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MATHEMATICAL MODEL AND ANALYSIS OF MEASLES DYNAMICS IN A
POPULATION WITH LIMITED RESOURCES

KENNETH OJOTOGBA ACHEMA

ABSTRACT. This study explores the mathematical modelling of measles transmission dy-
namics in Nigeria, with a specific focus on assessing the impact of a single-dose vaccina-
tion strategy. Given the resurgence of measles outbreaks, especially in regions with low
vaccination coverage, this research aims to develop a robust model that can simulate dis-
ease transmission and evaluate vaccination strategies. The primary objective of the study is
to understand how varying levels of vaccination coverage, vaccine efficacy, and immunity
waning affect the disease dynamics. A modified SEIR (Susceptible-Exposed-Infectious-
Recovered) model was used, incorporating additional compartments for individuals vac-
cinated with one dose, as well as a factor for immunity waning. Data from Nigeria’s
Measles Situation Report (April 2024) informed the parameter values, initial population
distributions, and vaccination rates within the model, providing a real-world context. The
study employed numerical simulations using MATLAB to analyse the effects of vaccina-
tion rates, immunity waning, and other epidemiological parameters on measles transmis-
sion. The results reveal that high vaccination coverage specifically, achieving coverage
rates above 80% with the single-dose strategy significantly reduces the disease prevalence,
indicating effective outbreak prevention. However, the simulations also show that im-
munity waning can increase susceptibility, suggesting a potential need for booster dose to
sustain long-term immunity in the population. It recommends that public health authorities
prioritize reaching at least 90% vaccination coverage with two doses and consider booster
doses if immunity waning proves significant. These insights provide a foundation for en-
hancing measles control efforts, informing policy decisions, and guiding future research
on infectious disease dynamics in Nigeria and similar settings.

1. INTRODUCTION

Each year, many individuals are affected by severe respiratory infectious diseases, in-
cluding measles. A significant number of these individuals either die or experience seri-
ous illness and lifelong complications [39, 12, 29, 5, 1]. The World Health Organization
(WHO) and UNICEF release annual reports on global measles cases and related deaths,
based on data provided by member countries. According to WHO and UNICEF figures for
2017, there were 7,585,900 reported measles cases and 124,000 measles-related deaths. In
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2018, the numbers rose to approximately 9,769,400 cases and 142,300 deaths [34]. The
highest case numbers were reported from Madagascar, Ukraine, Somalia, and Liberia. Ad-
ditionally, some developed countries, such as the United Kingdom, Greece, Czechia, and
Albania, lost their measles elimination status that year. The United States recorded its
highest number of measles cases in 25 years in 2018. In 2019, measles caused 207,500
deaths worldwide, with 869,770 reported cases [13]. Madagascar, Ukraine, and Congo
were among the countries with the highest case numbers, and outbreaks continued in An-
gola, Cameroon, Kazakhstan, Chad, Nigeria, Thailand, the Philippines, South Sudan, and
Sudan. The continuous rise in cases presents a significant global health concern [35].

Measles is a highly contagious respiratory disease caused by the measles virus, which
resides in the mucus of an infected person’s nose and throat. It belongs to the paramyx-
ovirus family and the morbillivirus genus, and is unique in that it only infects humans
[39, 12]. The virus spreads through direct contact, such as coughing and sneezing. Com-
mon symptoms include high fever, runny nose, cough, conjunctivitis, rhinitis, small white
spots in the mouth, and a rash. Measles is especially dangerous for children under five and
adults over 20, leading to complications such as pneumonia, mouth ulcers, sinus and ear
infections, diarrhea, malnutrition, blindness, and brain damage [29].

