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INTEGRAL INEQUALITIES UNDER DIVERSE PARAMETRIC PRIMITIVE
EXPONENTIAL-WEIGHTED INTEGRAL INEQUALITY ASSUMPTIONS

CHRISTOPHE CHESNEAU

ABSTRACT. In this article, we establish several integral inequalities under new parametric
primitive exponential-weighted integral inequality assumptions. The generality and versa-
tility of these assumptions allow our results to extend and unify existing frameworks in the
literature. In total, eight theorems are formulated. To ensure completeness and accessibil-
ity, detailed proofs are given for all the theorems.

1. INTRODUCTION

Integral inequalities are among the fundamental tools of mathematical analysis. They
play a central role in several disciplines, including differential equations, probability the-
ory, optimization, mathematical physics, numerical analysis and functional analysis. Their
main utility lies in estimating integrals, providing bounds, and exploring the properties of
functions. Detailed discussions of some of the most famous integral inequalities can be
found in [11, 3, 22, 2, 23, 9].

Beyond the classical results, recent research has introduced some innovations by consid-
ering original and generalized assumptions. Notable contributions in this area are detailed
in [16, 14, 24, 18, 12, 19, 15, 20, 21, 13, 4, 5, 10, 1, 17, 7, 8, 6]. Among these, the use of
primitive integral inequality assumptions provides a modern perspective.

An example of such progress is presented in [12, Theorem 2.4]. This result states that,
for a, b ∈ R ∪ {±∞} with a < b, a differentiable non-decreasing function f : [a, b] 7→
[0,+∞), and an integrable function g : [a, b] 7→ [0,+∞), if the following primitive inte-
gral inequality holds: ∫ b

u

f(t)dt ≤
∫ b

u

g(t)dt, (1.1)

2020 Mathematics Subject Classification. 26D15, 33E20.
Key words and phrases. Integral inequalities; Parametric primitive exponential-weighted integral inequality

assumptions; Logarithmic function.
Received: January 03, 2025. Accepted: March 09, 2025. Published: March 31, 2025.
Copyright © 2025 by the Author(s). Licensee Techno Sky Publications. This article is an open-access

article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/).

43

https://doi.org/10.62072/acm.2025.080104
https://www.technoskypub.com/journal/acm/


44 CHRISTOPHE CHESNEAU

for any u ∈ [a, b], then for any µ, ν ≥ 0 such that µ+ ν ≥ 1, we have∫ b

a

fµ(t)gν(t)dt ≤
∫ b

a

gµ+ν(t)dt.

This result is inspired by earlier work in [16, 14, 24]. It has also served as a basis for
more detailed investigations of integral inequalities under assumptions similar to those of
Equation (1.1). For further developments, see [18, 15, 19, 20, 21, 8]. In particular, the
study in [8] makes assumptions of the following form:∫ b

u

f(t)dt ≤ w(u)

∫ b

u

g(t)dt,

for any u ∈ [a, b], where w : [a, b] 7→ [0,+∞) denotes a particular weight function. Based
on this form, several integral inequalities are proved, contributing to the interest in using
primitive integral inequality assumptions.

In 2025, integral inequalities continue to be an active area of research, with theoretical
advances enriching the field. In this article, we support this claim by presenting some new
integral inequalities characterized by different parametric primitive exponential-weighted
assumptions. To give an idea, the main assumption in our first result has the following
form: ∫ b

u

e−θtf(t)dt ≤ e(β−θ)u

∫ b

u

e−βtg(t)dt,

for any u ∈ [a, b], where β and θ are two parameters. Obviously, by taking β = θ = 0, it
reduces to Equation (1.1). This demonstrates the generality of our framework, which ex-
tends existing methods and allows the derivation of more versatile results. The article goes
further in this direction, with different parametric primitive exponential-weighted assump-
tions, leading to original integral inequalities. From another point of view, the considered
assumptions define new classes of functions for which the established integral inequali-
ties provide effective tools for deriving bounds and estimating integrals. In total, eight
theorems are stated and proved in detail, each of which has some potential for application.

The structure of the article is as follows: Section 2 presents our first series of integral
inequalities, under new types of parametric primitive exponential-weighted assumptions.
Section 3 completes Section 2 with further integral inequalities under other types of as-
sumptions. Finally, Section 4 concludes the article and discusses possible extensions.

2. FIRST SERIES OF INTEGRAL INEQUALITIES

2.1. Main theorem. Under certain assumptions, including an original parametric primi-
tive exponential-weighted integral inequality assumption, the theorem below establishes a
simple integral inequality.

In this statement, and throughout the article, it is assumed that the integrals introduced
converge, which is not guaranteed a priori, especially if a → −∞ or b → +∞.

