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A NEW APPROACH ON PMS-ALGEBRAS

DANIEL A. ROMANO

ABSTRACT. In this article, we expose some new results about PMS-algebras. Thus, by
connecting the concepts of subalgebras and ideals as well as ideals and right congruences
in this class of logical algebras, we expand the paradigm related to PMS-algebras.

1. INTRODUCTION

Logical algebras, as particularly important phenomena both in logic and algebra as well
as in theoretical computer sciences, are the subject of study by many researchers in the
last more than half a century. Thus Y. Imai and K. Iséki 1966 in [6] introduced BCK/BCI-
algebras. In 1983, Hu and Li introduced ([5]) the notion of a BCH-algebra, which is a
generalization of the notions of BCK- and BCI-algebras. Then many classes of logical al-
gebras began to appear, such as, for example, BH-algebras (1998, [8]), BF-algebras (2007,
[17]), BRK-algebras (2012, [10]), QI-algebras (2017, [2]), BA-algebras (2019, [12]), JU-
algebras (2009, [11] and 2024, [13]) and Bd-algebras (2022, [3]). In the spirit of the
previous one, in 2016 the concept of PMS-algebra was introduced in [14] by P. M. Sithar
Selvam and K. T. Nagalakshmi. Although this class of logical algebras has not attracted
much interest from the academic community, it seems that there is a justification for un-
derstanding both its internal architecture and the properties of its substructures due to the
existence of a certain similarity with the properties of GK-algebra ([4]). In this sense, the
texts [1, 15, 16] deal with the application of fuzzy techniques on the substructures of this
class of logical algebras, while the text [9] is focused on looking at PMS-algebra within a
soft environment.

In this paper, we look at both the internal architecture of PMS-algebras and the proper-
ties of sub-algebras, ideals and congruences in them. In the first subsection of the main part
of this paper, we establish both the existence of a natural congruence on this class of logical
algebras and its basic properties. Then we prove that the direct product of any family of
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PMS-algebras is again a PMS-algebra. Sub-algebras and ideals in PMS-algebras as well as
their mutual relations are discussed in the next subsection. Thus, it is shown that every ideal
is a sub-algebra and vice versa. In the last subsection we look at the connections between
ideals and (right) congruences in this class of logical algebras. The mentioned connection
is in the following sense: While every ideal in a PMS-algebra generates a congruence in
such an algebra, to create an ideal it is sufficient for the corresponding equivalence to be a
right congruence.

2. PRELIMINARIES

Definition 2.1. ([14]) A PMS-algebra is an algebra A =: (A, ·, 0) of type (2, 0) satisfying
the following axioms:

(M) (∀x ∈ A)(0 · x = x).
(PMS) (∀x, y, z ∈ A)((x · z) · (y · z) = y · x).

We denote this axiomatic system by PMS and the corresponding algebraic system gener-
ated by them as PMS-algebra.

Notions and notations used in this text that are not defined in it are taken from the
literature, mostly from [7].

3. THE MAIN RESULTS

3.1. A different view of the properties of PMS-algebras. The next statement follows
directly from (M):

Proposition 3.1. Let A be a PMS-algebra. Then

(1) 0 · 0 = 0.

Proof. If we put x = 0 in (M), we get (1). □

Although the content of the following proposition has already been presented to the
public, for example, in [15], page 154, and in [9], Proposition 2.2, we demonstrate a proof
of its claims since the original source ([14]) is not available. Now we have:

Proposition 3.2. Let A =: (A, ·, 0) be a PMS-algebra. Then

(Re) (∀x ∈ A)(x · x = 0).

(2) (∀x, y ∈ A)((x · y) · y = x).

(3) (∀x, y ∈ A)(x · (y · x) = y · 0)
(4) (∀x, y ∈ A)((x · y) · 0 = y · x).
(5) (∀x, y, z ∈ A)((x · y) · z = (z · y) · x).

Proof. (Re): If we put x = 0, y = 0 and z = x in (PMS), we get (0 · x) · (0 · x) = 0 · 0.
from which it follows that x · x = 0 with respect to (M) and (1).

(2): If we put y = 0 and z = y in (PMS), we get (x·y)·(0·x) = 0·x. Then (x·y)·y = x
according to (M).

