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HIGHER DERIVATIVE DIRECT BLOCK METHODS FOR FOURTH-ORDER
INITIAL VALUE PROBLEMS OF ORDINARY DIFFERENTIAL EQUATIONS

E.O. SENEWO∗, D.B. MICHEAL1, I.G. EZUGORIE2, Q.O. AHMAN1, B.C. AGBATA1 AND V. O. ATABO1

ABSTRACT. Direct Block Methods for solving fourth-order Initial Value Problems (IVPs)
are presented. The derivation of the methods is achieved by applying the technique of inter-
polation and collocation to a power series polynomial, which is considered an approximate
solution to the problems. Higher derivative terms are introduced to improve the order of
accuracy of the methods. Details of the block methods are presented, showing that the
methods are zero stable, consistent and convergent. Some scalar and vector problems of
IVPs are presented to illustrate the accuracy of the proposed approach, providing a com-
prehensive comparison with other methods in the literature.

1. INTRODUCTION

Considered in this article is the direct block methods for the solution of fourth order
initial value problems of the form

y(4) = f(x, y, y′, y′′, y′′′), y(α) = y0, y
′(α) = y′0, y

′′(α) = y′′0 , y
′′′(α) = y′′′0 (1.1)

the fifth derivative of the solution to equation (1) is

y(5) = f ′(x, y, y′, y′′, y′′′) = ft + fyy
′ + fy′y′′ + fy′′y′′′ + ffy′′′ (1.2)

assuming that f in equation (1.1) is differentiable and continuous on the domain R.
Higher-order linear and nonlinear IVPs are the results of modeled problems arising from
engineering and other sciences, to mention a few. The static deflection of a uniform beam
or a cantilever beam often leads to fourth-order problems. There are many computational
numerical methods available for solving this kind of problems in literatures. Not until
recently, higher order ordinary differential equations were solved by reducing them to an
equivalent system of first order ordinary differential equations, this process is opined to be
too rigorous when compared with the direct methods. Several authors who studied and ap-
plied this approach to find the solution of higher order includes Jator [9], Jacob [8], Omar
& Adeyeye [2] and others. According to Awoyemi [3], The un-economical nature in term
of cost of implementation, increased computational burden and wastage of computer time
and the increase in dimension of the resulting systems of equations to be solved are the
setbacks associated with the reduction approach despite of the success of this approach.
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Block method is an approach that have been recently used for solving higher order ODEs
directly, this method has gain more attention. The block method was proposed first by
Milne [11]. It advantages are; being more efficient in terms of cost implementation, ac-
curacy, and time of execution over the predictor-corrector methods. Out of the several
numerical methods in literatures, only few are specially designed to solve fourth order or-
dinary differential equations.
While Awoyemi [4] proposed a multi-derivative collocation method for the approximation
of fourth order IVPs, Yap & Ismail [14] developed a Block Hybrid Collocation Method
(BHCM) for the solution of fourth order IVPs, Abdelrahim & Omar [1] developed a four-
step implicit block method with three generalized off-step points and applied it to solve
fourth order IVPs directly. Kubye & Omar [10] developed a zero-stable block method for
solving fourth order initial value problems of ordinary differential equations, Familua &
Omole [5] proposed a five points mono hybrid linear multistep method for solving nth or-
der ordinary differential equations using power series function. Recently, Olabode et.al.
[12] consider the existence results and a family of highly stable fifth derivative block meth-
ods for the direct solution of systems of beams equations. The article dealt with system of
nonlinear fourth-order boundary value problems arising from structural mechanics.
This research focuses on the development of new block methods of the general form

A0(tn)Ym = A
(i)
0 (tn)Ym−i + hA1

(i)(tn)Y
′
m−i + h2A2

(i)(tn)Y
′′
m−i + h3A3

(i)(tn)Y
′′′
m−i

+h4
k∑

i=0

B(i)(tn)Fm−i + h5
k∑

i=0

C(i)(tn)F
′
m−i (1.3)

which will be used to solve fourth order boundary value problems of ordinary differential
equations directly.