Theorem 2.1. Let a, b ∈ R ∪ {±∞} with a < b, f : [a, b] 7→ [0,+∞) be a differentiable
non-decreasing function and g, h : [a, b] 7→ [0,+∞) be two functions. We suppose that
there exist two constants β, θ ≥ 0 with β ≥ θ such that, for any u ∈ [a, b], we have∫ b

u

e−θtg(t)dt ≤ e(β−θ)u

∫ b

u

e−βth(t)dt. (2.1)
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Then we have ∫ b

a

f(t)g(t)dt ≤
∫ b

a

f(t)h(t)dt.

If θ ≥ β and the inequality in Equation (2.1) is reversed, then the final inequality is also
reversed.

Proof. Since f is differentiable, taking into account the parameter θ in Equation (2.1) and
the exponential function, for any t ∈ [a, b], we have

eθtf(t) =
[
eθtf(t)− eθaf(a)

]
+ eθaf(a) =

∫ t

a

[eθuf(u)]′du+ eθaf(a)

=

∫ t

a

[θf(u) + f ′(u)]eθudu+ eθaf(a).

This implies that

f(t) = e−θt

∫ t

a

[θf(u) + f ′(u)]eθudu+ eθae−θtf(a). (2.2)

Using this special integral decomposition and changing the order of integration, which is
possible thanks to the Fubini-Tonelli theorem, we get∫ b

a

f(t)g(t)dt =

∫ b

a

{
e−θt

∫ t

a

[θf(u) + f ′(u)]eθudu+ eθae−θtf(a)

}
g(t)dt

=

∫ b

a

∫ t

a

e−θt[θf(u) + f ′(u)]eθug(t)dudt+ eθaf(a)

∫ b

a

e−θtg(t)dt

=

∫ b

a

∫ b

u

e−θt[θf(u) + f ′(u)]eθug(t)dtdu+ eθaf(a)

∫ b

a

e−θtg(t)dt

=

∫ b

a

[θf(u) + f ′(u)]eθu

[∫ b

u

e−θtg(t)dt

]
du+ eθaf(a)

∫ b

a

e−θtg(t)dt. (2.3)

Using f(u) ≥ 0 and eθu ≥ 0 for any u ∈ [a, b], 0 ≤ θ ≤ β, f ′(u) ≥ 0 for any
u ∈ [a, b] (since f is differentiable and non-decreasing), g(t) ≥ 0 for any t ∈ [a, b], and
the assumption in Equation (2.1) applied twice (with u = a for the second application), we
obtain∫ b

a

[θf(u) + f ′(u)]eθu

[∫ b

u

e−θtg(t)dt

]
du+ eθaf(a)

∫ b

a

e−θtg(t)dt

≤
∫ b

a

[βf(u) + f ′(u)]eθu

[
e(β−θ)u

∫ b

u

e−βth(t)dt

]
du

+ eθaf(a)

[
e(β−θ)a

∫ b

a

e−βth(t)dt

]

=

∫ b

a

[βf(u) + f ′(u)]eβu
∫ b

u

e−βth(t)dtdu+ eβaf(a)

∫ b

a

e−βth(t)dt

=

∫ b

a

∫ b

u

e−βt[βf(u) + f ′(u)]eβuh(t)dtdu+ eβaf(a)

∫ b

a

e−βth(t)dt. (2.4)
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Changing the order of integration once again and noticing that, with the exact arguments
that those used to establish Equation (2.2) with β instead of θ,

f(t) = e−βt

∫ t

a

[βf(u) + f ′(u)]eβudu+ eβae−βtf(a),

we have ∫ b

a

∫ b

u

e−βt[βf(u) + f ′(u)]eβuh(t)dtdu+ eβaf(a)

∫ b

a

e−βth(t)dt

=

∫ b

a

∫ t

a

e−βt[βf(u) + f ′(u)]eβuh(t)dudt+ eβaf(a)

∫ b

a

e−βth(t)dt

=

∫ b

a

[
e−βt

∫ t

a

[βf(u) + f ′(u)]eβudu+ eβae−βtf(a)

]
h(t)dt

=

∫ b

a

f(t)h(t)dt. (2.5)

Combining Equations (2.3), (2.4) and (2.5) gives∫ b

a

f(t)g(t)dt ≤
∫ b

a

f(t)h(t)dt,

which is the desired inequality.
If θ ≥ β and the inequality in Equation (2.1) is reversed, then the inequality in Equation

(2.4) (second line) is reversed, implying that the final inequality is also reversed. This
concludes the proof of Theorem 2.1. □

As discussed in the introductory section, this theorem generalizes some frameworks
in [12, 18, 15, 19, 20, 21], thanks to the use of several intermediate functions and the
parametric primitive exponential-weighted assumption in Equation (2.1).