(3): If we put x = 0 and z = x in (PMS), we get (0 · x) · (y · x) = y · 0. Thus, we have
x · (y · x) = y · 0 according to (M).

(4): If we put z = y in (PMS), we get (x · y) · (y · y) = y ·x, ie, we get (x · y) · 0 = y ·x
with respect to (Re).
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(5): For arbitrary x, y, z, w ∈ A, we have (x · y) · z = (z · w) · ((x · y) · w) by (PMS).
In particular, for w = y, from here we get (x · y) · z = (z · y) · ((x · y) · y) = (z · y) · x
with application (2). □

Corollary 3.3. A non-trivial PMS-algebra cannot be commutative.

Proof. Let the PMS-algebra A =: (A, ·, 0) have at least two distinct elements, say x, y ∈ A
and x ̸= y. From here we get (x · y) · y ̸= (y · x) · x according to (2), which means that A
is not a commutative algebra. □

If we define ([15], Definition 2.2) the relation ≼ on a PMS-algebra A =: (A, ·, 0) with

(∀x, y ∈ A)(x ≼ y ⇐⇒ x · y = 0),

then we have that holds:

Proposition 3.4. This induced relation in any PMS-algebra A =: (A, ·, 0) satisfies the
following conditions:

(6) (∀x ∈ A)(x ≼ x).

(7) (∀x, y, z ∈ A)((x ≼ z ∧ y ≼ z) =⇒ (y ≼ x ∧ x ≼ y)).

Proof. Presence of (Re) ensures validity of (6).
Let x, y, z ∈ A be such that x ≼ z and y ≼ z. This means x · z = 0 and y · z = 0. Then

y · x = (x · z) · (y · z) = 0 · 0 = 0 and x · y = (y · z) · (x · z) = 0 · 0 = 0 with respect (Re)
and (PMS). So, x ≼ y and y ≼ x. □

Corollary 3.5. Let A =: (A, ·, 0) be a PMS-algebra. Then

(8) (∀x, y ∈ A)(x ≼ y =⇒ y ≼ x).

Proof. (8) immediately follows from (7) if we take z = y. □

Remark. Formula (8) can be written in the following form

(9) (∀x, y ∈ A)(x · y = 0 ⇐⇒ y · x = 0).

The previous thinking, assuming that the reader understands what is meant by the term
congruence, is the basis for the next theorem:

Theorem 3.6. The relation ≡≼ on a PMS-algebra A =: (A, ·, 0), defined by

(∀x, y ∈ A)(x ≡≼ y ⇐⇒ (x ≼ y ∧ y ≼ x)),

is a congruence on A.

Proof. It is immediately clear that

x ≡≼ y ⇐⇒ x · y = 0

by (9). Since the reflexivity and symmetry of this relation are obvious, let us first prove the
transitivity of the relation ≼. Let x, y, z ∈ A be such that x ≼ y and y ≼ z. This means
x · y = 0 and y · z = 0. Then z · y = 0 by (9). Thus x · z = (z · y) · (x · y) = 0 · 0 = 0
with respect (PMS) and (Re). So, x ≼ z.

The right compatibility of this relation with the operation in A can be proved as follows:
If x, y, z ∈ A are such that x · y = 0, then we have 0 = x · y = (y · z) · (x · z) according
to (PMS). Thus x · z ≼ y · z according (9). On the other hand, we have

(z · x) · (z · y) = ((z · y) · x) · z = ((x · y) · z) · z = x · y = 0

applying (5) twice and taking into account (2). So, we have z · x ≼ z · y. □
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Corollary 3.7. Let A =: (A, ·, 0) be a PMS-algebra. Then

(∀x, y ∈ A)((x · z = y · z ∨ z · x = z · y) =⇒ x ≡≼ y).

Proof. Let x, y, z ∈ A be such that x · z = y · z. Then (x · z) · (y · z) = 0 by (Re). Thus
y · x = 0 by (PMS). Hence x ≡≼ y according to Theorem 3.6.

