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A THEORETICAL ASSESSMENT OF THE EFFECTS OF HOSPITAL
RESOURCES ON A HOST-VECTOR DISEASE

ROSAIRE OUEDRAOGO, ALI TRAORÉ∗ AND HAMADOUM DICKO

ABSTRACT. This paper provides a mathematical analysis of a host vectors disease model
with the influence of available hospital resources. We derive the basic reproduction num-
ber Rh

0 of the model. We prove the existence of a unique disease-free equilibrium, which
is stable when the basic reproduction number Rh

0 is less than 1, indicating that the disease
can be eradicated under these conditions. However, when Rh

0 exceeds 1, the system ex-
hibits multiple endemic equilibria, leading to the possible persistence of the disease into
the population. The study also reveals the existence of bifurcations, indicating qualitative
changes in the system’s dynamics depending on certain critical parameter values. A sensi-
tivity analysis of the parameters is carried out to assess the most influential parameters in
managing the epidemic.

1. INTRODUCTION

Host vectors diseases, such as malaria, dengue and Zika, are significant public health
challenges worldwide, especially in regions with limited healthcare infrastructure (see [19,
30]). These diseases are transmitted through vectors, primarily insects like mosquitoes,
which carry pathogens from infected individuals to healthy ones. Managing the spread
of such diseases is a complex task due to various environmental, biological, and social
factors. Mathematical models play a crucial role in understanding the dynamics of vector-
borne diseases and evaluating the impact of different intervention strategies. Over the
years, various models have been developed to simulate the transmission process and pro-
vide insights into disease control (see [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 17, 18,
22, 20, 21, 23, 26, 27, 28, 31, 32]). These models often incorporate factors such as vector
population dynamics, transmission rates, and human population movement. However, one
important yet often overlooked factor in the management of outbreaks is the availability of
hospital resources, which directly affects patient treatment and recovery rates. The recov-
ery rate can be affected by many factors, among which we have the number of the health
workforce including nurses, pharmacists and other healthcare workers, and the facilities
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of the hospital, such as the number of hospital beds and medicines. Among these factors,
the number of available hospital beds is used by health authorities as a method of esti-
mating resource availability to the public. So, the study of a vector-borne disease model
that takes into account the impact of hospital resources in terms of hospital bed-population
ratio can be important for understanding and anticipating epidemic control. Parasitic dis-
eases, primarily transmitted by insect vectors like mosquitoes, are public health challenges
due to their complex transmission and potential rapid epidemic outbreaks. Integrating hos-
pital resources into this type of model enables evaluation not only of disease spread but
also of healthcare systems’ capacity to respond effectively. This model examines how bed
availability influences the dynamics of infection and epidemic severity, thus providing a
framework for planning and optimizing public health resources. By offering a quantitative
analysis of hospital capacity impact on the progression of vector-borne disease, this study
informs policy decisions and strengthens the resilience of healthcare systems against future
health crises. This paper is organized as follows: in Section 2, we provide a description of
the epidemiological model. Section 3 is devoted to the study of the existence, positivity,
and boundedness of the solutions. In Section 4, we analyze the stability of the equilib-
rium points. Section 5 is devoted to the study of bifurcation. A sensitivity analysis of the
parameters is conducted in Section 6. The work is ended by a conclusion in Section 7.

2. MODEL DESCRIPTION

The dynamics of the infected humans and vectors populations over time are given by the
following system of differential equations (see [25]) :

dx(t)
dt = −γx(t) + abm(1− x(t))y(t),

dy(t)
dt = −ξy(t) + ac(1− y(t))x(t).

(2.1)

The variable x represents the proportion of infected humans, while y represents the pro-
portion of infected vectors. The parameter γ is the recovery rate of infected humans, which
is the rate at which they recover or become non-infectious. Similarly, ξ denotes the rate at
which infected vectors lose their ability to transmit the infection, either through death or
by losing the pathogen. The parameter a corresponds to the biting rate, while b represents
the probability that a bite from an infected vector will infect a human. Additionally, c is
the probability that a bite from a vector on an infected human will infect the vector, and
m is the ratio of the number of vectors to the number of humans, indicating the relative
density of vectors.

