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CUBIC SEMI 2-METRIC SPACE AND GENERALIZED
QUASI-PSEUDO-METRIC ON L-M -SEMIGROUP

S. SIVARAMAKRISHNAN, P. BALAJI∗ AND S.VIJAYABALAJI

ABSTRACT. This paper introduces the novel concepts of semi 2-metric space and interval-
valued semi 2-metric space. We establish the fundamental properties of these structures
and examine their relationships with existing metric space generalizations. Additionally, it
proposes the concept of cubic semi 2-metric spaces by integrating the principles of cubic
sets with semi 2-metric spaces. Furthermore, the paper examines the structure of general-
ized quasi-pseudometric spaces on L-M -semigroup and investigates the characteristics of
the quasi-pseudometric space associated with L-M -semigroup.

1. INTRODUCTION

The investigation of metric spaces has advanced altogether over the a long time, with
different analysts contributing to the advancement of modern concepts and systems. One
of the foundational commitments to this field was made by S.Gähler [8], who presented the
concepts of 2-metric space and n-metric space. These spaces generalize the conventional
idea of metric spaces by permitting for the estimation of separations in a more adaptable
way, pleasing a broader run of applications.

Building on this establishment, the beginning thought of fuzzy metric spaces was dis-
played by Kramosil and Michalek [16]. Their work laid the foundation for understanding
how instability and dubiousness can be consolidated into the consider of metric spaces,
driving to a wealthier scientific system that reflects real-world scenarios where exact esti-
mations are frequently unattainable.

The definition of fuzzy metric spaces was assist refined by George and Veeramani
[9, 10], who improved the initial concept through the application of t-norms, or triangular
standards, are scientific operations that generalize the idea of conjunction in fuzzy ratio-
nale, permitting for a more nuanced approach to characterizing separations in fuzzy metric
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spaces. This headway given a vigorous structure for analyzing meeting and progression
inside these spaces, making them more pertinent to different areas such as computer sci-
ence, decision-making, and manufactured insights.

In more later advancements, S. Vijayabalaji and N. Thillaigovindan [26] presented the
concepts of fuzzy semi n-metric space and the rising family of α-semi n-metric related
to fuzzy semi n-metric space. These concepts assist amplify the system of fuzzy mea-
surements by joining semi-metric properties, which unwind a few of the conventional pre-
requisites of metric spaces. This permits for more noteworthy adaptability in modeling
circumstances where certain separate properties may not hold, in this way broadening the
appropriateness of fuzzy measurements in complex frameworks.

K. Menger [19] was a pioneer in the field of probability metric spaces, which he pro-
posed as a novel generalization of traditional metric spaces. In these probability metric
spaces, the distance between any two points is not represented by a single numerical value,
as is customary in standard metric spaces, but rather by a probability distribution function.
This innovative approach allows for a more nuanced understanding of distance, accommo-
dating uncertainty and variability in the measurement of spatial relationships.

Following Menger’s foundational work, W. A. Wilson [30] delved into the concept of
quasi-pseudo-metric spaces. These spaces extend the idea of metric spaces by relaxing
some of the traditional axioms, thereby allowing for a broader range of applications and
theoretical exploration. Wilson’s exploration of quasi-pseudo-metric spaces has opened
new avenues for research in topology and related fields.

Y. J. Cho et al. [4] introduced the notion of generalized quasi metric spaces (GQMS) in
their research, placing special emphasis on L-semigroups. This work integrates the struc-
ture of semigroups-a fundamental algebraic concept-with generalized quasi metric spaces,
thereby enriching the theoretical framework and providing new insights into the interplay
between algebra and topology.

L. Lakshmanan [18] contributed to this body of work by conducting a thorough analysis
of the complete structure of M -semigroups. His research has provided a deeper under-
standing of the properties and behaviors of these algebraic structures, which are essential
in various mathematical contexts.

Semi 2-metric spaces represent a significant advancement in the study of distance and
convergence in mathematical analysis, offering a versatile framework that extends beyond
traditional metric spaces. In a semi 2-metric space, the concept of distance is generalized,
allowing for the definition of distances between points that may not adhere to the strict
requirements of a conventional metric. This flexibility enables mathematicians to explore
a broader range of properties and behaviors associated with convergence, continuity, and
compactness.