2. DERIVATION OF THE BLOCK METHOD

Assume the analytical solution y(t) of (1.1) be approximated by power series polyno-
mial p(t) given as

y(t) = p(t) =

k∑
j=0

ajt
j (2.1)

where aj ∈ R are unknown coefficients and t is continuously differentiable. The deriva-
tives of (2.1) yields the following

y′(t) = p
′
(t) =

k∑
j=1

jajt
j−1 (2.2)

y′′(t) = p
′′
(t) =

k∑
j=2

j(j − 1)ajt
j−2 (2.3)

y′′′(t) = p
′′′
(t) =

k∑
j=3

j(j − 1)(j − 2)ajt
j−3 (2.4)

y(4)(t) = p4(t) =

k∑
j=4

j(j − 1)(j − 2)(j − 3)ajt
j−4 (2.5)
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and

y(5)(t) = p5(t) =

k∑
j=4

j(j − 1)(j − 2)(j − 3)(j − 4)ajt
j−5 (2.6)

respectively.
Equating (1.1) and (2.5) gives the differential system

f(t, y, y′, y′′, y′′′) =

k∑
j=0

j(j − 1)(j − 2)(j − 3)ajt
j−4 (2.7)

Equations (2.1), (2.5) and (2.6) are the interpolation and collocation equations that shall
be use in the derivation of the methods. The equations arising from it are expressed matrix
form of equations written as

XA = B (2.8)
but expressed as a linear system

1 tn t2n t3n t4n t5n · · · tNn

0 1 2tn 3t2n 4t3n 5t4n · · · NtN−1
n

· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 6 24tn 60t2n · · · N(N − 1)(N − 2)tN−3

n

0 0 0 0 24 120tn · · · N(N − 1)(N − 2)(N − 3)tN−4
n

· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 0 120 · · · N(N − 1)(N − 2)(N − 3)(N − 4)tN−5

n





a0

a1

· · ·
· · ·
· · ·
an−1

an


=



yn

y′
n

· · ·
y′′′
n

fn

· · ·
f ′
n+k


(2.9)

which shall be solved to obtain the unknown parameters.
The continuous schemes is recovered after the parameters are substituted into equation
(2.1) and then evaluated to obtain the block methods.
For the one-step method (i.e K = 1), equation (2.9) becomes

1 tn t2n t3n t4n t5n t6n t7n
0 1 2tn 3t2n 4t3n 5t4n 6t5n 7t6n
0 0 2 6tn 12t2n 20t3n 30t4n 42t5n
0 0 0 6 24tn 60t2n 120t3n 210t4n
0 0 0 0 24 120tn 360t2n 840t3n
0 0 0 0 24 120tn 360t2n 840t3n
0 0 0 0 0 120 720tn 2520t2n
0 0 0 0 0 120 720tn 2520t2n





a0
a1
a2
a3
a4
a5
a6
a7


=



yn
y′n
y′′n
y′′′n
fn

fn+1

f ′
n

f ′′
n+1


(2.10)

Solving equation (2.10) by Gaussian elimination method for aj and substituting the result-
ing values into (2.1) yield the continuous scheme

y(t) = α1(t)yn + α2(t)y
′
n + α3(t)y

′′
n + α4(t)y

′′′
n + h4(β0(t)fn + β1(t)fn+1)

+h5(ω0f
′
n + ω1f

′
n+1) (2.11)

Evaluating the continuous scheme (2.11), it first to third derivatives at t = 1 gives the block
methods as follows;
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2.1. The One-Step Direct Block Method.

yn+1 = yn + hy′n +
1

2
h2y′′n +

1

6
h3y′′′n + h4

(
fn
28

+
fn+1

168

)
+ h5

(
f ′
n

252
−

f ′
n+1

630

)
(2.12)

y′n+1 = y′n + hy′′n +
1

2
h2y′′′n + h3

(
16fn + 4fn+1

120

)
+ h4

(
2f ′

n − f ′
n+1

120

)
(2.13)

y′′n+1 = y′′n + hy′′′n + h2

(
21fn + 9fn+1

60

)
+ h3

(
3f ′

n − 2f ′
n+1

60

)
(2.14)

y′′′n+1 = y′′′n + h

(
6fn + 6fn+1

12

)
+ h2

(
f ′
n − f ′

n+1

12

)
(2.15)

Using the same procedure of the one-step direct block method as stated above and evaluat-
ing the continuous scheme at all grids points for the two-step and three-step block method,
the direct block methods are presented below.