Considering medical resources q and the number of infected humans x, Shan (see [24])
established a type of recovery rate function as follows

g(x) = µ0 + (µ1 − µ0)
q

x+ q
, (2.2)

where µ1 is the maximum per capita recovery rate due to the sufficient health care resource,
and few infectious individuals, as well as the inherent property of a specific disease, and
µ0, is the minimum per capita recovery rate due to the function of basic clinical resources.
Thus, µ0 < µ1. From an epidemic point of view, when the number of infected individuals
is lower than the hospital resources at the initial stage of infection, the recovery rate de-
creases very slowly. When the number of infected individuals tends to zero, the recovery
rate is still the maximum recovery rate µ1, then

lim
x→0+

∂g(x)

∂x
= 0.
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Therefore, the recovery rate function (2.2) can be modified as

g(x) = µ0 + (µ1 − µ0)
θ

x2 + θ
.

If the number of infected individuals is higher than the hospital resources, the recovery rate
decreases rapidly, and finally tends to the minimum recovery rate µ0, then ∂2g(x)

∂x2

∣∣∣
x=q

= 0,

so we have θ = 3q2. Then, function g takes the form

g(x) = µ0 + (µ1 − µ0)
3q2

x2 + 3q2
. (2.3)

Taking into account the healing function of human population due to the availability of
hospital resources g(x), model (2.1) becomes

dx(t)
dt = −γx(t) + abm(1− x(t))y(t)−

(
µ0 + (µ1 − µ0)

3q2

(x(t))2+3q2

)
x(t),

dy(t)
dt = −ξy(t) + ac(1− y(t))x(t).

(2.4)

3. EXISTENCE, POSITIVITY AND BOUNDEDNESS

In this section, we demonstrate the existence, positivity, and boundedness of the solu-
tions of the model (2.4).

Proposition 3.1. The solutions of model (2.4) are contained in the region

Ω =
{
(x, y) ∈ R2

+ | 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1
}

(3.1)

which is positively invariant.

Proof. We easily verify that when x(t) and y(t) reach the bounds 0 or 1, the respective
derivatives dx

dt and dy
dt do not force x(t) or y(t) to go beyond these bounds.

• When x = 0 and y ≥ 0, then dx(t)
dt

∣∣∣
x=0

= abmy ≥ 0.

• When y = 0 and x ≥ 0, then dy(t)
dt

∣∣∣
y=0

= acx ≥ 0.

• When x = 1 and y ≥ 0, then dx
dt

∣∣
x=1,y≥0

= −γ −
(
µ0 + (µ1 − µ0)

3q2

1+3q2

)
≤ 0.

• When y = 1 and x ≥ 0, then dy
dt

∣∣∣
y=1,x≥0

= −µ ≤ 0.

The region Ω is, therefore, positively invariant for this epidemic model. This means that
if the initial values x(0) and y(0) belong to this interval, the solutions of the system will
remain in this interval for all time t ≥ 0 □

Proposition 3.2. For every initial value in Ω, solutions of system (2.4) exist for all time
t > 0.

Proof. Since the right-hand side of the system (2.4) is locally Lipschitz, thus the local
existence of solutions follows. The global existence of the solutions is due to the fact that
Ω is positively invariant and attracting all the solutions □

4. STABILITY ANALYSIS OF THE EQUILIBRIUM POINTS

In this section, we conduct an analysis of the stability of the model’s equilibrium points,
focusing first on the disease-free equilibrium point and then on the existence and stability



A THEORETICAL ASSESSMENT OF THE EFFECTS OF HOSPITAL RESOURCES 153

of the endemic equilibrium. This study allows us to better understand the conditions under
which the disease dies out or persists within the population.

4.1. Stability of the disease-free equilibrium. The basic reproduction number is an im-
portant parameter in epidemiology. It is defined as the average number of secondary cases
caused by an infected individual introduced into a susceptible population.
The disease-free equilibrium corresponds to the case where there are no infected compo-
nents in a population and it is given by

E0 = (x0, y0) = (0, 0).