One of the key advantages of semi 2-metric spaces is their ability to accommodate var-
ious types of convergence that may arise in different mathematical contexts. For instance,
in situations where standard metrics may be too rigid or insufficient to capture the nuances
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of convergence, semi 2-metric spaces provide an alternative that can better reflect the un-
derlying structure of the space being studied. This adaptability is particularly valuable in
fields such as functional analysis, topology, and optimization, where the nature of conver-
gence can significantly impact the results and conclusions drawn from a given analysis.

Moreover, the theoretical implications of semi 2-metric spaces extend to the develop-
ment of new mathematical tools and techniques. Researchers can leverage the properties
of these spaces to construct novel proofs, establish new theorems and explore relationships
between various mathematical constructs. This could lead to a deeper understanding and a
more thorough comprehension of complex mathematical phenomena.

Fuzzy 2-metric spaces are an extension of classical metric spaces that incorporate the
concept of fuzziness, allowing for distances between points to be represented as fuzzy sets
rather than single values. This approach accommodates uncertainty and vagueness in mea-
surements, maintaining essential properties like non-negativity, symmetry, and triangle in-
equality within a fuzzy context. On the other hand, interval-valued fuzzy 2-metric spaces
take this concept further by representing distances as intervals of fuzzy sets, enabling a
range of possible distances between points. This added flexibility allows for a more robust
representation of uncertainty, making these structures particularly useful in fields such as
decision-making, control systems, and artificial intelligence, where uncertainty is a com-
mon challenge. Together, these frameworks provide rich mathematical models that en-
hance our ability to analyze and interpret complex, uncertain environments.

Cubic sets (CS) serve as a powerful and adaptable tool for modeling and managing
uncertainty across various fields, including decision-making, data analysis, and artificial
intelligence. These sets build upon the foundational ideas of fuzzy sets (FS) and interval-
valued fuzzy sets (IV FS), offering a more refined representation of uncertainty compared
to traditional binary logic.

FS allow for the depiction of vague or imprecise information by enabling elements to
possess degrees of membership instead of a strict yes or no classification. This is par-
ticularly useful in real-world situations where boundaries are not clearly defined, such as
human perception, natural language processing, and various scientific disciplines. IV FS
further enhance this capability by incorporating ranges of values for membership degrees,
accommodating even greater uncertainty and variability in data.

By merging these two concepts, cubic sets provide a comprehensive framework for
modeling complex data situations. They facilitate the representation of multidimensional
uncertainty, capturing not only the degree of membership of elements but also the potential
variability in those memberships. This multidimensional approach is especially advanta-
geous in scenarios where data is incomplete, imprecise, or subject to fluctuations, such as
in financial forecasting, risk assessment, and environmental modeling.

The holistic nature of cubic sets empowers decision-makers to navigate intricate data
landscapes more effectively. By offering a structured method to analyze and interpret un-
certain information, cubic sets enhance our ability to draw meaningful conclusions and
make informed decisions. This is particularly crucial in fields like healthcare, where
choices often rely on uncertain patient data, or in engineering, where system behaviors
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may be unpredictable.

Building on the insights and findings from these significant studies, the present pa-
per aims to further develop the theoretical landscape surrounding semi-lattices of M -
semigroups and quasi-pseudo-metric spaces (QPMS). The primary objective is to in-
troduce the novel concepts of cubic semi 2-Metric spaces and generalized quasi-pseudo-
metric (GQPM) L-M -semigroups. These new constructs are designed to enhance our
understanding of the relationships between different mathematical structures and to pro-
vide a framework for exploring their properties.

Inspired by the foundational research from earlier studies, this paper aims to present
the new concepts of cubic semi 2-Metric space and GQPM L-M -semigroup. Building
upon these foundational ideas, we further extend our exploration by developing the notion
of Generalized quasi-pseudo-metric space on L-M -semigroup, accompanied by a compre-
hensive presentation of novel analytical results that illuminate the intricate properties and
relationships within these mathematical structures.