We can take another look at this assumption by introducing the ”truncated Laplace
transform” as follows:

L(k; ϵ, u) =
∫ b

u

e−ϵtk(t)dt, (2.6)

where k : [a, b] 7→ R, ϵ ≥ 0 and u ∈ [a, b]. The assumption then becomes

L(g; θ, u) ≤ e(β−θ)uL(h;β, u),
for any u ∈ [a, b], or, equivalently,

eθuL(g; θ, u) ≤ eβuL(h;β, u),
for any u ∈ [a, b], Given the extensive literature on the Laplace transform, this new formu-
lation may inspire ideas beyond the scope of the study.

From another point of view, the assumptions considered in Theorem 2.1 define new
classes of functions for which the established integral inequalities provide effective tools
for evaluating integrals.

Our approach thus combines the originality of the assumptions with the generality and
flexibility of the integral inequality obtained. Further results, still based on parametric
primitive exponential-weighted assumptions, are presented in the remainder of this section.

2.2. Additional results. Under certain assumptions, including an original parametric prim-
itive exponential-weighted integral inequality assumption involving the power of a func-
tion, the theorem below shows a simple integral inequality.
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Theorem 2.2. Let a, b ∈ R ∪ {±∞} with a < b, f : [a, b] 7→ [0,+∞) be a differentiable
non-decreasing function and g : [a, b] 7→ [0,+∞) be a function. We suppose that there
exist three constants θ ≥ 0, τ ∈ R\{−1} and ω ≥ 0 such that, for any u ∈ [a, b], we have∫ b

u

e−θtg(t)dt ≤ ωe−θufτ (u), (2.7)

with f(a) ̸= 0 for τ < 0.
Then we have∫ b

a

f(t)g(t)dt ≤ ω

[
θ

∫ b

a

fτ+1(u)du+
1

τ + 1
fτ+1(b) +

τ

τ + 1
fτ+1(a)

]
.

Proof. First, note that the decomposition in Equation (2.3) is still valid. So we have∫ b

a

f(t)g(t)dt =

∫ b

a

[θf(u) + f ′(u)]eθu

[∫ b

u

e−θtg(t)dt

]
du+ eθaf(a)

∫ b

a

e−θtg(t)dt.

(2.8)

Using f(u) ≥ 0 and eθu ≥ 0 for any u ∈ [a, b], θ ≥ 0, f ′(u) ≥ 0 for any u ∈ [a, b]
(since f is differentiable and non-decreasing), g(t) ≥ 0 for any t ∈ [a, b], the assumption
in Equation (2.7) applied twice and τ ∈ R\{−1}, we get∫ b

a

[θf(u) + f ′(u)]eθu

[∫ b

u

e−θtg(t)dt

]
du+ eθaf(a)

∫ b

a

e−θtg(t)dt

≤
∫ b

a

[θf(u) + f ′(u)]eθu
[
ωe−θufτ (u)

]
du+ eθaf(a)

[
ωe−θafτ (a)

]
= ω

[
θ

∫ b

a

fτ+1(u)du+

∫ b

a

f ′(u)fτ (u)du+ fτ+1(a)

]

= ω

{
θ

∫ b

a

fτ+1(u)du+

[
1

τ + 1
fτ+1(u)

]u=b

u=a

+ fτ+1(a)

}

= ω

[
θ

∫ b

a

fτ+1(u)du+
1

τ + 1
fτ+1(b)− 1

τ + 1
fτ+1(a) + fτ+1(a)

]

= ω

[
θ

∫ b

a

fτ+1(u)du+
1

τ + 1
fτ+1(b) +

τ

τ + 1
fτ+1(a)

]
. (2.9)

Combining Equations (2.8) and (2.9) gives the desired upper bound. This ends the proof
of Theorem 2.2. □

From this result, it is interesting to see how the complex interplay between the param-
eters a, b, θ, ω and τ , linked by Equation (2.7), ends up characterizing an original upper
bound.

It can also be noted that, since f is non-decreasing and positive, the following assump-
tion is not of interest: there exist three constants θ ≥ 0, τ ∈ R and ω ≥ 0 such that, for
any u ∈ [a, b], we have ∫ b

u

e−θtg(t)dt ≥ ωe−θufτ (u).
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Indeed, in this case, taking u = b, we find that

0 =

∫ b

b

e−θtg(t)dt ≥ ωe−θbfτ (b) ≥ 0,

so that f(b) = 0 and, since f is non-decreasing, we necessarily have f(u) = 0 for any
u ∈ [a, b]. The final inequality becomes trivial in this case.

The statement below completes Theorem 2.2 by examining the special case ”τ = −1”.

Theorem 2.3. Let a, b ∈ R ∪ {±∞} with a < b, f : [a, b] 7→ (0,+∞) be a differentiable
non-decreasing function and g : [a, b] 7→ [0,+∞) be a function. We suppose that there
exist two constants θ ≥ 0 and ω ≥ 0 such that, for any u ∈ [a, b], we have∫ b

u

e−θtg(t)dt ≤ ωe−θu 1

f(u)
. (2.10)

Then we have ∫ b

a

f(t)g(t)dt ≤ ω

{
1 + θ(b− a) + log

[
f(b)

f(a)

]}
.