According to Van Den Driessche and Watmough (see [29]), the basic reproduction number
of the model (2.4) is given by

Rh
0 =

√
a2bcm

ξ (γ + µ1)
.

Proposition 4.1. The Disease-Free Equilibrium, denoted as E0, of model (2.4) is locally
asymptotically stable if Rh

0 < 1 and unstable when Rh
0 > 1.

Proof. The Jacobian matrix of the system (2.4) at any equilibrium point E = (x, y) is
given by

J (E) =

 −γ − a2bcmx
ξ+acx − µ0x

4+9q4µ1−3q2x2(µ1−3µ0)

(x2+3q2)2
abm (1− x)

ac (1− y) −ξ − acx

 .

The characteristic polynomial of the matrix J(E) at the trivial equilibrium E0 point is given
by

Q(α) = α2 + (γ + ξ + µ1)α+ ξ (γ + µ1)− a2bcm.

Let d1 = γ + ξ + µ1 and d2 = ξ (γ + µ1)− a2bcm.
The characteristic polynomial becomes

Q(α) = α2 + d1α+ d2.

Hence, the roots of Q are

α1 =
−d1 −

√
d21 − 4d2
2

, α2 =
−d1 +

√
d21 − 4d2
2

,

with d1 > 0 and d21 − 4d2 > 0.

We observe that α1 < 0.
Let us now study the sign of α2. If Rh

0 < 1, then ξ (γ + µ1)− a2bcm > 0, that is d2 > 0.
Thus,

√
d21 − 4d2 < d1, which means that α2 < 0. Therefore, if Rh

0 < 1, both α1 and α2

are negative real numbers. On the other hand, if Rh
0 > 1, then d2 < 0, and consequently,

α2 is a positive real number. Thus, the disease-free equilibrium is locally asymptotically
stable if Rh

0 < 1, and unstable when Rh
0 > 1 □

We now state the global stability result of the disease-free equilibrium.
When Rh

0 < 1, the disease tends to disappear from the population. In this context, we
assume that the recovery rate reaches its maximum value, that is, g(x) = µ1.
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Proposition 4.2. If Rh
0 < 1, then the disease-free equilibrium E0 is globally asymptotically

stable.

Proof. We construct the following Lyapunov function:

V (x, y) = acx+ (γ + µ1)y.

Now, the derivative of V is given by
dV

dt
= −acγx+ a2bcm(1− x)y − acµ1x

− ξ(γ + µ1)y + ac(γ + µ1)(1− y)x

= −a2bcmxy − ac(γ + µ1)xy + a2bcmy − ξ(γ + µ1)y

= y
(
a2bcm− ξ(γ + µ1)

)
− a2bcmxy − ac(γ + µ1)xy

= ξ(γ + µ1)
(
(Rh

0 )
2 − 1

)
−
(
a2bcm+ ac(γ + µ1)

)
xy.

Hence, if Rh
0 < 1 then dV

dt is negative. In addition, the largest compact invariant subset of{
(x, y) ∈ R2

+

∣∣ dV
dt = 0

}
is the singleton set E0. Hence, LaSalle’s invariant principle (see

[15]) implies that E0 is globally asymptotically stable in Ω when Rh
0 < 1. □

4.2. Existence of the endemic equilibrium. In this subsection we provide the existence
result of the endemic equilibrium. Denote by E∗ = (x∗, y∗) an endemic equilibrium of
model (2.4). Thus, E∗ solves the following system

−γx∗ + abm(1− x∗)y∗ −
(
µ0 + (µ1 − µ0)

3q2

(x∗)2+3q2

)
x∗ = 0,

−ξy∗ + ac(1− y∗)x∗ = 0.

That is,

−γx∗ + abm(1− x∗)y∗ −
(
µ0 + (µ1 − µ0)

3q2

(x∗)2 + 3q2

)
x∗ = 0,

which gives us

−γx∗ − µ0x
∗ − abmx∗y∗ − (µ1 − µ0)

3q2x∗

(x∗)2 + 3q2
+ abmy∗ = 0.