2.2. The Two-Step Direct Block Method.

yn+1 = yn + hy′
n +

1

2
h2y′′

n +
1

6
h3y′′′

n + h4

(
67fn
2016

+
fn+1

144
+

fn+2

672

)
+h5

(
37f ′

n

12096
− 4f ′

n+1

945
− 5f ′

n+2

12096

)
(2.16)

yn+2 = yn + 2hy′
n + 2h2y′′

n +
4

3
h3y′′′

n + h4

(
8fn
21

+
16fn+1

63
+

2fn+2

63

)
+h5

(
8f ′

n

189
− 16f ′

n+1

189
− 8f ′

n+2

945

)
(2.17)

y′
n+1 = y′

n + hy′′
n +

1

2
h2y′′′

n + h3

(
817fn + 256fn+1 + 47fn+2

6720

)
+h4

(
83f ′

n − 140f ′
n+1 − 13f ′

n+2

6720

)
(2.18)

y′
n+2 = y′

n + 2hy′′
n + 2h2y′′′

n + h3

(
68fn + 64fn+1 + 8fn+2

105

)
+h4

(
8f ′

n − 16f ′
n+1 − 2f ′

n+2

105

)
(2.19)

y′′
n+1 = y′′

n + hy′′′
n + h2

(
520fn + 280fn+1 + 40fn+2

1680

)
+h3

(
59f ′

n − 128f ′
n+1 − 11f ′

n+2

1680

)
(2.20)

y′′
n+2 = y′′

n + 2hy′′′
n + h2

(
79fn + 112fn+1 + 19fn+2

105

)
+h3

(
10f ′

n − 16f ′
n+1 − 4f ′

n+2

105

)
(2.21)

y′′′
n+1 = y′′′

n + h

(
101fn + 128fn+1 + 11fn+2

240

)
+h2

(
13f ′

n − 40f ′
n+1 − 3f ′

n+2

240

)
(2.22)

y′′′
n+2 = y′′′

n + h

(
7fn + 16fn+1 + 7fn+2

15

)
+ h2

(
f ′
n − f ′

n+2

15

)
(2.23)
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2.3. The Three-Step Direct Block Method.

yn+1 = yn + hy′
n +

1

2
h2y′′

n +
1

6
h3y′′′

n + h4

(
569426fn + 78678fn+1 + 85266fn+2 + 15070fn+3

17962560

)
+h5

(
47055f ′

n − 134568f ′
n+1 − 53487f ′

n+2 − 3732f ′
n+3

17962560

)
(2.24)

yn+2 = yn + 2hy′
n + 2h2y′′

n +
4

3
h3y′′′

n + h4

(
99220fn + 58536fn+1 + 25218fn+2 + 4136fn+3

280665

)
+h5

(
9672f ′

n − 40068f ′
n+1 − 15120f ′

n+2 − 1020f ′
n+3

280665

)
(2.25)

yn+3 = yn + 3hy′
n +

9

2
h2y′′

n +
9

2
h3y′′′

n + h4

(
33264fn + 33534fn+1 + 14580fn+2 + 1782fn+3

24640

)
+h5

(
3429f ′

n − 14580f ′
n+1 − 6561f ′

n+2 − 432f ′
n+3

24640

)
(2.26)

y′
n+1 = y′

n + hy′′
n +

1

2
h2y′′′

n + h3

(
62387fn + 14418fn+1 + 11853fn+2 + 2062fn+3

544320

)
+h4

(
5637f ′

n − 19386f ′
n+1 − 7371f ′

n+2 − 510f ′
n+3

544320

)
(2.27)

y′
n+2 = y′

n + 2hy′′
n + 2h2y′′′

n + h3

(
5048fn + 4428fn+1 + 1620fn+2 + 244fn+3

8505

)
+h4

(
516f ′

n − 2268f ′
n+1 − 918f ′

n+2 − 60f ′
n+3

8505

)
(2.28)

y′
n+3 = y′

n + 3hy′′
n +

9

2
h2y′′′

n + h3

(
3285fn + 4374fn+1 + 2187fn+2 + 234fn+3

2240

)
+h4

(
351f ′

n − 1458f ′
n+1 − 729f ′

n+2 − 54f ′
n+3

2240

)
(2.29)

y′′
n+1 = y′′

n + hy′′′
n + h2

(
78076fn + 35127fn+1 + 19548fn+2 + 3329fn+3

272160

)
+h3

(
7791f ′

n − 33804f ′
n+1 − 12015f ′

n+2 − 822f ′
n+3

272160

)
(2.30)