Proof. Re-using Equation (2.3), we obtain∫ b

a

f(t)g(t)dt =

∫ b

a

[θf(u) + f ′(u)]eθu

[∫ b

u

e−θtg(t)dt

]
du+ eθaf(a)

∫ b

a

e−θtg(t)dt.

(2.11)

Using f(u) ≥ 0 and eθu ≥ 0 for any u ∈ [a, b], θ ≥ 0, f ′(u) ≥ 0 for any u ∈ [a, b] (since
f is differentiable and non-decreasing), g(t) ≥ 0 for any t ∈ [a, b], and the assumption in
Equation (2.10) applied twice, we get∫ b

a

[θf(u) + f ′(u)]eθu

[∫ b

u

e−θtg(t)dt

]
du+ eθaf(a)

∫ b

a

e−θtg(t)dt

≤
∫ b

a

[θf(u) + f ′(u)]eθu
[
ωe−θu 1

f(u)

]
du+ eθaf(a)

[
ωe−θa 1

f(a)

]
= ω

[
θ

∫ b

a

du+

∫ b

a

f ′(u)
1

f(u)
du+ 1

]
= ω

[
θ(b− a) + {log[f(u)]}u=b

u=a + 1
]
= ω {θ(b− a) + log[f(b)]− log[f(a)] + 1}

= ω

{
1 + θ(b− a) + log

[
f(b)

f(a)

]}
. (2.12)

Combining Equations (2.11) and (2.12) gives the desired upper bound. This ends the proof
of Theorem 2.3. □

We emphasize the original form of the upper bound, where the logarithm of the ratio of
the main function f taken at the extremes of [a, b] plays an important role.

Under certain general assumptions, including an original parametric primitive exponential-
weighted integral inequality assumption involving the derivative of an intermediate func-
tion, the theorem below presents a specific integral inequality.

Theorem 2.4. Let a, b ∈ R ∪ {±∞} with a < b, f : [a, b] 7→ [0,+∞) be a differentiable
non-decreasing function, g : [a, b] 7→ [0,+∞) be a function and h : [0,+∞) → R be a
differentiable function. We suppose that there exists a constant θ ≥ 0 such that, for any
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u ∈ [a, b], we have ∫ b

u

e−θtg(t)dt ≤ h′[eθuf(u)]. (2.13)

Then we have∫ b

a

f(t)g(t)dt ≤ h[eθbf(b)]− h[eθaf(a)] + eθaf(a)h′[eθaf(a)].

If the inequality in Equation (2.13) is reversed, then the final inequality is also reversed.

Proof. We can re-use Equation (2.3), which gives∫ b

a

f(t)g(t)dt =

∫ b

a

[θf(u) + f ′(u)]eθu

[∫ b

u

e−θtg(t)dt

]
du+ eθaf(a)

∫ b

a

e−θtg(t)dt.

(2.14)

Using f(u) ≥ 0 and eθu ≥ 0 for any u ∈ [a, b], θ ≥ 0, f ′(u) ≥ 0 for any u ∈ [a, b]
(since f is differentiable and non-decreasing), g(t) ≥ 0 for any t ∈ [a, b], the assumption
in Equation (2.13) applied twice and a suitable primitive of [eθuf(u)]′h′[eθuf(u)], we get∫ b

a

[θf(u) + f ′(u)]eθu

[∫ b

u

e−θtg(t)dt

]
du+ eθaf(a)

∫ b

a

e−θtg(t)dt

≤
∫ b

a

[θf(u) + f ′(u)]eθuh′[eθuf(u)]du+ eθaf(a)h′[eθaf(a)]

=

∫ b

a

[eθuf(u)]′h′[eθuf(u)]du+ eθaf(a)h′[eθaf(a)]

=
{
h[eθuf(u)]

}u=b

u=a
+ eθaf(a)h′[eθaf(a)]

= h[eθbf(b)]− h[eθaf(a)] + eθaf(a)h′[eθaf(a)]. (2.15)

Combining Equations (2.14) and (2.15) gives the desired upper bound.
If the inequality in Equation (2.13) is reversed, then the inequality in Equation (2.15) is

reversed, and the final inequality is also reversed.
This ends the proof of Theorem 2.4. □

Some special cases of this theorem are highlighted below to emphasize its versatility
and flexibility.

• Within the framework of Theorem 2.4, if we take h(x) = ex, then Equation (2.13)
becomes ∫ b

u

e−θtg(t)dt ≤ ee
θuf(u)

and the final inequality becomes∫ b

a

f(t)g(t)dt ≤ ee
θbf(b) − ee

θaf(a) + eθaf(a)ee
θaf(a).