Let x, y, z ∈ A be such that z ·x = z ·y. Then (z ·x) · (z ·y) = 0 by (Re). From here we
get ((z · y) · x) · z = 0 with respect to (5). Applying (5) again, we get ((x · y) · z) · z = 0.
We got x · y = 0 taking into account (2). Hence, x ≡≼ y according to Theorem 3.6. □

The previous result can be seen as right and left cancellability in PMS-algebras.
In what follows, we deal with the creation of the direct product PMS-algebras. Let

X =: {(Ai, ·i, 0i) : i ∈ I} be a family of PMS-algebras. If on the set∏
i∈I

Ai = {f : I −→ ∪i∈IAi | (∀i ∈ I)(f(i) ∈ Ai)},

we define the operation ∗ as follows

(∀f, g ∈
∏
i∈I

Ai)(∀ ∈ I)((f ∗ g)(i) =: f(i) ·i g(i)),

we created the structure (
∏

i∈I Ai, ∗, f0), where f0 was chosen as follows

(∀i ∈ I)(f0(i) =: 0i).

Before we start working with direct products of PMS-algebras, we say that the operation
determined in this way is well-defined. If a priori we accept conditions that ensure the
existence of non-empty direct product, we can prove the following theorem.

Theorem 3.8. The direct product of any family of PMS-algebras, determined as above, is
a PMS-algebra.

Proof. By direct verification, it can be proved that this structure satisfies the axioms of
PMS-algebra:

Let f, g, h ∈
∏

i∈I Ai be arbitrary elements and i ∈ I . Then, we have:
(M) (f0 ∗ f)(i) = f0(i) ·i f(i) = 0i ·i f(i) = f(i).

(PMS) Considering that
((f ∗ h) ∗ (g ∗ h))(i) = (f(i) ·i h(i)) ·i (g(i) ·i h(i))

= g(i) ·i f(i) = (g ⊙ f)(i),
we have that (PMS) is a valid formula for the observed structure.

Therefore, the structure (
∏

i∈I Ai, ∗, f0) is a PMS-algebra. □

3.2. Sub-algebras and ideals.

Definition 3.1. A non-empty subset S of a PMS-algebra A =: (A, ·, 0) is a sub-algebra in
A if holds

(S1) (∀x, y ∈ A)((x ∈ S ∧ y ∈ S) =⇒ x · y ∈ S).
We denote the family of all subalgebras of the algebra A by S(A).

The family S(A) is not empty because {0} ∈ S(A) and A ∈ S(A).
It is easy to conclude that every sub-algebra in the PMS-algebra A satisfies the condition
(S0) 0 ∈ S.
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Indeed, since S is a nonempty subset of A, there exists some x ∈ A such that x ∈ S. Then
0 = x · x ∈ S according to (Re) and (S1).

Proposition 3.9. For every sub-algebra S in a PMS-algebra A the following S ·0 = {x·0 :
x ∈ S} ⊆ S holds.

Proof. Taking into account (S0) and (S1), we conclude that x ∈ S and 0 ∈ S implies
x · 0 ∈ S. □

Definition 3.2. Let A =: (A, ·, 0) be a PMS-algebra. A subset J of A is an ideal in A if
the following holds:

(J0) 0 ∈ J .
(J1) (∀x, y, z ∈ A)((x · y ∈ J ∧ x · z ∈ J) =⇒ y · z ∈ J).

The family of all ideals in the algebra A is denoted by J(A).

It can be immediately proven that:

Theorem 3.10. Every ideal in a PMS-algebra A is a sub-algebra in A.

Proof. If we put x = 0 in (J1), we get (S1) with respect to (M). Thus, J(A) ⊆ S(A). □

In addition to the previous one, we have:

Proposition 3.11. Let J be an ideal in a PMS-algebra A =: (A, ·, 0). Them:

(J2) (∀x, y ∈ A)(x · y ∈ J =⇒ y · x ∈ J).

(J3) (∀x, y, z ∈ A)((x · (y · z) ∈ J ∧ x · z ∈ J) =⇒ y ∈ J).

(J4) (∀x, y, z ∈ A)(((x · y) · z ∈ J ∧ x ∈ J) =⇒ y · z ∈ J).

(J5) (∀x, y, z ∈ A)(((x · z) · y ∈ J ∧ y · z ∈ J) =⇒ x ∈ J).

(J6) (∀y, z ∈ A)((y · z ∈ J ∧ z ∈ J) =⇒ y ∈ J).