2. PRELIMINARY CONCEPTS

Some of the notations and definitions used in this paper are summarized in this section.

Definition 2.1 (7). A semi 2-metric space is characterized as a set S along with a non-
negative real-valued function h(•, •, •) defined on the Cartesian product S×S×S, which
satisfies certain conditions:

(1) There exist three points, denoted as s1, s2, s3, such that h(s1, s2, s3) is not equal
to zero,

(2) h(s1, s2, s3) equals zero if and only if at least two of the three points coincide,

(3) The value of h(s1, s2, s3) remains unchanged under any permutation of s1, s2, s3.

Definition 2.2 (12). A fuzzy metric space is characterized by a 3-tuple (S,M, ∗), where
S is an arbitrary set, ∗ denotes a continuous t-norm, and M is a fuzzy set defined on
S2 × (0,∞) that meets the following criteria for all elements s1, s2, s3 ∈ S and positive
values s and r:

(1) M(s1, s2, r) > 0 for every s1, s2 ∈ S and for any positive value r.

(2) M(s1, s2, r) = 1 when s1 equals s2 for any positive r.

(3) M(s1, s2, r) = M(s2, s1, r) for all s1, s2 ∈ S and positive r.

(4) The inequality M(s1, s2, r) ∗ M(s2, s3, s) ≤ M(s1, s3, r + s) holds for all s1, s2
and s3 ∈ S and positive s and r.

(5) The mapping M(s1, s2, ·) : (0,∞) → [0, 1] is continuous for each pair s1, s2 ∈ S.

Definition 2.3 (25). The triplet (S,M, ∗I) is termed an interval-valued fuzzy metric space
if S represents an arbitrary set, ∗I denotes a continuous interval-valued t-norm defined on
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[I], and M is an IV FS on the Cartesian product S2 × (0,∞) that satisfies the following
conditions:

(1) M(s1, s2, r) > 0,

(2) M(s1, s2, r) = 1 if and only if s1 = s2,

(3) M(s1, s2, r) = M(s2, s1, t),

(4) M(s1, s2, r) ∗I M(s2, s3, r, s) ≤ M(s1, s3, r + s),

(5) M(s1, s2, ·) is continuous from (0,∞) to [I],

(6) limt→∞ M(s1, s2, r) = 1, where s1, s2, s3 ∈ S and r, s > 0.

Definition 2.4 (14). Let S represent a set that is not empty. A CS A is a structure defined
as:

A = {(s,MA(s),N(s)) : s ∈ S}
This can be concisely expressed as A = ⟨MA,N⟩, where:

(1) MA = [M−
A ,M+

A ] is an IVFS in S

(2) N is a FS in S.

Definition 2.5 (6). A probabilistic-QPMS (S,P, ⋆) is a triplet where:

(1) S is a non-empty set with a function P : S×S → R+
0 and ⋆ is a triangular function

that adheres to the following conditions:
(a) P(s1, s1) = u0, ∀s1 ∈ S
(b) P(s1, s2) ⋆ P(s2, s3) ≤ P(s1, s3), ∀s1, s2, s3 ∈ S

Variants:

• Probabilistic-Quasimetric Space (PQMS): Additional condition P (s1, s2) = u0

if and only if s1 = s2

• Probabilistic Metric Space (PMS): Further conditions P(s1, s2) = P(s2, s1) and
P(s1, s2) ̸= u0 if s1 ̸= s2

Definition 2.6 (30). Let S represent a set. A function q : S2 → [0,∞) is referred
to as a quasi-metric (QM) on S if it satisfies the following conditions for all elements
s1, s2, s3 ∈ S:

(1) s1 = s2 if and only if q(s1, s2) = q(s2, s1) = 0

(2) q(s1, s2) ≤ q(s1, s3) + q(s3, s2)
The pair (S,q) is called a quasi-metric space.

Definition 2.7 (31). A quasi-metric q is called a quasi-pseudo-metric (QPM) if addition-
ally:
q(s1, s1) = 0 for each s1 ∈ S.
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Definition 2.8 (18). An M -semigroup is defined as a semigroup M that meets the follow-
ing criteria:

(1) There exists at least one left identity e ∈ M such that for all m ∈ M , the equation
em = m holds true,

(2) For each element m ∈ M , there exists a unique left identity, denoted as em, such
that mem = m, indicating that em serves as a two-sided identity for the element
m.