There is no specific cure for measles, but treatment typically involves bed rest, flu-
ids, fever and pain management, and sometimes antibiotics to address complications [7].
The measles vaccine, which is effective and affordable, has greatly reduced the number
of deaths caused by the disease. The measles, mumps, and rubella (MMR) vaccine has a
95% efficacy rate when the first dose is administered to children at 12 months [6]. Global
health organizations like WHO, UNICEF, the American Red Cross, the Centres for Dis-
ease Control and Prevention (CDC), and the United Nations Foundation have made signif-
icant efforts to combat measles. In 2001, these groups launched the Measles and Rubella
Initiative (MRI), aiming to reduce global measles deaths by 90% by 2010 [32]. They are
currently working under the Measles and Rubella Strategic Framework 2021–2030 (MRSF
2021–2030), aiming for a world free of these diseases [36].

However, the World Health Organization (WHO) estimates that measles continues to
be a leading cause of death among young children worldwide, despite the availability of
a safe and effective vaccine [37]. To achieve herd immunity, the WHO recommends a
vaccination coverage rate of at least 95% [38], but Nigeria’s vaccination rate remains well
below this target [16]. The country has one of the highest measles incidence rates globally
and has faced recurring outbreaks in recent years [25, 30]. Currently, there is an alarming
increase in measles cases across Nigeria. In 2023, the Nigerian Centre for Disease Control
and Prevention (NCDC) reported 184 outbreaks, with 11,433 confirmed cases [23]. As of
March 2024, the infection rate in Nigeria is 64.9 cases per 1 million children, which is far
above the WHO target of fewer than 1 case per million. Measles cases have been reported
across the country, with particularly high numbers in Borno state [24]. Notably, there were
two major measles outbreaks in the northwest and northeast regions between 2012 and
2021 [30]. In 2019, measles outbreaks were reported in thirty-five states and the Federal
Capital Territory (FCT) [17].

Measles research has become a critical field of study, with numerous mathematical
[27, 4], theoretical, and experimental models developed to improve measles control strate-
gies across different regions, including London, Afghanistan, Kenya, Madagascar, Ontario,
Cape Coast, Italy, Senegal, Taiwan, and China [19, 9, 10, 3, 14, 26, 20, 8, 15, 40]. Addi-
tionally, Momoh et al. [22] explored an SEIR deterministic epidemic model to analyze the
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impact of asymptomatic individuals during the latent period on measles dynamics. Ade-
wale et al. [2] developed a mathematical model to assess the effect of distance between
infected and non-infected individuals on controlling measles transmission. Their findings
showed that increasing the distance between infected and susceptible individuals leads to
a decrease in the number of infections. Furthermore, two studies emphasized the effec-
tiveness of vaccination in controlling and preventing measles transmission [31, 28]. Garba
et al. [11] also examined a compartmental mathematical model to evaluate the influence
of vaccination and treatment on measles dynamics. Beay [5] proposed an SIQR epidemic
model and conducted a numerical analysis to investigate the impact of treatment and quar-
antine on measles dynamics. The study concluded that the combined use of quarantine
and treatment is more effective in controlling and preventing measles, noting that measles
transmission decreases as a result of treating and quarantining infected individuals.

This study presents a novel compartmental model to simulate measles prevalence in
Nigeria, using the next-generation matrix method to determine the basic reproduction
number, a key factor in disease dynamics. Numerical method is also employed to solve
the model equations and analyse epidemic trends under varying conditions. Local sta-
bility analyses of both disease-free and endemic equilibria are conducted using the trace
and determinant methods. Additionally, we perform a sensitivity analysis to identify the
parameters most influencing measles prevalence and examine the effects of progression
rates, transmission rates, and single-dose vaccination on measles dynamics.

The organisation of this paper is as follows. The model is formulated in Section 2. The
analyses of the formulated model and its numerical simulation are carried out in Section
3, while the results of the model analyses and simulations are discussed in Section 4. The
main conclusions from this study are summarized in Section 5.