Factorizing by x∗ gives

x∗
(
γ + µ0 + abmy∗ + (µ1 − µ0)

3q2

(x∗)2 + 3q2

)
= abmy∗

and
x∗ =

abmy∗

γ + µ0 + abmy∗ + (µ1 − µ0)
3q2

(x∗)2+3q2

.

Furthermore,

−ξy∗ + ac(1− y∗)x∗ = 0 ⇒ y∗ =
acx∗

ξ + acx∗ .

By substituting y∗ into the expression of x∗, we get

x∗
(
γ + µ0 +

a2bcm

ξ + acx∗ (x
∗ − 1) + (µ1 − µ0)

3q2

(x∗)2 + 3q2

)
= 0,
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that is
x∗ = 0 or

γ + µ0 +
a2bcm

ξ + acx∗ (x
∗ − 1) + (µ1 − µ0)

3q2

(x∗)2 + 3q2
= 0. (4.1)

The solution x∗ = 0 gives us the disease-free equilibrium E0 defined above.
By developing (4.1) we obtain

−
(
a2bcm+ ac (γ + µ0)

)
(x∗)3 + ξ

(
(γ + µ1)

(
(Rh

0 )
2 − 1

)
+ (µ1 − µ0)

)
(x∗)2

− 3q2ac (abm+ γ + µ1)x
∗ + 3q2ξ (γ + µ1)

(
(Rh

0 )
2 − 1

)
= 0.

Setting
A3 = −

(
a2bcm+ ac (γ + µ0)

)
,

A2 = ξ (γ + µ1)
(
(Rh

0 )
2 − 1

)
+ ξ(µ1 − µ0),

A1 = −3q2ac (abm+ γ + µ1) ,

A0 = 3q2ξ (γ + µ1)
(
(Rh

0 )
2 − 1

)
.

We obtain the following equation

P(x∗) = A3(x
∗)3 +A2(x

∗)2 +A1x
∗ +A0 = 0, (4.2)

Clearly A3 < 0 and A1 < 0.
Further, since µ1 > µ0 and Rh

0 > 1, thus A2 > 0.
The number of positive real root(s) of P (x∗) depend on the signs of A3, A2, A1 and A0.
This can be analyzed by applying Descarte’s rule of sign (see [16]). The various possibili-
ties has been shown in the Table 1.

Table 1: Number of possible positive roots of polynomial P (x∗).

Cases A3 A2 A1 A0 Rh
0 changes in sign Total possible positive roots

1 - + - + Rh
0 > 1 3 1,3

2 - + - - Rh
0 < 1 2 0,2

3 - - - - Rh
0 < 1 0 0

The results can be summarized as follows.

Proposition 4.3. The model (2.4),
(i) one or three endemic equilibria when Rh

0 > 1 and case 1 is satisfied,
(ii) has two endemic equilibria when Rh

0 < 1 and cases 2 is satisfied,
(iii) does not have any endemic equilibrium when Rh

0 < 1 and case 3 is satisfied.

4.3. Stability of the endemic equilibrium. In this subsection, we analyze the stability of
the endemic equilibrium. We state the following result:

Proposition 4.4. If Rh
0 > 1, the endemic equilibrium (x∗, y∗) of model (2.4) is globally

asymptotically stable whenever |x|µ1 < abm|y|x.

Proof. Defining  x̃ = x− x∗,

ỹ = y − y∗.
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Therefore,
˙̃x = −γ (x̃+ x∗) + abm(1− x̃− x∗)(ỹ + y∗)− µ0(x̃+x∗)3+3q2µ1(x̃+x∗)

(x̃+x∗)2+3q2
,

˙̃y = −ξ(ỹ + y∗) + ac(1− ỹ − y∗)(x̃+ x∗).

By setting x̃ = x and ỹ = y, we obtain
ẋ = abmy∗(1− x∗)− γx∗ + abm(1− x− x∗)y − abmy∗x− γx− µ0(x+x∗)3+3q2µ1(x+x∗)

(x+x∗)2+3q2
,

ẏ = ac(1− y∗)x∗ − ξy∗ + ac(1− y − y∗)x− acyx∗ − ξy.