3. CUBIC SEMI 2-METRIC SPACE

Definition 3.1. Let S represent an arbitrary set. A fuzzy subset M : S3 × R (R-set of
real numbers) is defined as a fuzzy semi 2-metric space on S if and only if the following
conditions are satisfied:

(1) For every r ∈ R with r ≤ 0, M(s1, s2, s3, r) = 0,

(2) For every r ∈ R with r ≤ 0, M(s1, s2, s3, r) equals 1 if and only if at least two of
the three points s1, s2 and s3 are identical,

(3) The function M(s1, s2, s3, r) remains unchanged under any permutation of s1, s2
and s3,

(4) The function M(s1, s2, s3, σ) is a non-decreasing function of R, and it is continu-
ous with the limit as r approaches infinity, M(s1, s2, s3, r).

Consequently, the pair (S,M) is referred to as a fuzzy semi 2-metric space, abbreviated
as f − s− 2− MS.

Example 3.2. Let (S, h) be a semi 2-metric space.

Define

M(s1, s2, s3, t) =


t

t+h(s1,s2,s3)
, when t > 0, t ∈ R,

(s1, s2, s3) ∈ X3

0, otherwise

Then (S,M) is a f − s− 2− MS.

Proof.

(1) For every r in the set of real numbers where r is less than or equal to zero, it fol-
lows from our definition that M(s1, s2, s3, r) is equal to zero,

(2) For all r ∈ R with r > 0, M(s1, s2, s3, r) = 1

⇔ t
r+h(s1,s2,s3)

= 1

⇔ h(s1, s2, s3) = 0
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⇔ at least 2 of the 3 points s1, s2, s3 are equal,

(3) As h(s1, s2, s3, r) is invariant under any permutation of s1, s2, s3, we have M(s1, s2, s3, r)
is invariant under any permutation of s1, s2, s3,

(4) For all r1, r2 ∈ R, if r1 < r2 ≤ then by our definition, M(s1, s2, s3, r1) =
M(s1, s2, s3, r2) = 0. Suppose r2 > r1 > 0 then,

r2[r1+h(s1,s2,s3)]−r1[r2+h(s1,s2,s3)]
(r2+h(s1,s2,s3))(r1+h(s1,s2,s3))

r2+h(s1,s2,s3)−r1+h(s1,s2,s3)
(r2+h(s1,s2,s3))(r1+h(s1,s2,s3))

h(s1,s2,s3)(r2−r1)
(r2+h(s1,s2,s3))(r1+h(s1,s2,s3))

For all (s1, s2, s3) ∈ S3

⇔ r2
r2+h(s1,s2,s3)

≥ r1
r1+h(s1,s2,s3)

⇔ M(s1, s2, s3, r2) ≥ M(s1, s2, s3, r1)

Thus M(x1, x2, x3, r) is a non-decreasing function.

Also, lim
t→∞

M(s1, s2, s3, r)

= lim
t→∞

r
r+h(s1,s2,s3)

= lim
t→∞

r
r(1+ 1

rh(s1,s2,s3))

= 1.

Thus (S,M) is a f − s− 2− MS. □

Definition 3.3. Let S represent an arbitrary set. An interval-valued fuzzy subset M of
S3 × R constitutes an interval-valued fuzzy semi 2-Metric space on S if the subsequent
conditions are satisfied:

(1) The function M(s1, s2, s3, r) equals 0 for all values of r that are less than or equal
to 0,

(2) M(s1, s2, s3, r) equals 1 if at least two of the elements s1, s2, s3 are identical for
r > 0,

(3) The function M(s1, s2, s3, r) is invariant under permutations of the elements s1, s2, s3,

(4) M(s1, s2, s3, σ) is a function that does not decrease as R and lim
t→∞

M(s1, s2, s3, r) =

1 is continuous.