2. MODEL FORMULATION

This section develops a mathematical model for measles dynamics using determin-
istic ordinary differential equations. The model consists of five compartments or sub-
populations:

i Susceptible compartment (first equation): This compartment increases due to the
influx rate (Π) and vaccine inefficacy rate, while it decreases due to transmission,
vaccination, and natural death rates.

ii Vaccinated compartment (second equation): This compartment increases with the
vaccination rate and decreases due to vaccine inefficacy, immunity loss, and natu-
ral death rates.

iii Exposed compartment (third equation): This compartment increases with the dis-
ease transmission rate and decreases due to disease progression and natural death
rates.

iv Infected compartment (fourth equation): This compartment increases with the dis-
ease progression rate and decreases due to recovery, disease-induced death, and
natural death rates.

v Recovered compartment (fifth equation): This compartment increases with recov-
ery and immunity rates and decreases due to the natural death rate.

2.1. Assumptions of the model equations. For proper understanding and formulation of
system of equations in this study, we present the following assumptions:

(H1) A single-dose vaccination is administered due to limited resources
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(H2) Some vaccinated individuals became susceptible to measles due to vaccine’s inef-
ficacy

(H3) Some of the vaccinated individuals developed permanent immunity to measles due
to vaccine’s efficacy and joined recovered individuals or compartment

(H4) Some infected individuals died due to measles infected while some of the infected
individuals recovered naturally and then developed permanent immunity to the
disease.

2.2. Model variables and parameters. The variables and the parameters of the model
are given as Table 1 below.

Variable Interpretation
S(t) Susceptible human population at time t
V (t) vaccinated human population at time t
E(t) Exposed human population at time t
I(t) Infected human population at time t
R(t) Recovered human population with immunity at time t

Parameter Interpretation
µ Natural death rate
δ Disease induced death rate
γ Natural recovery rate of the infected individuals
ρ Vaccine inefficacy
ω Rate at which vaccinated individuals developed immunity
α Rate at which exposed individuals become infected
β Disease transmission rate
η Vaccination rate of susceptible individuals
Π Recruitment rate of susceptible individuals
TABLE 1. Description of the model variables and parameters

2.3. Model schematic diagram. The model schematic diagram is given below as Figure
1.

FIGURE 1. Model Schematic Diagram

2.4. Descriptions of the model equations. The model
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2.5. Model equations. Considering the above assumptions, variables and parameters de-
scriptions, and the flow diagram, the model equations is given by

dS

dt
= Π− βSI − ηS − µS + ρV,

dV

dt
= ηS − (ρ+ ω + µ)V,

dE

dt
= βSI − (α+ µ)E,

dI

dt
= αE − (γ + δ + µ)I,

dR

dt
= γI + ωV − µR.

(2.1)

The non-negativity conditions of system (2.1) is given by

S > 0, V ≥ 0, E ≥ 0, I ≥ 0, R ≥ 0. (2.2)

3. MODEL ANALYSIS

This section considers some basic analytical analyses that are useful and paramount to
understanding the dynamics of measles disease.

3.1. Fixed point analysis. In order to study the model behaviour explicitly, the model
fixed point analysis is divided into the disease-free equilibrium (DFE), and the disease
persistent equilibrium (DPE). The two equilibria can be obtained from system (2.1) by
rewritten system (2.1) as a steady state system as follows.

Π− βSI − ηS − µS + ρV = 0,

ηS − ρV − ωV −muV = 0,

βSI − αE − µE = 0,

αE − γI − δI − µI = 0,

γI + ωV − µR = 0.

(3.1)

Solving system (3.1) simultaneously, the disease-free equilibrium (DFE), and the disease
persistent equilibrium (DPE) are given as E1 and E2 respectively.

E1 = (S∗, V ∗, E∗, I∗, R∗),

where

S∗ =
π(µ+ ρ+ ω)

αηµ+ αµ2 + µρ+ ηω + µω
, V ∗ =

ηπ

ηµ+ µ2 + µρ+ ηω + µω
,

E∗ = 0, I∗ = 0, R∗ =
ηπω

µ(ηµ+ µ2 + µρ+ ηω + µω)
.