Since (x∗, y∗) is an endemic equilibrium, we have
−γx∗ + abm(1− x∗)y∗ = µ0(x

∗)3+3q2µ1x
∗

(x∗)2+3q2
,

ac(1− y∗)− ξy∗ = 0.

Then,
ẋ = −(abmy∗ + γ)x+ abm(1− x− x∗)y − µ0(x+x∗)3+3q2µ1(x+x∗)

(x+x∗)2+3q2
+ µ0(x

∗)3+3q2µ1x
∗

(x∗)2+3q2
,

ẏ = ac(1− y − y∗)x− (acx∗ + ξ)y.

This can be rewritten as:
ẋ = −abmxy∗

x∗ + abm(1− x− x∗)y +
(µ0(x

∗)2+3q2µ1)(x+x∗)

(x∗)2+3q2
− µ0(x+x∗)3+3q2µ1(x+x∗)

(x+x∗)2+3q2
,

ẏ = ac(1− y − y∗)x− acx
∗

y∗ y.

There are two equilibria: (0, 0), which is the endemic equilibrium, and the disease-free
equilibrium (−x∗,−y∗), which are written in the new coordinates. Clearly, one can verify
that in the new coordinates:

−x∗ ≤ x ≤ 1− x∗ and − y∗ ≤ y ≤ 1− y∗.

We introduce the following Lyapunov function:

V (x, y) = ac|x|+ abm
y∗

x∗ |y|.

We define εx and εy by

εx =

 −1 if x < 0,
0 if x = 0,
1 if x > 0.

and εy =

 −1 if y < 0,
0 if y = 0,
1 if y > 0.

Thus,
|x| = εxx, |y| = εyy.

The derivation of the function V with respect to the time t is given by:

dV

dt
= acεxẋ+ abm

y∗

x∗ εy ẏ.
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By replacing ẋ and ẏ after a rearrangement, we obtain

dV

dt
=− a2bcm

y∗

x∗ εxx+ acεxx

(
µ0 (x

∗)
2
+ 3q2µ1

(x∗)
2
+ 3q2

)
+ a2bcmεx(1− x− x∗)y

− acεx

(
µ0 (x+ x∗)

3
+ 3q2µ1 (x+ x∗)

(x+ x∗)
2
+ 3q2

)
+ acεx

(
µ0 (x

∗)
3
+ 3q2µ1x

∗

(x∗)
2
+ 3q2

)

+ a2bcm
y∗

x∗ εy(1− y − y∗)x− a2bcmεyy.

Clearly, it is easy to verify that

εxεy|x| = εyx and εxεy|y| = εxy.

Therefore,
dV

dt
=a2bcm

y∗

x∗

(
− 1 + εxεy (1− y − y∗)

)
|x|+ a2bcm

(
− 1 + εxεy (1− x− x∗)

)
|y|

+ acεx (x+ x∗)

(
µ0 (x

∗)
2
+ 3q2µ1

(x∗)
2
+ 3q2

− µ0 (x+ x∗)
2
+ 3q2µ1

(x+ x∗)
2
+ 3q2

)
.

Since εxεy < 1, then
dV

dt
≤− a2bcm

y∗

x∗ (y + y∗) |x| − a2bcm (x+ x∗) |y|

+ acεx (x+ x∗)

(
µ0 (x

∗)
2
+ 3q2µ1

(x∗)
2
+ 3q2

− µ0 (x+ x∗)
2
+ 3q2µ1

(x+ x∗)
2
+ 3q2

)
.

Thus,

dV

dt
≤ −a2bcm

y∗

x∗ (y + y∗)|x| − a2bcm(x+ x∗)|y|+ acεx(x+ x∗)

(
µ0 (x

∗)
2
+ 3q2µ1

(x∗)
2
+ 3q2

)
.

Since µ0 < µ1, we get

dV

dt
≤ a (x+ x∗) (−abm|y|+ εxµ1)− a2bcm

y∗

x∗ (y + y∗)|x|.