The pair (S,M) is referred to as an interval-valued fuzzy semi 2-Metric space, denoted
as i− vf − s− 2−MS.
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Example 3.4. Let (S, h) be a semi 2-metric space.
Define

M(s1, s2, s3, r) =

{
1, when h(s1, s2, s3) < r

0, when r ≤ h(s1, s2, s3)

Then (S,M) is a i− v − f − s− 2−MS.

Proof.

(1) For all values of r in the real numbers where r is less than or equal to 0, our defi-
nition indicates that M(s1, s2, s3, r) = 0.

(2) For every t in the set of real numbers where t is greater than zero, if at least 2 of
the 3 points are equal.

⇔ h(s1, s2, s3) = 0

⇔ M(s1, s2, s3, r) = 1.

⇔ h(s1, s2, s3) < r

Also M(s1, s2, s3, r) = 1.

⇔ h(s1, s2, s3) < r

⇔ h(s1, s2, s3) = 0

⇔ At least 2 of the 3 points are equal.

Thus for all r > 0, M(s1, s2, s3, r) = 1 if and only if at least 2 of the 3 points
are equal.

(3) Since h(s1, s2, s3) remains unchanged under any permutation of the points, it fol-
lows that M(s1, s2, s3, r) is also invariant under any permutation of s1, s2 and s3.

(4) It is evident that M(s1, s2, s3, r) is does not decrease as t ∈ R and we have
lim
t→∞

M(s1, s2, s3, r) = 1.

Thus (S,M) is an i− v − f − s− 2−MS. □

In this section, we put forward the concept of cubic semi 2-Metric space using the pre-
vious definitions.

Definition 3.5. A cubic set ℑ =
〈
M,N

〉
within a space S is designated as a cubic semi

2-Metric space if it fulfills the following conditions for all s1, s2, s3 ∈ S and r ∈ R:

(1) For all r ∈ R where t ≤ 0, M(s1, s2, s3, r) equals 0,
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(2) For all r ∈ R where r > 0, M(s1, s2, s3, r) equals 1 if and only if at least two of
the three points s1, s2, s3 are identical,

(3) The function M(s1, s2, s3, r) remains unchanged under any permutation of s1, s2, s3,

(4) The function M(s1, s2, s3, σ) is a function that does not decrease as R and the
limit as t approaches infinity of M(s1, s2, s3, r) equals 1 is continuous,

(5) N(s1, s2, s3, r) equals 1 for all r ∈ R such that r > 0,

(6) For every t in the set of real numbers where r is less than or equal to 0, the function
N(s1, s2, s3, r) equals 0 if and only if at least two of the three points s1, s2, s3 are
identical,

(7) The function N(s1, s2, s3, r) remains unchanged under any rearrangement of s1, s2, s3,

(8) The function N(s1, s2, s3, σ) is a function that does not increase as R, and the limit
as r approaches infinity of N(s1, s2, s3, r) equals 0 is continuous.

Example 3.6. Let (S, h) represent a semi 2-metric space.

Define

M(s1, s2, s3, r) =

{
1, when h(s1, s2, s3) < r

0, when r ≤ h(s1, s2, s3)

and

Let (S, h) denote a semi 2-metric space.

Define

N(s1, s2, s3, r) =


d(s1,s2,s3)

r+h(s1,s2,s3)
, when r > 0, r ∈ R,

(s1, s2, s3) ∈ S3

1, otherwise

Then clearly
〈
M,N

〉
is a cubic semi 2-Metric space of S.

Example 3.7.

M(s1, s2, s3, r) =

{
1 , if max{h(s1, s2), h(s1, s3), h(s2, s3)} < r

0 , otherwise

N(s1, s2, s3, r) =

{
min

{
1, h(s1,s2)+h(s1,s3)+h(s2,s3)

t+h(s1,s2)+h(s1,s3)+h(s2,s3)

}
, if r > 0

1 , otherwise

4. GQPMS ON L-M -SEMIGROUP

Definition 4.1. A GQPMS is an ordered triple (S,M, p), where:
S is a nonempty set, M is a partially ordered algebraic structure, p : S × S → M is a
function satisfying the following conditions for all l1, l1, l3 ∈ S:
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(1) Reflexivity: p(l1, l1) = 0M , where 0M is the zero element in M ,

(2) Triangle Inequality: p(l1, l2) ≤ p(l1, l3) + p(l3, l2) for all l1, l1, l3 ∈ S.

