39, 3.56, 3.60, 3.65, 3.68, 3.70,
3.75, 4.20, 4.38, 4.42, 4.70, 4.90.

TABLE 4. Parameter Estimates and Goodness-of-Fit Statistics for
Various Models Fitted to the Carbon Fibres Data

Estimates Statistics
Model κ τ δ −2 log L AIC AICC BIC W ∗ A∗ K-S p-value

STIITLG 25.3631 0.0255 0.4101 171.9248 177.9247 178.3118 184.4937 0.0749 0.4976 0.0923 0.6274
(1.1437×10−04) (4.5335×10−03) (7.6808×10−02)

λ δ γ
TIHLW 1.1246e+03 1.0494×10−04 2.3155 176.3865 182.3869 182.774 188.9558 0.0879 0.4917 0.1511 0.0982

(9.8332×10−13) (1.0555×10−05) (1.3372×10−09)
α λ β

TLIG 5.1971 1.1596 2.0020e×10−08 231.1911 237.1911 237.5782 243.7601 0.7532 4.2460 0.2413 0.0009
(3.8634) (0.5372) (2.8649×10−02)

w λ γ
GW 0.9636 3.2014 0.0312 172.9805 178.9805 179.3676 185.5494 0.1007 0.5577 0.1202 0.2958

(0.4724) (0.5215) (0.0190)
α β γ

APW 1.0647×10−10 0.8638 1.5559 192.6593 198.6593 199.0464 205.2282 0.3806 2.0867 0.1290 0.2216
(6.5424×10−14) (0.0826) (0.1398)

a b c d
GWGom 1.8531×1002 6.3266×10−05 9.1732×10−04 1.6862 210.6949 218.6958 219.3516 227.4545 0.1772 0.9487 0.2553 0.0004

(2.7248×10−06) (0.0940) (2.2593×10−04) (0.0950)
θ k β c

HEGom 1.1856 5.3098 0.0409 2.8481 175.4249 183.4249 184.0806 192.1835 0.1015 0.7295 0.1090 0.4122
(0.6844) (10.8392) (0.0223) (0.4653)

Based on the results in Table 4, the STIITLG distribution demonstrates the best fit
among the competing distributions. This conclusion is supported by its lowest values
for −2 ln(L), AIC, CAIC, BIC, W ∗, A∗, and the K-S statistic. Additionally, the
p-value associated with the K-S statistic is the highest for the STIITLG distribution, further
indicating that this distribution provides the most suitable fit for the carbon fibres data.
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FIGURE 5. Fitted densities and PP plots, fitted hazard rate function and
Scaled TTT-Transform plots for the STIITLG distribution for carbon
fibres data

For the second dataset, Figure 5 illustrates the fitted density and probability plots, along
with the TTT and hrf plots. The STIITLG distribution emerges as the best fit as shown by
the fitted density and probability plots. The hrf follows an increasing trend in the TTT plot.
The estimated hrf further supports its suitability for modeling the data.

8. CONCLUDING REMARKS

This study introduced a novel extension of the Gompertz distribution by incorporating
the sine type II Topp-Leone family of distributions, adding an additional shape parameter
to enhance the flexibility of the classical model. Several important properties of the
proposed distribution, including moments, the moment-generating function, and order
statistics, were derived to establish its theoretical foundation. The parameters of the model
were estimated using the maximum likelihood estimation method, and a simulation study
confirmed the consistency and reliability of these estimators. The practical utility of the
proposed model was demonstrated through its application to two real-life datasets, where
it exhibited superior performance compared to several existing models. The findings of
this study underscore the potential of the proposed model as a robust and versatile tool
for analyzing complex datasets. Future research could focus on exploring additional
applications of the model in fields such as economics, survival analysis, and environmental
studies, as well as investigating alternative parameter estimation techniques and extensions
involving other generator families.
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