Clearly, if εxµ1 ≤ abm|y|, we get dV
dt ≤ 0 for all (x, y) ∈ R2

+. Moreover, the largest in-
variant subset of

{
(x, y) ∈ R2

+

∣∣ dV
dt = 0

}
is equal to the singleton {E∗}. Then, by LaSalle

invariant principle we conclude that the endemic equilibrium E∗ is globally asymptotically
stable, when Rh

0 > 1 (see [15]) □

5. BIFURCATIONS ANALYSIS

Bifurcation analysis contribute to understand qualitative changes in epidemic dynamics
which may have important implications for public health decision-making.
Let b be the bifurcation parameter.
When Rh

0 = 1, we get

b =
ξ (γ + µ1)

a2cm
.
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Consider
dx(t)
dt = f1(x, y) = −γx(t) + abm(1− x(t))y(t)−

(
µ0 + (µ1 − µ0)

3q2

(x(t))2+3q2

)
x(t),

dy(t)
dt = f2(x, y) = −ξy(t) + ac(1− y(t))x(t).

(5.1)
The linearization of system (2.4) at the disease-free equilibrium gives

J (E0) =

 −γ − µ1 abm

ac −ξ

 .

The right eigenvalues (u1, u2) of J (E0) of associated to 0 are given by −γ − µ1 abm

ac −ξ

 u1

u2

 =

 0

0

 . (5.2)

We obtain  − (γ + µ1)u1 + abmu2 = 0,

acu1 − ξu2 = 0.
(5.3)

Since b = ξ(γ+µ1)
a2cm , the first equation of system (5.3) becomes acu1−ξu2 = 0, therefore

u2 =
ac

ξ
u1.

Hence, 
u1 > 0,

u2 = ac
ξ u1 > 0.

The left eigenvectors (v1, v2) of J(E0) associated to 0 are given by −γ − µ1 ac

abm −ξ

 v1

v2

 =

 0

0

 , (5.4)

that is  − (γ + µ1) v1 + acv2 = 0,

abmv1 − ξv2 = 0.
(5.5)

Since b = ξ(γ+µ1)
a2cm , the first equation of system (5.5) becomes abmv1− ξv2 = 0, therefore

v2 =
γ + µ1

ac
v1.

Hence, 
v1 > 0,

v2 = γ+µ1

ac v1 > 0.
(5.6)

By differentiation, we obtain
∂f1
∂x

(E0) = −γ − µ1,
∂f1
∂y

(E0) = abm,
∂f2
∂x

(E0) = ac,
∂f2
∂y

(E0) = −ξ,

∂2f1
∂x2

(E0) =
∂2f2
∂x2

(E0) =
∂2f1
∂y2

=
∂2f2
∂y2

= 0,
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∂2f1
∂x∂y

(E0) =
∂2f1
∂y∂x

(E0) = −abm,
∂2f2
∂y∂x

(E0) =
∂f2
∂x∂y

(E0) = −ac,

∂2f1
∂x∂b

=
∂2f2
∂x∂b

=
∂2f2
∂y∂b

= 0,
∂2f1
∂y∂b

= am.

As in [6], we now calculate the values of e1 and e2 defined by

e1 =

2∑
k,i,j=1

vkuiuj
∂2fk

∂xi∂xj
and e2 =

2∑
k;i=1

vkωi
∂2fk
∂xi∂b

.

We have,

e1 =

2∑
k,j=1

vku1uj
∂2fk
∂xjxj

+

2∑
k,j=1

vku2uj
∂2fk
∂yjxi

=− 2u1u2a (v1bm+ v2c) < 0,

(5.7)

and

e2 =

2∑
k;i=1

vkωi
∂2fk
∂xi∂b

=

2∑
k=1

vku1
∂2fk
∂x∂b

+

2∑
k=1

vku2
∂2fk
∂y∂b

=v1u2am > 0.

(5.8)

Thus, e1 < 0 and e2 > 0.
By using Theorem 4.1 in [6], the following result hold.

Proposition 5.1. For Rh
0 = 1, the system (2.4) exhibits a backward transcritical bifurca-

tion.