Lemma 4.1. Consider p1 and p2 as GQPM on the set S taking values in an L-M -
semigroup. Then the functions p1 ∨ p2 : S2 → M and p1 + p2 : S2 → M defined by, for
all l1, l2 ∈ S,

(1) (p1 ∨ p2)(l1, l2) = p1(l1, l2) ∨ p2(l1, l2),

(2) (p1 + p2)(l1, l2) = p1(l1, l2) + p2(l1, l2), respectively, are GQPM on S, too.

Proof. Let two GQPM , p1 and p2, defined over a set S taking values in an L-M -
semigroup.

For the maximum operation p1 ∨ p2 : S × S → M :

(1) Reflexivity:

(p1 ∨ p2)(l1, l1) = p1(l1, l1) ∨ p2(l1, l1)

= 0M ∨ 0M

= 0M

(2) Triangle Inequality:

(p1 ∨ p2)(l1, l2) = p1(l1, l2) ∨ p2(l1, l2)

≤ (p1(l1, l3) + p1(l3, l2)) ∨ (p2(l1, l3) + p2(l3, l2))

≤ (p1(l1, l3) + p2(l1, l3)) + (p1(l3, l2) + p2(l3, l2))

= (p1 ∨ p2)(l1, l3) + (p1 ∨ p2)(l3, l2)

For the sum operation p1 + p2 : S × S → M :

(1) Reflexivity:

(p1 + p2)(l1, l1) = p1(l1, l1) + p2(l1, l1)

= 0M + 0M

= 0M

(2) Triangle Inequality:

(p1 + p2)(l1, l2) = p1(l1, l2) + p2(l1, l2)

= (p1(l1, l3) + p1(l3, l2)) + (p2(l1, l3) + p2(l3, l2))

= (p1(l1, l3) + p2(l1, l3)) + (p1(l3, l2) + p2(l3, l2))

= (p1 + p2)(l1, l3) + (p1 + p2)(l3, l2)

Thus, both p1 ∨ p2 and p1 + p2 are GQPM on S. □

Definition 4.2. Let (S,M, p) be a GQPM . The conjugate GQPM q : S × S → M is
defined by:

q(l1, l2) = p(l1, l2) for all l1, l2 ∈ S

Properties:

(1) p and q are called conjugate GQPM

(2) The structure formed by p is represented as (S,M, p,q)
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Additional Result: If p and q are conjugate GQPM on S, then the GQPM p ∨ q
satisfies the symmetry condition and is consequently a generalized pseudo-metric.

Theorem 4.2. Let (S,M, p) be a GQPM . Define the relation ≤ on S2 by:

l1 ≤ l2 if and only if p(l1, l2) = el1 .

Then:

(1) The relation ≤ constitutes a quasi-order on the set S, characterized by its reflexive
and transitive properties,

(2) If p also meets condition (B):

p(l1, l2) ̸= el1 or p(l2, l1) ̸= el1 whenever l1 ̸= l2,

then ≤ is a partial order on S.

Proof. We verify each part step by step.

(1) Reflexivity:
By condition (1) of Definition 4.1, p(l1, l1) = el1 for all l1 ∈ S. Thus, l1 ≤ l1 for
all l1 ∈ S.

(2) Transitivity:
Suppose l1 ≤ l2 and l2 ≤ l3. Then:

p(l1, l2) = el1 and p(l2, l3) = el2 .

By the triangle inequality (condition (2) of Definition 4.2), we have:

p(l1, l3) ≤ p(l1, l2) + p(l2, l3).
Substituting the given values:

p(l1, l3) ≤ el1 + el2 .

This implies p(l1, l3) ≤ el2 , which means l1 ≤ l3.

(3) Partial Order Condition:
Suppose l1 ≤ l2 and l2 ≤ l1. This means:

p(l1, l2) = el1 and p(l2, l1) = el2 .

By condition (B), if l1 ̸= l2, it would imply either:

p(l1, l2) ̸= el1 or p(l2, l1) ̸= el2 .

Since this contradicts our assumption, we conclude that l1 = l2.