• Within the framework of Theorem 2.4, if we take h(x) = ω log(x) with ω ≥ 0,
then Equation (2.13) becomes∫ b

u

e−θtg(t)dt ≤ ω
1

eθuf(u)
= ωe−θu 1

f(u)
,
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which corresponds to the parametric primitive exponential-weighted assumption
in Equation (2.10), and the final inequality becomes∫ b

a

f(t)g(t)dt ≤ ω log[eθbf(b)]− ω log[eθaf(a)] + eθaf(a)ω
1

eθaf(a)

= ω {θb+ log[f(b)]− θa− log[f(a)] + 1} = ω

{
1 + θ(b− a) + log

[
f(b)

f(a)

]}
.

We recognize the result of Theorem 2.3. In this sense, Theorem 2.4 can be seen as
one of its possible generalizations.

• Within the framework of Theorem 2.4, if we take h(x) = log(1+x), then Equation
(2.13) becomes ∫ b

u

e−θtg(t)dt ≤ 1

1 + eθuf(u)

and the final inequality becomes∫ b

a

f(t)g(t)dt ≤ log[1 + eθbf(b)]− log[1 + eθaf(a)] + eθaf(a)
1

1 + eθaf(a)

= log

[
1 + eθbf(b)

1 + eθaf(a)

]
+

eθaf(a)

1 + eθaf(a)
.

• Within the framework of Theorem 2.4, if we take h(x) = arctan(x), then Equa-
tion (2.13) becomes∫ b

u

e−θtg(t)dt ≤ 1

1 + e2θuf2(u)

and the final inequality becomes∫ b

a

f(t)g(t)dt ≤ arctan[eθbf(b)]− arctan[eθaf(a)] + eθaf(a)
1

1 + e2θaf2(a)
.

These are only a few examples. Theorem 2.4 can be applied to other situations thanks to
the adaptability of the function h.

3. OTHER INTEGRAL INEQUALITIES

In this section, we revisit the results of the above section with a slight modification of
the parametric primitive exponential-weighted integral inequality assumption, and show
various new integral inequalities.

3.1. Main theorem. Under certain assumptions, including a new parametric primitive
exponential-weighted integral inequality assumption different from that in Theorem 2.1,
the statement below shows a simple integral inequality.

Theorem 3.1. Let a, b ∈ R ∪ {±∞} with a < b, f : [a, b] 7→ [0,+∞) be a differentiable
non-increasing function and g, h : [a, b] 7→ [0,+∞) be two functions. We suppose that
there exist two constants β, θ ≤ 0 with θ ≥ β such that, for any u ∈ [a, b], we have∫ u

a

e−θtg(t)dt ≤ e(β−θ)u

∫ u

a

e−βth(t)dt. (3.1)

Then we have ∫ b

a

f(t)g(t)dt ≤
∫ b

a

f(t)h(t)dt.
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If β ≥ θ and the inequality in Equation (3.1) is reversed, then the final inequality is also
reversed.

Proof. Since f is differentiable, taking into account the parameter θ in Equation (3.1) and
the exponential function, for any t ∈ [a, b], we have

eθtf(t) = eθbf(b)−
[
eθbf(b)− eθtf(t)

]
= eθbf(b)−

∫ b

t

[eθuf(u)]′du

= eθbf(b)−
∫ b

t

[θf(u) + f ′(u)]eθudu,

so that

f(t) = eθbe−θtf(b)− e−θt

∫ b

t

[θf(u) + f ′(u)]eθudu. (3.2)

Using this special integral decomposition and changing the order of integration, which is
possible thanks to the Fubini-Tonelli theorem, we get∫ b

a

f(t)g(t)dt =

∫ b

a

{
eθbe−θtf(b)− e−θt

∫ b

t

[θf(u) + f ′(u)]eθudu

}
g(t)dt

= eθbf(b)

∫ b

a

e−θtg(t)dt−
∫ b

a

∫ b

t

e−θt[θf(u) + f ′(u)]eθug(t)dudt

= eθbf(b)

∫ b

a

e−θtg(t)dt−
∫ b

a

∫ u

a

e−θt[θf(u) + f ′(u)]eθug(t)dtdu

= eθbf(b)

∫ b

a

e−θtg(t)dt+

∫ b

a

[(−θ)f(u)− f ′(u)]eθu
[∫ u

a

e−θtg(t)dt

]
du. (3.3)

Using f(u) ≥ 0 and eθu ≥ 0 for any u ∈ [a, b], β ≤ θ ≤ 0 so that 0 ≤ −θ ≤ −β,
f ′(u) ≤ 0 for any u ∈ [a, b] (since f is differentiable and non-increasing), g(t) ≥ 0 for
any t ∈ [a, b], and the assumption in Equation (3.1) applied twice, we get

eθbf(b)

∫ b

a

e−θtg(t)dt+

∫ b

a

[(−θ)f(u)− f ′(u)]eθu
[∫ u

a

e−θtg(t)dt

]
du

≤ eθbf(b)

[
e(β−θ)b

∫ b

a

e−βth(t)dt

]