y′′
n+2 = y′′

n + 2hy′′′
n + h2

(
h25731fn + 7992fn+1 + 2943fn+2 + 344fn+3

8505

)
+h3

(
618f ′

n − 2700f ′
n+1 − 1404f ′

n+2 − 84f ′
n+3

8505

)
(2.31)

y′′
n+3 = y′′

n + 3hy′′′
n + h2

(
1206fn + 2187fn+1 + 1458fn+2 + 189fn+3

1120

)
+h3

(
135f ′

n − 486f ′
n+1 − 243f ′

n+2 − 36f ′
n+3

1120

)
(2.32)

y′′′
n+1 = y′′′

n + h

(
34465fn + 42255fn+1 + 12015fn+2 + 1985fn+3

90720

)
+h2

(
3849f ′

n − 22977f ′
n+1 − 7263f ′

n+2 − 489f ′
n+3

90720

)
(2.33)

y′′′
n+2 = y′′′

n + h

(
1115fn + 2700fn+1 + 1755fn+2 + 100fn+3

2835

)
+h2

(
129f ′

n − 432f ′
n+1 − 513f ′

n+2 − 24f ′
n+3

2835

)
(2.34)
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y′′′
n+3 = y′′′

n + h

(
465fn + 1215fn+1 + 1215fn+2 + 465fn+3

1120

)
++ h2

(
h257f ′

n − 81f ′
n+1 + 81f ′

n+2 − 57f ′
n+3

1120

)
(2.35)

3. ANALYSIS OF THE METHOD

The derived methods are analysed based on order and error constant of the block methods, con-
sistency, zero stability, convergence and domain of stability of the block methods.

3.1. Local truncation error and order. The block method is of the general form

y(t) =

3∑
i=0

αiy
i
n(tn)h

i + h4
k∑

i=0

βi(tn)fn+i + h5
k∑

i=0

βi(tn)f
′
n+i (3.1)

Assuming,

yn+v ≈ y(tn + vh), fn+j ≡ (tn + jh, y(tn + jh)) , f ′
n+v =

df(t, y(t))

dt
|t=tn+v
y=yn+v

and y(tn) is continuously differentiable arbitrary function on [a, b].
The Local Truncation Error (LTE) of the block methods is defined by the linear operator L[y(t);h]
such that

L[y(t);h] = y(tn+ih)−

(
α1hy

′(t)− α2h
2y′′(t)− α3h

3y′′′(t)− h4
k∑

j=0

βj(t)fn+j − h5
k∑

j=0

ωjf
′
n+j

)
(3.2)

Applying the Taylor series expansion to the right hand side (RHS) of (3.2) at about point t, the
method is of order p = 2k + 2

L.T.E.(tn) = −y(t) + yn + α1hy
′(t) + α2h

2y′′(t) + α3h
3y′′′(t) + h4

k∑
j=0

βj(t)fn+j

+h5
k∑

j=0

ωjf
′
n+j

≤ Cp+1h
p+1yp+1

n (t) +⃝
(
h(p+1)

)
= C2k+3h

2k+3y2k+3
n (t) +⃝

(
h(2k+4)

)
(3.3)

The block methods are of uniform order p = 4, p = 6 and p = 8 respectively and with the following
error constants.

Cp+4 =

[
1

24192
,

1

5040
,

1

1440
,

1

720

]T
Cp+4 =

[
1

259200
,

1

14175
,

1

56700
,

2

14175
,

1

17280
,

1

4725
,

1

9450
,

1

4725

]T
and

Cp+4 =

[
3359

6706022400
,

221

26195400
,

1053

27596800
,

89

39916800
,

1

62370
,

81

1724800
,

359

50803200
,

17

793800
,

27

627200
,

313

25401600
,

13

793800
,

9

313600

]T
respectively

3.2. Zero-Stability and Convergence. The zero stability of a numerical method is established if as
h → 0 the solutions remain bounded, it simply implies that the method provide no solutions that
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grow unbounded with increase in steps numbers. Considering h → 0 for the derived block methods,
the method is expressed in matrix form as

A0Yµ = A1Yµ−1

A0 is the identity matrix of order n, A0 = In , and A1 is a n× n matrix given by

X =



t1,1 t1,2 · · · · · · · · · t1,n

t2,1 t2,2 · · · · · · · · · t2,n

t3,1 t3,2 · · · · · · · · · t3,n

· · · · · · · · · · · · · · · · · ·
tn,1 tn,2 · · · · · · · · · tn,n


By the above definition, the methods are found to be zero stable after finding the characteristic
polynomial of the matrix of the block methods which is as follows (λ− 1)4 = 0, (λ− 1)4 λ4 = 0
and (λ− 1)4λ6 = 0 respectively.