Thus, ≤ is a quasi-order and under condition (B), it is a partial order. □

Definition 4.3. The Cartesian product of two GQPMs, p1 and p2, defined on a set S and
taking values in an L-M -semigroup M , is a new GQPM , denoted as (p1×p2). It assigns
to each pair of elements (l1, l2) in S × S the product of the individual probabilities:

(p1 × p2)(l1, l2) = p1(l1, l2)× p2(l1, l2) for all l1, l2 ∈ S.

Theorem 4.3. The cartesian product of GQPM with respect to a set S with values in an
L-M -semigroup M is again a GQPM in M .
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Proof. We verify that the cartesian product (p1 × p2) satisfies the reflexivity and triangle
inequality conditions of a GQPM .

(1) Reflexivity:

(p1 × p2)(l1, l1) = p1(l1, l1)× p2(l1, l1)

= el1 × el1

= el1 . (4.1)

(2) Triangle Inequality:

(p1 × p2)(l1, l2) = p1(l1, l2)× p2(l1, l2)

≤ (p1(l1, l3) + p1(l3, l2))× (p2(l1, l3) + p2(l3, l2))

= (p1(l1, l3)× p2(l1, l3)) + (p1(l3, l2)× p2(l3, l2))

≤ (p1 × p2)(l1, l3) + (p1 × p2)(l3, l2). (4.2)

Thus, (p1 × p2) is a GQPM on S. □

5. CONCLUSION

This paper has introduced and developed the concepts of semi 2-metric spaces, interval-
valued semi 2-metric spaces and cubic semi 2-metric spaces, laying a foundational frame-
work for these novel structures. By integrating the principles of cubic sets with semi
2-metric spaces, we have extended the theoretical boundaries of these spaces. Further-
more, our exploration of the structure of generalized quasi-pseudometric spaces on L-
M -semigroups has revealed significant characteristics of the quasi-pseudometric spaces
associated with L-M -semigroups, contributing to a deeper understanding of these mathe-
matical constructs.

Impact and Insights

The exploration of generalized metric spaces, including the introduction of cubic semi
2-metric spaces, offers a fresh perspective on complex mathematical structures. This de-
velopment has the potential to impact various mathematical and computational fields by
providing new frameworks for analyzing and understanding complex systems.

Potential Applications in Mathematical and Computational Fields

(1) Data Science and Machine Learning: Generalized metric spaces can be applied
to modern data science algorithms and machine learning models, enhancing their
ability to handle complex data structures and relationships,

(2) Cryptography: The unique properties of these spaces might be leveraged in cryp-
tographic protocols to improve security and efficiency,

(3) Quantum Computing: Exploring the relevance of generalized metric spaces in
quantum computing frameworks and quantum information theory could lead to
innovative solutions in quantum information processing.
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Future Research Directions
(1) Theoretical Extensions: Investigating the theoretical extensions of semi 2-metric

spaces to n-dimensional frameworks can reveal deeper insights into their proper-
ties and applications.

(2) Behavioral Analysis: Analyzing the behavior of cubic semi 2-metric spaces in
complex mathematical structures will help in understanding their potential appli-
cations.

(3) Dimensional Transformations: Studying the preservation of properties under di-
mensional transformations is crucial for applying these concepts across different
domains.

Mathematical Interconnections
(1) Rough Set Theory: Establishing theoretical bridges between semi 2-metric spaces

and rough set theory can enhance data analysis capabilities.
(2) Soft Sets and Neutrosophic Sets: Investigating relationships with soft sets and

neutrosophic set structures can provide new tools for handling uncertainty and
imprecision.

(3) Topological Properties: Analyzing the topological properties and their interac-
tions with other spaces will further enrich the understanding of generalized metric
spaces.

Analysis of L-M -Semigroup Properties
(1) Quasi-Pseudometric Spaces: Conducting a comprehensive investigation of quasi-

pseudometric spaces in L-M -semigroups can uncover new structural characteris-
tics and fundamental properties.

(2) Behavioral Aspects: Examining the behavioral aspects under various mathemat-
ical operations will help in understanding how these spaces interact with other
mathematical structures.
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