Proof. (J2): If we put z = x in (J1), we get

(x · y ∈ J ∧ x · x = 0 ∈ J) =⇒ y · x ∈ J.

(J3): If we put y = y · z in (J1), we get (x · (y · z) ∈ J ∧ x · z ∈ J) =⇒ (y · z) · z ∈ J .
From here we get (x · (y · z) ∈ J ∧ x · z ∈ J) =⇒ y ∈ J according to (2).

(J4) If we put x = x · y in (J1), we get ((x · y) · y ∈ J ∧ (x · y) · z ∈ J) =⇒ y · z ∈ J .
From here we get (x ∈ J ∧ (x · y) · z ∈ J) =⇒ y · z ∈ J according to (2).

(J5): If we put x = x ·z in (J1), we get (((x ·z) ·y ∈ J ∧ y ·z ∈ J) =⇒ (x ·z) ·z ∈ J .
From here we get (((x · z) · y ∈ J ∧ y · z ∈ J) =⇒ x ∈ J according to (2).

(J6): If we put x = 0 and y = y · z in (J1), we get

(0 · (y · z) ∈ J ∧ 0 · z ∈ J) =⇒ (y · z) · z ∈ J.

From here, taking into account (M) and (2), we get (y · z ∈ J ∧ z ∈ J) =⇒ y ∈ J which
proves the validity of (J6). □

Corollary 3.12. Let J be an ideal in a PMS-algebra A =: (A, ·, 0). Then

(J7) (∀y, x ∈ A)((y ≼ z ∧ z ∈ J) =⇒ y ∈ J).

Proof. The validity of (J7) follows directly from presence of (J6). □

Now we can prove:

Theorem 3.13. Any sub-algebra in a PMS-algebra is an ideal in it.



A NEW APPROACH ON PMS-ALGEBRAS 33

Proof. Let S be a sub-algebra in a PMS-algebra A =: (A, ·, 0) and let x, y, z ∈ A be such
that x · y ∈ S and x · z ∈ S. Then (x · y) · (x · z) ∈ S by (S1). This ((x · z) · y) · x ∈ J
in accordance (5). Hence, ((y · z) · x) · x ∈ J by (5) again. This means that y · z ∈ J with
respect to (2). So, the sub-algebra S is an ideal in A. Therefore, S(A) ⊆ J(A). □

Example 3.3. Let A = {0, a, b, c} and let the operation in A be determined as follows

· 0 a b c
0 0 a b c
a b 0 a b
b a b 0 a
c c a b 0

It is easy to verify that A =: (A, ·, 0) is a PMS-algebra ([9], Example 3.2).
Subsets S0 = {0}, S3 = {0, c} and S4 = {0, a, b} are sub-algebras in A. So, S(A) =

{S0, S3, S4, A}. Also, J(A) = {S0, S3, S4, A}. Other subsets of the set A are not sub-
algebras in A. For illustration, the subset S1 = {0, a} is not a sub-algebra in A because,
for example, we have a · 0 = b /∈ S1. Also, the subset S6 = {0, b, c} is not a sub-algebra
in A because, for example, we have b · c = a /∈ S6. □

Also, we have:

Proposition 3.14. Let {(Ai, ·i, 1i) : i ∈ I} be a family of PMS-algebras, K be a subset
of I and let Ji be an ideal in (Ai, ·i, 1i) for each i ∈ K. Then

∏
i∈I Ti, where Ti = Ji for

i ∈ K and Tj = Aj for j ̸= i ∈ K, is an ideal in the PMS-algebra
∏

i∈I Ai.

Proof. If K = ∅, then
∏

i∈I Ti =
∏

i∈I Ai, so
∏

i∈I Ti is certainly an ideal in
∏

i∈I Ai.
Assume, therefore, that K ̸= ∅. It is sufficient, according to Theorem 3.13, to prove that∏

i∈I Ti satisfies the conditions (S1).
Let x, y ∈

∏
i∈I Ai be such that x ∈

∏
i∈I Ti and y ∈

∏
i∈I Ti. This means x(i) ∈ Ji

and y(i) ∈ Ji for each i ∈ K. Then (x ∗ y)(i) = x(i) ·i yi ∈ Ji since Ji is a sub-algebra
in (Ai, ·i, 1i) for each i ∈ K. Hence x ∗ y ∈

∏
i∈I Ti.