3.3. Consistency.

Theorem: The convergence of the methods with respect to properties discussed in conjunction from
the fundamental theorem of Dahlquist according to Henrici [7]) for multistep methods. Consistency
and zero stability are the necessary and sufficient condition for a linear multistep method to be con-
vergent. The above block methods are of order p = 4, 6, 8 respectively and they are also zero-stable.
Therefore, the methods is said to be convergent.

3.4. Linear stability. The stability properties of the discrete fourth derivative block method as ob-
tained from the continuous algorithm in (2.11) for output point values are determined. The region
of absolutely stability of the block methods with application on the scalar test problem

y′ = λy, y′′ = λ2y, y′′′ = λ3y, y′v = λ4y (3.4)

produced the stability polynomial

π(w, z) = det

[
3∑

i=0

A(i) + z4
k∑

i=0

B(i)wk−i + z5
k∑

i=0

C(i)wk−i

]
(3.5)

The one-step block method has the stability polynomial

π(w, z) =
wz5

630
− wz4

168
+ w − z5

252
− z4

28
− z3

6
− z2

2
− z − 1 (3.6)

and the determinant is now plotted to generate the stability region of the methods. k = 1, 2 are
A− Stable while k = 3 is A(α)− Stable.

FIGURE 1. Stability Region for the One-Step Direct Block Method (1SDBM)
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FIGURE 2. Stability Region for the Two-Step Direct Block Method(2SDBM)

FIGURE 3. Stability Region for the Three-Step Direct Block Method(3SDBM)

4. NUMERICAL APPLICATION

The accuracy of the methods are ascertained by solving following fourth order initial value prob-
lems (IVPs).

ACRONYMS
1SDBM - One-Step Direct Block Method
2SDBM - Two-Step Direct Block Method
3SDBM - Three-Step Direct Block Method
E1SDBM - Error in One-Step Direct Block Method
E2SDBM - Error in Two-Step Direct Block Method
E3SDBM - Error in Three-Step Direct Block Method

Problem 1: This problem model the sinusoidal wave of frequency Ω as it passes along a ship or
offshore structure.

y(4) + 3y′′ + y(2 + ϵCos(Ωt)) = 0

y(0) = 1, y′(0) = 0, y′′(0) = 0; y′′′(0) = 0; h =
1

320
The theoretical solution is known

y(t) = 2Cos(t)− Cos(t
√
2)

Problem 2: An inhomogeneous nonlinear problem

y(4) − y2 = Cos2(t) + Sin(t)− 1

y′(0) = 1, y′′(0) = 0; y′′′(0) = −1; h = 0.1

The exact solution is given by y(t) = Sin(t) The problem is integrated in the interval [0, 8]

Problem 3: Consider the nonlinear IVP

y(4) − (y′)2 = −4t2 + et(1− 4t+ t2) + yy′′′
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y(0) = 1, y′(0) = 1, y′′(0) = 3; y′′′(0) = 1; h =
0.1

32
whose exact solution is y(t) = t2 + et

Problem 4:
y(4)) = −y′′ 0 ≤ t ≤ π

2
with the initial conditions

y(0) = 0, y′(0) = − 1.1

72− 50π
, y′′(0) =

1

144− 100π
; y′′′(0) =

1.2

144− 100π
; h = 0.01

Exact Solution

y(t) =
−t1.2 sin(t)− cos(t) + 1

144− 100π

Problem 5: Consider the linear system below, solved by erudite scholar [13]

y4 = e3tu y(0) = 1, y′(0) = −1, y′′(0) = 1, y′′′(0) = −1,

z4 = 16e−ty z(0) = 1, z′(0) = −2, z′′(0) = 4, z′′′(0) = −8,

w4 = 81e−tz w(0) = 1, w′(0) = −3, w′′(0) = 9, w′′′(0) = −27,

u4 = 256e−tyw wu(0) = 1, u′(0) = −4, u′′(0) = 16, u′′′(0) = −64,

Exact Solution

y = e−t, z = e−2t, w = e−3t, u = e−4t

The problem is integrated in the interval [0, 3]