6. SENSITIVITY ANALYSIS OF THE PARAMETERS

This section aims to examine the impact of several parameters on the basic reproduction
number Rh

0 , an essential indicator for assessing the potential spread of an infection.
By differentiating Rh

0 with respect to the rates b (the probability of infectious bites per
vector), a (the biting rate of humans by a single vector), c (the probability that an infectious
bite produces an infectious vector), and m (the average number of vectors per person), we
obtain the following partial derivatives:

∂Rh
0

∂b
=

1

2
√
b

√
a2cm

ξ (γ + µ1)
> 0,

∂Rh
0

∂a
=

√
bcm

ξ (γ + µ1)
> 0,

∂Rh
0

∂c
=

1

2
√
c

√
a2bm

ξ (γ + µ1)
> 0, and

∂Rh
0

∂m
=

1

2
√
m

√
a2bc

ξ (γ + µ1)
> 0.

The positivity of these partial derivatives show that an increase of the probability of in-
fectious bites per vector b, the biting rate of humans by a single vector a, the probability
that an infectious bite produces an infectious vector c, the average number of vectors per
person m, contribute to an increase of the basic reproduction number Rh

0 . This situation
indicates a high spread of the disease, and this can make disease control more challenging.
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By differentiating Rh
0 with respect to the rates ξ, µ1, and γ, we obtain

∂Rh
0

∂ξ
= − 1

2
√
ξ

√
a2bcm

γ + µ1
< 0,

∂Rh
0

∂µ1
= − 1

2 (γ + µ1)
√
γ + µ1

√
a2bcm

ξ
< 0 and

∂Rh
0

∂γ
= − 1

2 (γ + µ1)
√
γ + µ1

√
a2bcm

ξ
< 0.

These show that an increase of the mosquito mortality rate ξ, the maximum per capita
recovery rate µ1, the recovery rate of infected humans γ leads to a decrease of the basic
reproduction number Rh

0 . Therefore, an increase of these parameters has a positive impact
on disease control.
We now focus on identifying the most influential parameters of the model using the partial
rank correlation coefficient (PRCC) method. Figure 1 shows the partial rank correlation
coefficients for the parameters of model (2.4). A positive value indicates a positive cor-
relation and a negative value indicates a negative correlation. We observe that the most

FIGURE 1. Sensitivity of model (2.4) parameters.

influential parameters in the model are the mosquito mortality rate ξ, the recovery rate of
infected humans γ, the maximum per capita recovery rate µ1, and the rate of available
medical resources q. This implies that eventual control will depend on these epidemic
parameters. These informations can guide health authorities in implementing effective
strategies to prevent and control host-vector diseases.

7. CONCLUSION

In this paper, we present a mathematical analysis of a host vectors model that takes into
account hospital resources. Many existing models of vector-borne diseases in the litera-
ture do not consider hospital resources, even though their inclusion can be essential for a
better understanding of the transmission of host vectors diseases. Incorporating hospital re-
sources not only improves the understanding of the mechanisms of disease spread but also
offers valuable recommendations to health authorities for the design and implementation
of control strategies. The analysis of the model shows the existence of a unique disease-
free equilibrium and several endemic equilibria. The disease-free equilibrium is stable if
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Rh
0 is less than 1 and unstable when Rh

0 is greater than 1, and in this case, the study reveals
the emergence of multiple endemic equilibria, indicating the persistence of the disease de-
spite control efforts. The analysis of the transcritical bifurcation shows changes in stability
between equilibrium points. Sensitivity analysis is derived and we found that the most
important parameters are the maximum per capita recovery rate due to the sufficient health
care resource µ1, the rate at which infected vectors loose their ability to transmit the infec-
tion ξ, the recovery rate of infected humans γ and the rate of available medical resources
q. By solving equation Rh

0 = 1, we derived a critical recovery rate due to the sufficient
health care resource µc

1 = a2bcm
ξ − γ. If the maximum per capita recovery rate due to

the sufficient health care resource µ1 is greater than µc
1, the disease will die out into the

population. By integrating the knowledge gained from mathematical modeling with the
practical realities of hospital management, we hope to pave the way for more effective and
sustainable strategies to host-vectors disease. The current paper constitutes a first step of
the work and the future step will be devoted to its validation using real-world data, which
can be essential to evaluate the accuracy of the predictions and provide recommendations
to optimize control strategies.
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