And
E2 = (S

∗∗
, V

∗∗
, E

∗∗
, I

∗∗
, R

∗∗
),

where

S
∗∗

=
(γ + δ + µ)(α + µ)

αβ
,

V
∗∗

=
η(γ + δ + µ)(α + µ)

αβ(ρ + ω + µ)
,

E∗∗ = −
α
(
−βµΠ−βΠρ−βΠω+γη(µ+ω)+γµ(µ+ρ+ω)+δη(µ+ω)+δµ(µ+ρ+ω)+ηµ2+ηµω+µ3+µ2ρ+µ2ω

)
+µ(γ+δ+µ)(η(µ+ω)+µ(µ+ρ+ω))

αβ(α+µ)(µ+ρ+ω)
,

I∗∗ =
α
(
−βµΠ−βΠρ−βΠω+γη(µ+ω)+γµ(µ+ρ+ω)+δη(µ+ω)+δµ(µ+ρ+ω)+ηµ2+ηµω+µ3+µ2ρ+µ2ω

)
+µ(γ+δ+µ)(η(µ+ω)+µ(µ+ρ+ω))

β(α+µ)(γ+δ+µ)(µ+ρ+ω)
,
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R∗∗ =
−

(
α2

(
γ
((

µ2−βΠ
)
(µ+ρ+ω)+δη(µ−ω)+δµ(µ+ρ+ω)+ηµ(µ−ω)

)
+γ2µ(η+µ+ρ+ω)−ηω(δ+µ)2

))
−αµ(γ+δ+µ)+∆1

αβµ(α+µ)(γ+δ+µ)(µ+ρ+ω)
,

with ∆1 = (γη(µ − ω) + γµ(µ + ρ + ω) − 2ηω(δ + µ)) + ηµ2ω(γ + δ + µ)2

The equilibrium points E1 and E2 represent measles free population and measles persistent
population respectively.

3.2. Basic reproduction number computation. To calculate the basic reproduction num-
ber, system (2.1) is divided into appearance of infection and transfer of infection as matrix
Fi(x) and Mi(x) where Fi(x) be the rate of appearance of new infections in compartment
i and Mi(x) be the difference between the transfer rate of individuals out of compartment
i by all other means. Let x0 be the DFE of model equations. Thus, we have the following
partitioned derivatives, thus, the Fi(x) and Mi(x) of model equations is shown below:

F =

(
βSI
0

)
=

∂F

∂X
(E1) =

(
0 βS
0 0

)
and

M =

(
(α+ µ)E

−αE + (γ + δ + µ)I

)
=

∂Mi

∂xj(E1)
=

(
α+ µ 0
−α δ + γ + µ

)
The basic reproduction number is therefore computed to be

R0 = ρ1(FM−1) =
αβπ(µ+ ρ+ ω)

(α+ µ)(γ + δ + µ)(ηµ+ µ2 + µρ+ ηω + µω)

Where ρ1 is the spectral radius of FM−1(the spectral radius implies the maximum eigen-
value of FM−1)

Theorem 1. Consider the disease transmission model with f(x) satisfying the stability
conditions if x0 is a DFE of the model,the xo is locally asymptotically stable if R0 < 1,
but unstable if R0 > 1.

3.3. Stability analysis. In this section, stability analysis of the equilibrium points E1 and
E2 are carried out.

3.3.1. Stability of the disease-free equilibrium point. The characteristic equation is given
by

J(E0) =


−ϕ1 ρ 0 βS 0
η −ϕ2 0 0 0
0 0 −ϕ3 βS 0
0 0 α −ϕ4 0
0 ω 0 γ −ϕ5


−λ4(−A − B − C − D − µ) + ABCDµ − λ3(−AB − AC − AD − Aµ − BC −
BD − Bµ − CD − Cµ −Dµ + ηρ + αβS) − λ2(−ABC − ABD − ABµ − ACD −
ACµ−ADµ+αAβS−BCD−BCµ−BDµ+αβBS−CDµ+Cηρ+Dηρ+ηµρ+
αβµS)− λ(−ABCD −ABCµ−ABDµ+ αAβBS −ACDµ+ αAβµS −BCDµ+
αβBµS+CDηρ+Cηµρ+Dηµρ−αβηρS)−αAβBµS−CDηµρ+λ5+αβηµρS = 0