+

∫ b

a

[(−β)f(u)− f ′(u)]eθu
[
e(β−θ)u

∫ u

a

e−βth(t)dt

]
du

= eβbf(b)

∫ b

a

e−βth(t)dt+

∫ b

a

[(−β)f(u)− f ′(u)]eβu
∫ u

a

e−βth(t)dtdu

= eβbf(b)

∫ b

a

e−βth(t)dt+

∫ b

a

∫ u

a

e−βt[(−β)f(u)− f ′(u)]eβuh(t)dtdu. (3.4)

Changing the order of integration once again and noticing that, with the exact arguments
that those used to establish Equation (3.2) with β instead of θ,

f(t) = eβbe−βtf(b)− e−βt

∫ b

t

[βf(u) + f ′(u)]eβudu,
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we get

eβbf(b)

∫ b

a

e−βth(t)dt+

∫ b

a

∫ u

a

e−βt[(−β)f(u)− f ′(u)]eβuh(t)dtdu

= eβbf(b)

∫ b

a

e−βth(t)dt+

∫ b

a

∫ b

t

e−βt[(−β)f(u)− f ′(u)]eβuh(t)dudt

=

∫ b

a

[
eβbe−βtf(b)− e−βt

∫ b

t

[βf(u) + f ′(u)]eβudu

]
h(t)dt

=

∫ b

a

f(t)h(t)dt. (3.5)

Combining Equations (3.3), (3.4) and (3.5) gives∫ b

a

f(t)g(t)dt ≤
∫ b

a

f(t)h(t)dt,

which is the desired inequality.
If β ≥ θ and the inequality in Equation (3.1) is reversed, then the inequality in Equation

(3.4) (second line) is reversed, implying that the final inequality is also reversed. This
concludes the proof of Theorem 3.1. □

The difference between this theorem and Theorem 2.1 lies in the monotonicity assump-
tions on f and in the parametric primitive exponential-weighted assumptions considered.
In short, if we compare the assumptions in Equations (2.1) and (3.1),

∫ u

a
e−θtg(t)dt has re-

placed
∫ b

u
e−θtg(t)dt, and

∫ u

a
e−βth(t)dt has replaced

∫ b

u
e−βth(t)dt, resulting in a com-

mon integral inequality at the end.
Again, the originality of the assumptions is combined with the generality and flexibility

of the integral inequality obtained. Further results, still based on parametric primitive
exponential-weighted assumptions, are presented in the remainder of this section.

3.2. Additional results. Under certain assumptions, including an original parametric prim-
itive exponential-weighted integral inequality assumption involving the power of a function
different from that in Theorem 2.2, the theorem below shows a simple integral inequality.

Theorem 3.2. Let a, b ∈ R ∪ {±∞} with a < b, f : [a, b] 7→ [0,+∞) be a differentiable
non-increasing function and g : [a, b] 7→ [0,+∞) be a function. We suppose that there
exist three constants θ ≤ 0, τ ∈ R\{−1} and ω ≥ 0 such that, for any u ∈ [a, b], we have∫ u

a

e−θtg(t)dt ≤ ωe−θufτ (u), (3.6)

with f(b) ̸= 0 for τ < 0.
Then we have∫ b

a

f(t)g(t)dt ≤ ω

[
τ

τ + 1
fτ+1(b) +

1

τ + 1
fτ+1(a)− θ

∫ b

a

fτ+1(u)du

]
.

Proof. Re-using Equation (3.3), we have∫ b

a

f(t)g(t)dt = eθbf(b)

∫ b

a

e−θtg(t)dt

+

∫ b

a

[(−θ)f(u)− f ′(u)]eθu
[∫ u

a

e−θtg(t)dt

]
du. (3.7)
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Using f(u) ≥ 0 and eθu ≥ 0 for any u ∈ [a, b], θ ≤ 0, f ′(u) ≤ 0 for any u ∈ [a, b]
(since f is differentiable and non-increasing), g(t) ≥ 0 for any t ∈ [a, b], the assumption
in Equation (3.6) applied twice and τ ∈ R\{−1}, we get

eθbf(b)

∫ b

a

e−θtg(t)dt+

∫ b

a

[(−θ)f(u)− f ′(u)]eθu
[∫ u

a

e−θtg(t)dt

]
du

≤ eθbf(b)
[
ωe−θbfτ (b)

]
+

∫ b

a

[(−θ)f(u)− f ′(u)]eθu
[
ωe−θufτ (u)

]
du

= ω

[
fτ+1(b)− θ

∫ b

a

fτ+1(u)du−
∫ b

a

f ′(u)fτ (u)du

]

= ω

{
fτ+1(b)− θ

∫ b

a

fτ+1(u)du−
[

1

τ + 1
fτ+1(u)

]u=b

u=a

}

= ω

[
fτ+1(b)− θ

∫ b

a

fτ+1(u)du− 1

τ + 1
fτ+1(b) +

1

τ + 1
fτ+1(a)