As shown,
∏

i∈I Ti is an ideal in
∏

i∈I Ai. □

Example 3.4. Let A = {0, a, b, c} and let the operation in A be determined as follows

· 0 a b c
0 0 a b c
a a 0 c b
b b c 0 a
c c b a 0

It is easy to verify that A =: (A, ·, 0) is a PMS-algebra ([9], Example 2.5). Subsets J0 =
{0}, J1 = {0, a}, J2 = {0, b} and J3 = {0, c} are ideals in A.

Structure A× A = (A×A, ∗, (0, 0)) is a PMS-algebra in accordance with Proposition
3.14 where (x, y) ∗ (u, v) = (x · u, y · v) for arbitrary x, y, u, v ∈ A. Subsets Ji × A,
A× Ji and Ji × Ji are ideals in A× A for arbitrary i ∈ {0, 1, 2, 3}. □

At the end of this subsection, let us to prove:

Theorem 3.15. The family J(A) of all ideals in a PMS-algebra A =: (A, ·, 0) is a complete
lattice.

Proof. Let {Ji : i ∈ I} be a family of ideals in a PMS-algebra A. Since it is obvious that
0 ∈ ∩i∈IJi holds, it remains to prove the validity of (S1) for the set ∩i∈IJi. Let x, y ∈ A
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be such that x ∈ ∩i∈IJi and y ∈ ∩i∈IJi. Then x ∈ Ji and y ∈ Ji for each i ∈ I . Thus
x · y ∈ Ji for each i ∈ I by (S1). Hence, x · y ∈ ∩i∈IJi.

If we denote by Z the family of all ideals of the algebra A that contain the set ∪i∈ISi,
then ∩Z is an ideal in A according to the first part of this proof.

If we put ⊓i∈IJi = ∩i∈IJi and ⊔i∈IJi = ∩Z , then (J(A),⊓,⊔) is a complete lattice.
□

3.3. Ideals and congruences. For an equivalence ρ on the support A of the PMS-algebra
A =: (A, ·, 0) we say that it is a right congruence on A if the following holds

(∀x, y, z ∈ A)((x, y) ∈ ρ =⇒ (x · z, y · z) ∈ ρ).

The concept of left congruence is defined analogously. For an equivalence on the PMS-
algebra A, we say that it is a congruence on A if it is a left and right congruence on A. We
denote the family of all (right) congruences on a PMS-algebra A by (Qr(A)) Q(A). It can
be shown, by analogy with Theorem 3.16, that the families Qr(A) and Q(A) are complete
lattices.

The following theorem relates any ideal in the PMS-algebra A =: (A, ·, 0) to a congru-
ence on A.

Theorem 3.16. For a given ideal J of the PMS-algebra A =: (a, ·, 0), the relation ρJ ,
defined as follows

(∀x, y ∈ A)((x, y) ∈ ρJ ⇐⇒ x · y ∈ J),

is a congruence on A such that for the kernel [0]ρJ
=: {x ∈ A : (x, 0) ∈ ρJ} of the

congruence ρJ the following [0]ρJ
= J holds.

Proof. The relation ρJ is reflexive due to (J0) and symmetric due to (J2). It remains to
prove transitivity. Let x, y, z ∈ A be such that (x, y) ∈ ρJ and (y, z) ∈ ρJ . This means
x · y ∈ J and y · z ∈ J . Then z · y ∈ J by (J2). Thus xz = (y · z) · (x · z) ∈ J by (S1)
since J is a sub-algebra in A. So, (x, z) ∈ ρJ .

For arbitrary elements x, y, z ∈ A such that (x, y) ∈ ρJ , i.e. such that x · y ∈ J ,
according to (PMS), we have (y ·z) · (x ·z) = x ·y ∈ J . So, (x∗z, y ∗z) ∈ ρJ . Therefore,
ρJ is a right congruence on A. On the other hand, since for arbitrary x, y, z ∈ A such that
(x, y) ∈ ρ, i.e. such that x ·y ∈ J , we have (z ·x) ·(z ·y) = ((z ·y) ·x) ·z = ((x ·y) ·z) ·z =
x · y ∈ J , we conclude that (z · x, z · y) ∈ ρ holds. Thus, ρ is a left congruence on A.