TABLE 1. Absolute Error Comparison for Problem 1

h y − exact E2SBM Familua et.al. [5]
p = 6 p = 8

0.003125 0.9999999999920527 0 6.685763E-13
0.006250 0.9999999998728438 0 1.458489E-11
0.00937 0.9999999993562755 1.11022302462515651E-16 1.082968E-10
0.012500 0.9999999979655266 0 3.917803E10
0.015625 0.9999999950330675 0 1.025145E-09
0.018750 0.9999999897006795 1.11022302462515652E-16 2.217319E-09
0.021875 0.9999999809194795 0 4.226068E09
0.025000 0.9999999674499512 0 7.358019E-09
0.028125 0.9999999478619811 1.11022302462515653E-16 1.196868E-08
0.031250 0.999999920534901 1.11022302462515654E-16 1.846249E-08



112 SENEWO etal.

TABLE 2. Absolute Error Comparison for Problem 2

h y − exact E1SBM E2SBM E3SBM

p = 4 p = 6 p = 8

0.1 0.09983341664682815 1.9290125052862095E-14 1.3877787807814457E-17 1.3877787807814457E-17
0.2 0.19866933079506122 4.581057755359552E-13 0 2.7755575615628914E-17
0.3 0.29552020666133955 3.119782210347921E-12 5.5511151231257834E-17 5.5511151231257843E-17
0.4 0.3894183423086505 1.2561951479028721E-11 1.66533453693773481E-16 5.5511151231257833E-17
0.5 0.479425538604203 3.7438385724897216E-11 5.5511151231257832E-16 5.5511151231257834E-17
0.6 0.5646424733950354 9.180267657171726E-11 1.2212453270876722E-15 0
0.7 0.644217687237691 1.963581519603963E-10 2.55351295663786E-15 1.1102230246251565E-17
0.8 0.7173560908995228 3.796469805195102E-10 4.6629367034256575E-15 1.11022302462515652E-16
0.9 0.7833269096274834 6.7916883228491544E-10 8.326672684688674E-15 1.11022302462515651E-16
1.0 0.8414709848078965 1.142425487543619E-09 1.3877787807814457E-14 3.3306690738754696E-16

TABLE 3. Absolute Error Comparison for Problem 3

h E1SBM E2SBM Kuboye et.al. [10] Familua et.al. [5]
p = 4 p = 6 p = 7 p = 7

0.103125 0 2.220446049250313E-16 1.7878077E-10 9.02145880E-10
0.206250 2.220446049250313E-16 2.220446049250313E-16 1.1337991E-08 1.216821428E-09
0.306250 2.220446049250313E-16 8.8817841970012522E-16 1.1962766E-07 1.21681228E-09
0.406250 0 1.5543122344752192E-15 6.4013462E-07 1.713796095E-09
0.506250 2.220446049250313E-16 3.1086244689504383E-15 2.3491017E-06 1.481970916E-08
0.603125 8.8817841970012522E-16 4.884981308350689E-15 6.5726253E-06 3.058338503E-08
0.703125 1.33226762955018780E-15 7.549516567451064E-15 1.6100258E-05 4.941858156E-08
0.803125 3.1086244689504383E-15 1.1102230246251565E-14 3.5007632E-05 7.128679089E-08
0.903125 5.329070518200751E-15 1.554312234475219E-14 6.8384810E-05 1.058773080E-08

TABLE 4. Absolute Error Comparison for Problem 4

h E3SBM Gebremedhin et.al. [6]
p = 8 p = 12

0.1 2.168404344971009E-19 6.5052E-19
0.2 0 1.3010 E-19
0.3 8.673617379884035E-19 4.3368 E-19
0.4 0 1.6348 E-18
0.5 8.673617379884035E-19 1.8431E-18
0.6 8.673617379884035E-19 1.9753 E-18
0.7 8.673617379884035E-19 1.8347E-18
0.8 1.734723475976807E-18 1.7346 E-18
0.9 0 2.3214 E-18
1.0 0 3.4695 E-18
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TABLE 5. Absolute Error Comparison for Problem 5

h y − exact y − E3SBM Omole et.al. [13]
p = 8 (2020) p = 10

0.1 0.9048374180359595 1.1102230246251565E-17 0
0.2 0.8187307530779818 1.1102230246251565E-17 1.110223E-16
0.3 0.7408182206817179 0 1.110223E-16
0.4 0.6703200460356393 0 0
0.5 0.6065306597126334 1.11022302462515651E-17 1.110223E-16
0.6 0.5488116360940265 1.11022302462515652E-17 0
0.7 0.4965853037914095 1.11022302462515652E-16 1.110223E-16
0.8 0.44932896411722156 1.11022302462515651E-16 3.330669E-16
0.9 0.4065696597405991 1.11022302462515654E-16 3.885781E-16
1.0 0.36787944117144233 1.11022302462515653E-16 5.551115E-16