]

= ω

[
τ

τ + 1
fτ+1(b) +

1

τ + 1
fτ+1(a)− θ

∫ b

a

fτ+1(u)du

]
. (3.8)

Combining Equations (3.7) and (3.8) gives the desired upper bound. This ends the proof
of Theorem 3.2. □

If we compare this theorem and Theorem 2.2, the monotonicity assumption on f has
changed, and

∫ u

a
e−θtg(t)dt has replaced

∫ b

u
e−θtg(t)dt in the parametric primitive exponential-

weighted integral inequality assumption considered.
Note that, since f is non-increasing and positive, the following assumption is not of

interest: there exist three constants θ ≤ 0, τ ∈ R and ω ≥ 0 such that, for any u ∈ [a, b],
we have ∫ u

a

e−θtg(t)dt ≥ ωe−θufτ (u).

Indeed, in this case, taking u = a, we get

0 =

∫ a

a

e−θtg(t)dt ≥ ωe−θafτ (a) ≥ 0,

so that f(a) = 0 and, since f is non-increasing, we necessarily have f(u) = 0 for any
u ∈ [a, b], which is not an interesting case.

The statement below fills the gap in Theorem 3.2 by considering the case ”τ = −1”.

Theorem 3.3. Let a, b ∈ R ∪ {±∞} with a < b, f : [a, b] 7→ (0,+∞) be a differentiable
non-increasing function and g : [a, b] 7→ [0,+∞) be a function. We suppose that there
exist two constants θ ≤ 0 and ω ≥ 0 such that, for any u ∈ [a, b], we have∫ u

a

e−θtg(t)dt ≤ ωe−θu 1

f(u)
. (3.9)

Then we have ∫ b

a

f(t)g(t)dt ≤ ω

{
1− θ(b− a) + log

[
f(a)

f(b)

]}
.
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Proof. Re-using Equation (3.3), we have∫ b

a

f(t)g(t)dt = eθbf(b)

∫ b

a

e−θtg(t)dt

+

∫ b

a

[(−θ)f(u)− f ′(u)]eθu
[∫ u

a

e−θtg(t)dt

]
du. (3.10)

Using f(u) ≥ 0 and eθu ≥ 0 for any u ∈ [a, b], θ ≤ 0, f ′(u) ≤ 0 for any u ∈ [a, b] (since
f is differentiable and non-increasing), g(t) ≥ 0 for any t ∈ [a, b], and the assumption in
Equation (3.9) applied twice, we get

eθbf(b)

∫ b

a

e−θtg(t)dt+

∫ b

a

[(−θ)f(u)− f ′(u)]eθu
[∫ u

a

e−θtg(t)dt

]
du

≤ eθbf(b)

[
ωe−θb 1

f(b)

]
+

∫ b

a

[(−θ)f(u)− f ′(u)]eθu
[
ωe−θu 1

f(u)

]
du

= ω

[
1− θ

∫ b

a

du−
∫ b

a

f ′(u)
1

f(u)
du

]
= ω

[
1− θ(b− a)− {log[f(u)]}u=b

u=a

]
= ω {1− θ(b− a)− log[f(b)] + log[f(a)]}

= ω

{
1− θ(b− a) + log

[
f(a)

f(b)

]}
. (3.11)

Combining Equations (3.10) and (3.11) gives the desired upper bound. This ends the proof
of Theorem 3.3. □

The result is similar to that in Theorem 2.3. The only changes are the sign before θ and
the main logarithmic term.

Under certain assumptions, including an original parametric primitive exponential-weighted
integral inequality assumption involving the derivative of an intermediate function different
from that in Theorem 2.4, the theorem below presents a specific integral inequality.

Theorem 3.4. Let a, b ∈ R ∪ {±∞} with a < b, f : [a, b] 7→ [0,+∞) be a differentiable
non-increasing function, g : [a, b] 7→ [0,+∞) be a function and h : [0,+∞) → R be a
differentiable function. We suppose that there exists a constant θ ≤ 0 such that, for any
u ∈ [a, b], we have ∫ u

a

e−θtg(t)dt ≤ h′[eθuf(u)]. (3.12)

Then we have∫ b

a

f(t)g(t)dt ≤ eθbf(b)h′[eθbf(b)]− h[eθbf(b)] + h[eθaf(a)].

If the inequality in Equation (3.12) is reversed, then the final inequality is also reversed.