For arbitrary u ∈ [0]ρJ
, we have (u, 0) ∈ ρJ which means u = 0 · u ∈ J . Thus,

[0]ρJ
⊆ J . It is obvious that the reverse inclusion also applies. Thus, [0]ρJ

= J . □

The previous theorem realized the correspondence J(A) −→ Q(A). According to
what has been proven, we have the correspondence

J 7−→ ρJ 7−→ [0]ρJ
= J

for an arbitrary ideal J in a PMS-algebra A.

Example 3.5. Let A = {0, a, b, c} as in Example 3.4. Then A =: (A, ·, 0) be a PMS-
algebra. The ideal J = {0, c} in A generates the congruence ρJ = {(0, 0), (0, c), (a, a), (b, b), (c, c), (c, 0)}
on A.

In this example, it is obvious that ρJ = (J ∪ J)∪ ≡≼ holds. It is quite justified to ask:
Can every congruence ρ on a PMS-algebra A be represented in this form ρ = (J×J)∪ ≡≼

for some ideal J in A?
For the reversal of Theorem 3.16, we have:
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Theorem 3.17. Let ρ be a right congruence on a PMS-algebra A =: (A, ·, 0). Then the
kernel [0]ρ =: {x ∈ A : (x, 0) ∈ ρ} of ρ is an ideal in A.

Proof. Due to the reflexivity of the relation ρ, we have 0 ∈ [0]ρ. Let x, y ∈ A be such
that x ∈ [0]ρ and y ∈ [0]ρ. This means (x, 0) ∈ ρ and (y, 0) ∈ ρ. Then (x · y, 0 · y) =
(x · y, y) ∈ ρ since ρ is a right congruence. This (x · y, 0) ∈ ρ by transitivity of ρ. Hence
x · y ∈ [0]ρ. This proves the property (S1) for the set [0]ρ. Now, according to Theorem
3.13, we conclude that [0]ρ is an ideal in A. □

The previous theorem describes the correspondence Qr(A) −→ J(A). However, we
can prove that any right congruence on PMS-algebra A is also a left congruence on A.
Indeed, let x, y, z ∈ A be such that (x, y) ∈ ρ. Then (x · z, y · z) ∈ ρ and ((x · z) · 0, (y ·
z) · 0) ∈ ρ. From where, according to (4), we get (z · x, z · y) ∈ ρ. This makes it possible
to prove correspondence

ρ 7−→ [0]ρ 7−→ ρ[0]ρ = ρ

for an arbitrary relation ρ on the PMS-algebra A.
Let us point out that the ideal {0} generates the congruence ≡≼ and vice versa, the

kernel of this congruence is the ideal {0}.
Further on, if ρ is a congruence on a PMS-algebra A =: (A, ·, 0), then we can create

the structure A/ρ =: (A/ρ,⊙, [0]ρ) where the operation ⊙ is defined as follows

(∀x, y ∈ A)([x]ρ ⊙ [y]ρ =: [x · y]ρ).
For this purpose, it is necessary to prove that ⊙ is a well-defined operation on A/ρ. Let
x, y, u, v ∈ A be arbitrary elements such that [x]ρ = [u]ρ and [y]ρ = [v]ρ. This means
(x, u) ∈ ρ and (y, v) ∈ ρ. From here we get (x · y, u · y) ∈ ρ and (u · y, u · v) ∈ ρ because
ρ is a congruence on A. Then (x ·y, u · v) ∈ ρ. This means [x]ρ⊙ [y]ρ = [u]ρ⊙ [v]ρ which
means that the operation ⊙ is well-defined.

Now we can prove the following theorem:

Theorem 3.18. If ρ is a congruence on a PMS-algebra A = (A, ·, 0), then A/ρ is a PMS-
algebra again.

Proof. The proof can be demonstrated by direct verification, so we will leave it out. □

Example 3.6. (a) Let A = {0, a, b, c} as in Example 3.3. Then A =: (A, ·, 0) be a PMS-
algebra. The subset J = {0, a, b} is an ideal in A. If ρJ is the congruence on A generated
by the ideal J , then A/ρJ = ({[0]ρJ

, [c]ρJ
},⊙, [0]ρJ

) is the quotient PMS-algebra.
(b) Let A = {0, a, b, c} as in Example 3.4. Then A = (A, ·, 0) be a PMS-algebra.