TABLE 6. Absolute Error Comparison for Problem 5

h z − exact z − E3SBM Omole et.al. [13]
p = 8 (2020) p = 10

0.1 0.8187307530779818 0 3.885781E-15
0.2 0.6703200460356393 1.1102230246251565E-16 5.662137E-14
0.3 0.5488116360940264 0 2.287059E-13
0.4 0.44932896411722156 5.5511151231257830E-17 5.896394E-13
0.5 0.36787944117144233 1.11022302462515650E-16 1.208700E-12
0.6 0.301194211912202 5.5511151231257830E-17 2.155331E-12
0.7 0.24659696394160643 1.38777878078144570E-16 1.110223E-12
0.8 0.20189651799465538 1.66533453693773480E-16 5.309170E-12
0.9 0.16529888822158653 2.2204460492503130E-16 7.655349E-12
1.0 0.1353352832366127 2.77555756156289140E-16 1.060740E-11

TABLE 7. Absolute Error Comparison for Problem 5

h w − exact w − E3SBM Omole et.al. [13]
p = 8 (2020) p = 10

0.1 0.7408182206817179 0 1.112999E-12
0.2 0.5488116360940264 0 1.596079E-11
0.3 0.40656965974059905 5.5511151231257830E-17 6.451839E-11
0.4 0.301194211912202 5.5511151231257830E-17 1.662694E-10
0.5 0.22313016014842982 0 3.408267E-10
0.6 0.1652988882215865 5.5511151231257830E-17 6.077662E-10
0.7 0.1224564282529819 5.5511151231257830E-17 9.866660E-10
0.8 0.09071795328941247 1.11022302462515605E-16 1.497135E-09
0.9 0.06720551273974976 1.3877787807814457E-16 2.158671E-09
1.0 0.049787068367863944 1.8041124150158794E-16 2.991185E-09

TABLE 8. Absolute Error Comparison for Problem 5

h u − exact u − E3SBM Omole et.al. [13]
p = 8 (2020) p = 10

0.1 0.6703200460356393 1.1102230246251565E-16 5.409717E-11
0.2 0.44932896411722156 5.551115123125783E-17 7.753621E-10
0.3 0.301194211912202 5.551115123125783E-17 3.134138E-09
0.4 0.20189651799465538 2.7755575615628914E-17 8.077239E-09
0.5 0.1353352832366127 2.7755575615628914E-17 1.655765E-08
0.6 0.09071795328941247 1.1102230246251565E-16 2.952660E-08
0.7 0.06081006262521795 1.1102230246251565E-16 4.793539E-08
0.8 0.04076220397836621 1.249000902703301E-16 7.273677E-08
0.9 0.02732372244729256 1.3530843112619095E-16 1.048785E-07
1.0 0.01831563888873418 1.3183898417423734E-16 1.453268E-07
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5. CONCLUSIONS AND DISCUSSIONS

The obtained data when the block methods are applied to problem 1 - 5 are presented in Tables
1-8. The new method is capable to to solve fourth-order scalar and vector problems. The numerical
results are compared with the results of some existing method proposed by Familua and Omole [5],
Kuboye and Omar [10], Gebremedhin and Jena [6], and Omole and Ukpebor [13].
The newly derived Block methods (BM) is applied to solve fourth-order IVPs in ordinary differential
equations directly. The flexibility of the method and the easy to derive it shown it can be applied
to solve diverse kinds of fourth-order IVPs which can be seen in the numerical examples solved.
The application of these methods to real life problems have shown that it is suitable. It shows a
high level of accuracy when the numerical results is compared to the exact solution and a very
good performance in comparison with existing methods in the cited literature. Hence, it might be
considered for solving fourth-order IVPs of ODEs.
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