Proof. The necessary assumptions being satisfied, we can re-use Equation (3.3). We have∫ b

a

f(t)g(t)dt = eθbf(b)

∫ b

a

e−θtg(t)dt

+

∫ b

a

[(−θ)f(u)− f ′(u)]eθu
[∫ u

a

e−θtg(t)dt

]
du. (3.13)
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Using f(u) ≥ 0 and eθu ≥ 0 for any u ∈ [a, b], θ ≤ 0, f ′(u) ≤ 0 for any u ∈ [a, b] (since
f is differentiable and non-increasing), g(t) ≥ 0 for any t ∈ [a, b], and the assumption in
Equation (3.12) applied twice, we get

eθbf(b)

∫ b

a

e−θtg(t)dt+

∫ b

a

[(−θ)f(u)− f ′(u)]eθu
[∫ u

a

e−θtg(t)dt

]
du

≤ eθbf(b)h′[eθbf(b)] +

∫ b

a

[(−θ)f(u)− f ′(u)]eθuh′[eθuf(u)]du

= eθbf(b)h′[eθbf(b)]−
∫ b

a

[eθuf(u)]′h′[eθuf(u)]du

= eθbf(b)h′[eθbf(b)]−
{
h[eθuf(u)]

}u=b

u=a

= eθbf(b)h′[eθbf(b)]− h[eθbf(b)] + h[eθaf(a)]. (3.14)

Combining Equations (3.13) and (3.14) gives the desired upper bound.
If the inequality in Equation (3.12) is reversed, then the inequality in Equation (3.14) is

reversed, and the final inequality is also reversed.
This ends the proof of Theorem 3.4. □

Thanks to the arbitrary choice of h, this theorem can be adapted to many situations
where an integral inequality involving the product of two functions is needed. Similar to
what is done after the statement of Theorem 2.4, numerous examples can be given.

4. CONCLUSIONS AND IDEAS FOR FUTURE RESEARCH

In this article, we have presented and proved eight theorems on new integral inequalities.
They are innovative in two complementary aspects: (i) their overall forms, and (ii) the
parametric primitive exponential-weighted assumptions made. These results generalize
existing frameworks and provide greater flexibility in the choice of functions involved. We
thus enrich the theory of integral inequalities by offering a versatile approach that can be
applied to a wider range of mathematical problems. Some ideas for future research are
outlined below:

• Refinement of the assumptions: The introduced parametric primitive exponential-
weighted assumptions can be further refined to derive sharper inequalities. The
investigation of optimal parameter ranges for specific applications is a natural ex-
tension.

• Multidimensional generalizations: Extending our results to functions of several
variables could address problems in multivariable calculus.

• Numerical applications: Developing numerical methods based on our inequalities
could improve computational approaches in optimization problems, particularly
those involving integral constraints.

• Use of the truncated Laplace transform: Using the truncated Laplace transform,
as introduced in Equation (2.6), may lead to new mathematical developments,
including possible other types of integral inequalities.

In addition to these ideas, we expect that our results and technical proofs will inspire
further research on integral inequalities.

5. ACKNOWLEDGEMENTS

The author would like to thank the reviewer for his constructive comments on the article.



56 CHRISTOPHE CHESNEAU

REFERENCES

[1] N. Azzouz, and B. Benaissa. Sharp Hardy’s inequalities via conformable fractional integrals. Surv. Math.
Appl., 19, 233-244, (2024)

[2] D. Bainov, and P. Simeonov. Integral Inequalities and Applications. Kluwer Academic, Dordrecht, (1992).
[3] E. F. Beckenbach, and R. Bellman. Inequalities. Springer, Berlin, (1961).
[4] B. Benaissa, and H. Budak. On Hardy-type integral inequalities with negative parameter. Turkish J. Inequal.,

5, 42-47, (2021).
[5] B. Benaissa, and A. Senouci. New integral inequalities relating to a general integral operators through

monotone functions. Sahand Commun. Math. Anal., 19, 41-56, (2022).
[6] C. Chesneau. A novel multivariate integral ratio operator: theory and applications including inequalities,

Asian J. Math. Appl., 2024, 1-37, (2024).
[7] C. Chesneau. A generalization of the Du integral inequality. Trans. J. Math. Anal. Appl., 12, 45-52, (2024).
[8] C. Chesneau. Study of some new integral inequalities involving four adaptable functions. An. Univ. Vest

Timis. Ser. Mat. Inform., 61, 14-30, (2025).
[9] Z. Cvetkovski. Inequalities: Theorems, Techniques and Selected Problems. Springer, Berlin, (2012).

[10] W. -S. Du. New integral inequalities and generalizations of Huang-Du’s integral inequality. Appl. Math.
Sci., 17, 265-272, (2023).

[11] G. H. Hardy, J. E. Littlewood, and G. Polya. Inequalities. Cambridge University Press, Cambridge, (1934).
[12] N. S. Hoang. Notes on an inequality. J. Ineq. Pure Appl. Math., 9, 1-5, (2008).
[13] H. Huang, and W. -S. Du. On a new integral inequality: Generalizations and applications. Axioms, 11, 1-9,

(2022).
[14] W. J. Liu, C. C. Li, and J. W. Dong. On an problem concerning an integral inequality. J. Ineq. Pure Appl.

Math., 8, 1-5, (2007).
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