Tr(J(E0)) = −(Φ1 +Φ2 +Φ3 +Φ4 +Φ5)

Det(J(E0)) = SαβΦ1Φ2Φ5 + ηρΦ3Φ4Φ5 − (Φ1Φ2Φ3Φ4Φ+ SαβηρΦ5)

The eigenvalues corresponding to J(E0) is given by
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1
2

(
−
√
4ηρ+ ϕ2

1 − 2ϕ2ϕ1 + ϕ2
2 − ϕ1 − ϕ2

)
, 1
2

(√
4ηρ+ ϕ2

1 − 2ϕ2ϕ1 + ϕ2
2 − ϕ1 − ϕ2

)
,

1
2

(
−
√
4αβS + ϕ2

3 − 2ϕ4ϕ3 + ϕ2
4 − ϕ3 − ϕ4

)
, 1
2

(√
4αβS + ϕ2

3 − 2ϕ4ϕ3 + ϕ2
4 − ϕ3 − ϕ4

)
,−ϕ5

3.4. Stability of the disease persistent equilibrium point. The stability of the disease
persistent equilibrium point is given by

J(E1) =


−η + β − µI∗∗ ρ 0 βS 0

η −µ− ρ− ω 0 0 0
βI∗∗ 0 −α− µ βS 0
0 0 α −γ − δ − µ 0
0 ω 0 γ −µ


Det(J(E1)) = I∗∗βµ(2Sαβ − (α + µ)(γ + δ + µ))(µ + ρ + ω) + µ(Sα β − (α +
µ)(γ + δ + µ))(η( µ+ ω) + µ(µ+ ρ+ ω))

Tr(J(E1)) = −(α+ βI∗∗ + γ + δ + η + 5µ+ ρ+ ω)

3.5. Global stability analysis.

Theorem 2. The endemic equilibrium of system (2.1) is globally asymptotically stable
(GAS) whenever R0 > 1.

Proof. The endemic equilibrium exists iff R0 > 1, and N = Π
µ as t → ∞. Therefore,

using S = Π
µ − E − I and substituting in system (2.1) gives

dE

dt
= β

(
Π

µ
− E − I)I − (α+ µ

)
E,

dI

dt
= αE − (γ + δ + µ)I.

(3.2)

Introducing Dulac’s multiplier 1
EI , system (3.2) becomes

∂

∂E

[
β(Πµ − E − I)

E

]
+

∂

∂I

[
α

I
− (γ + δ + µ)

E

]
,

= −
[
α

I2
+

β

E2

(
Π

µ
− I

)]
.

(3.3)

N ≤ Π

µ
> I.

or

=
(βΠ3µ− βΠI2 − αµE2)(α+ µ)(γ + δ + µ)(ηµ+ µ2 + µρ+ ηω + µη)

µI2E2[αβΠ(µ+ β + ω)− (α+ µ)(γ + δ + µ)(ηµ+ µ2 + µρ+ ηω + µη)]
[1−R0] .

for R0 > 1.