The subset J = {0, c} is an ideal in A. If ρJ is the congruence on A generated by the
ideal J (see Example 3.5), then A/ρJ = ({[0]ρJ

, [a]ρJ
, [b]ρJ

},⊙, [0]ρJ
) is the quotient

PMS-algebra. □

The following theorem illustrates the existence of the objects and processes mentioned
above. In what follows, we need the following definition:

Definition 3.7. ([9], Definition 2.5) Let A =: (A, ·, 0A) and B =: (B, ⋆, 0B) be PMS-
algebras. A mapping f : A −→ B is called homomorphism if the following holds:

(f1) (∀x, y ∈ A)(f(x · y) = f(x) ⋆ f(y)).

It can immediately be concluded that it is also valid
(f0) f(0A) = 0B .
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Indeed, for an arbitrary x ∈ A, we have f(0A) = f(x · x) = f(x) ⋆ f(x) = 0B by (Re).
We denote the homomorphism between PMS-algebras A and B by f : A −→ B. The

terms epimorphism and monomorphism are understood here in the usual way.
The following theorem is related to the previous one:

Theorem 3.19. Let f : A −→ B be a homomorphism between PMS-algebras.

(a) If S is a sub-algebra in A, then f(S) is a sub-algebra in B.

(b) f(A) is a sub-algebra in B.

(c) If K is an ideal in B, then f−1(K) = {x ∈ A : f(x) ∈ K} is an ideal in A.

(d) Kernel Ker(f) = f−1({1B}) of the homomorphism f is an ideal in A.

(e) The relation ρf , defined as follows

(∀x, y ∈ A)((x, y) ∈ ρf ⇐⇒ f(x) = f(y)),

is a congruence on A.

(f) The function π : A −→ A/ρ, defined by π(x) =: [x]ρ is an epimorphism.

(g) The function g : A/ρ −→ f(A), defined by g([x]ρ) =: f(x) is a monomorphism.

(h) The homomorphism f can be represented as a superposition f = i ◦ g ◦ π, where
i : f(A) −→ B is an inclusion.

Proof. Since the proofs of all the above statements can be obtained by direct verification,
we omit them. □

Example 3.8. Let A =: (A, ·, 0) be a PMS-algebra. Let us put φ(x) =: x · 0 for an
arbitrary x ∈ A and prove that the correspondence, defined in this way, is a homomorphism
between PMS-algebras. First, it is clear that the correspondence, determined in this way,
is a function from A to A. Second, it is obvious that φ(0) = 0 · 0 = 0 holds due to (1). For
arbitrary x, y ∈ A, according to (PMS), we have (x · 0) · (y · 0) = y · x. From here, taking
into account (4), we get (x ·0) · (y ·0) = (x · y) ·0. This proves that φ(x · y) = φ(x) ·φ(y)
holds. As shown, φ is a homomorphism. □

4. FINAL COMMENTS

The algebraic structure known as PMS-algebra, introduced in 2018, is the focus of this
paper. As is usual in the research of logical algebras, the author’s attention is devoted
not only to the internal architecture of this structure, but also to the properties of its sub-
structures, such as sub-algebras and ideals. Roughly speaking, the author believes, with
a high degree of conviction, that the entire material presented in Section 3 is novel. With
deep conviction, the author believes that Theorem 3.1, Theorem 3.2, as well as pairs of
interrelated theorems 3.10 and 3.13, and 3.19 and 3.18 are novelties in this domain. The
author is convinced that the material on PMS-algebras, presented in this article, can be an
inspiration for further and deeper research of both the sub-components and the properties
of those components, as well as some extensions of this class of algebras, including pseudo
and hyper extensions.
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6, KORDUNAŠKA STREET, 78000 BANJA LUKA, BOSNIA AND HERZEGOVINA

ORCID: 0000-0003-1148-3258
Email address: daniel.a.romano@hotmail.com

https://orcid.org/0000-0003-1148-3258

	1. Introduction
	2. Preliminaries
	3. The main results
	3.1. A different view of the properties of PMS-algebras
	3.2. Sub-algebras and ideals
	3.3. Ideals and congruences

	4.  Final comments
	5. Acknowledgements
	References