3.6. Sensitivity Analysis. In this section, we performed the sensitivity analysis in order
to determine the relative importance of the model parameters on disease transmission. The
analysis will enable us to find out parameters that have high impact on the basic repro-
duction number and which should be targeted for intervention strategies. We perform
sensitivity analysis by calculating the sensitivity indices of the effective reproduction num-
ber R0 since our major emphasis is on the measles disease dynamics can be controlled or
not. These indices tell us how crucial each parameter is on the disease transmission. The
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sensitivity index of R0 to a parameter say τ , where τ is any of the parameters in Table 2 is
given by

ΓR0
τ =

∂R0

∂τ
× τ

R0
,

where α = µ
α+µ = +0.47245

µ = µ
(
− 1

α+µ − 1
γ+δ+µ − η+2µ+ρ+ω

η(µ+ω)+µ(µ+ρ+ω) +
1

µ+ρ+ω

)
= −0.535302

ρ = ηρ(µ+ω)
(µ+ρ+ω)(η(µ+ω)+µ(µ+ρ+ω)) = +0.41145

ω = − ηρω
(µ+ρ+ω)(η(µ+ω)+µ(µ+ρ+ω)) = −0.403323

δ = − δ
γ+δ+µ = −0.012818

γ = − γ
γ+δ+µ = −0.961354

η = − η(µ+ω)
(η+µ)(µ+ρ+ω)−ηρ = −0.971103

β = +1.00000

4. NUMERICAL SIMULATION

In this section, we use the inbuilt MATLAB function ode 45 to solve the modified model
equations above. The graphical user interface in the MATLAB version 7.5 was used for the
solution method, simulation and visualization on graphs. We made use of the parameters of
the model and their values from related literature and we assumed some parameters values
that are not found in literature. The values used here are as contained in Table 2.

4.1. Model variables and parameters. The parameter’s values are given below in Table
2.

Parameters Values References
Π 612 Assumed
µ 0.016 [21]
δ 0.018 [21]
γ 0.6 [18]
ρ 0.000− 0.400 Varied
ω 0.800 [18]
α 0.018 [18]
β 6.3× 10−2 − 7.45× 10−7 [21]
η 0.960 [18]

TABLE 2. Description of the model parameters and values

5. DISCUSSIONS AND CONCLUSIONS

Figures 2, 3, 4, and 6 depict the impact of transmission rate, progression rate, and
vaccine inefficacy rate respectively on measles prevalence. These figures reveal that an
increase in transmission rate, progression rate, or vaccine inefficacy rate leads to a higher
burden of measles prevalence, indicating a positive correlation between these parameters
and the likelihood of a measles outbreak. In contrast, Figure 5 demonstrates that increasing
the vaccination rate decreases measles prevalence, thereby reducing the risk of an outbreak.

This study developed and analyzed a transmission dynamics model for measles in a
resource-limited population relying on single-dose vaccination. An analytical expression
for the basic reproduction number (R0) was derived using the next-generation matrix. The
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analysis showed that the disease-free equilibrium is locally asymptotically stable when
R0 < 1, while measles persists in the community if R0 > 1. Sensitivity analysis revealed
that the transmission rate (β = 1.0000) significantly influences the spread of measles, em-
phasizing the need to minimize unnecessary contact with infected individuals. The study
underscores the critical role of vaccination in controlling and preventing measles outbreaks
in Nigerian communities (see Figure 7). Vaccination remains the most effective strategy
for managing measles outbreaks. However, the inefficacy of vaccines was identified as a
contributing factor to measles prevalence. Numerical analysis demonstrated that increased
vaccination rates have a negative correlation with measles prevalence, indicating that en-
hancing vaccination coverage reduces the disease’s spread. To achieve high herd immunity
and prevent measles outbreaks in Nigeria, mass vaccination campaigns should be priori-
tized to cover a larger proportion of the population.

FIGURE 2. Impact of transmission rate (β) on measles prevalence

FIGURE 3. Impact of transmission rate (β) on measles prevalence
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FIGURE 4. Impact of progression rate (α) on measles prevalence

FIGURE 5. Impact of single dose vaccine(η) on measles prevalence

FIGURE 6. Impact of weaned vaccine(ρ) on measles prevalence
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FIGURE 7. Sensitivity index of the basic reproduction number
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