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SOME PROPERTIES OF FUNDAMENTAL FORMULATION OF
TRICOMPLEX POLYNOMIALS

MD. NASIRUZZAMAN* AND M. MURSALEEN

ABSTRACT. In this paper, we introduce the algebra of tricomplex numbers as in idempo-
tent forms and tricomplex polynomials as a generalization of the field of bicomplex num-
bers. We describe how to define elementary functions in such an algebra, polynomials,
Taylor series for tricomplex holomorphic functions, algebra of eigenvalues corresponding
to an eigenvector on tricomplex space, and using a specific result, we define tricomplex
polynomial, which is a better generalization of bicomplex polynomial.

1. INTRODUCTION

Complex numbers can be generalized to higher dimensions in a variety of ways. The
most famous extension is provided by Hamilton’s quaternions [6], which are mostly used
to depict rotations in three dimensions. Quaternions, on the other hand, do not multiply
commutatively. At the close of the 19th century, Corrado Segre [5] discovered another ex-
pansion by describing specific multidimensional algebras. These days, this kind of number
is referred to as a multicomplex number. Both Price [1] and Fleury [8] conducted in-depth
research on them. Segre [7] invented bicomplex numbers, which are a generalization of
complex numbers to four real dimensions, similar to quaternions. These two number sys-
tems are different because (i) bicomplex numbers are commutative, whereas quaternions
are not, and (ii) quaternions form a division algebra, whereas bicomplex numbers do not.
It has been demonstrated that the bicomplex numbers system is more appealing than the
quaternions for these reasons. When we define multicomplex numbers as the special higher
dimensional counterparts of bicomplex numbers and tricomplex numbers, certain charac-
teristics of bicomplex numbers are maintained. An overview of the structure of the multi-
complex space Ck is given at the beginning of this work [1].
Crucially, we define a number of idempotent elements that will be essential for all future
developments, including the zeros of characteristic polynomials on tricomplex space, the
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characteristic root of tricomplex matrices, the convergent of a tricomplex sequence, tri-
complex polynomials, tricomplex derivatives, and Taylor series representation. After that,
we may demonstrate some practical characteristics of functions on C3. In this paper we in-
troduce elementary functions, such as polynomials, exponentials, trigonometric functions,
Taylor representation for holomorphic function,in this algebra, as well as their inverses
(something that, incidentally, is not possible in the case of quaternions). We will show
how these elementary functions enjoy properties that are very similar to those enjoyed by
their complex counterparts. To generalize, the observation consists in looking at maps
f = (f1, f2) in a open set U ⊂ C3 → C3 and to ask that each component f1, f2 be
holomorphic in z1 and in z2 without assuming any additional relationship between them.
Though both generalizations are important, and give rise to large and interesting theories.
We believe that there is another, even more appropriate generalization, which so far has
not received enough attention (cf.[2],[3],[4]). To this purpose, we introduce to tricomplex
Cauchy-Riemann system and to apply it to pairs of holomorphic functions (f1, f2) in a
open set U ⊂ C3 → C3, so that the pair (f1, f2) can be interpreted as a map of C3 to
itself. It is then natural to ask whether it makes any sense to consider pairs (f1, f2) for
which the following system is satisfied:

∂f1
∂z1

=
∂f2
∂z2

∂f2
∂z1

= −∂f1
∂z2

The bicomplex polynomial was discussed by M.E. Luna-Elizarrara’s, M. Shapiro [2], and
the eigenvalues for bicomplex matrices was discussed in [9]. We generalized it one step
far in tricomplex space C3 The algebra which one obtains is the tricomplex algebra. In this
paper we show how to introduce the elementary functions, such as polynomials, character-
istic polynomial functions, zeros of characteristic polynomial, on tricomplex space C3. We
will show how these elementary functions enjoy properties that are very similar to those
enjoyed by their complex counterparts. If A := {(alj) ∈ C3

m×n = A1I1 + A2I2} and
Au = λu which is equivalent to {

A1u1 = λ1u1,
A2u2 = λ2u2.

Then λ is eigenvalue of the tricomplex matrix A corresponding to eigenvector u where
λ := λ1I1 + λ2I2 ∈ C3 and u = u1I1 + u2I2. To generalize the above observation
consists in looking at

A := (alj) ∈ C3
m×n = Bi3I1 + Ci3I2 := Bi2I1 + Ci2I2

where Bi3 , Ci3 ∈ C2
m×n and Bi2 , Ci2 ∈ C2

m×n.
Without assuming any additional relationship between them, both generalizations are im-
portant, and give rise to large and interesting theories, we believe that there is another
even more appropriate generalization, which so far has not received enough attention. For
more details and recent published articles we prefer to see, for example, families of bicom-
plex holomorphic functions [10], bicomplex and hyperbolic numbers [11], bicomplex beta
operators [12] and multicomplex numbers and their properties [13].
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2. PRELIMINARIES

Definition 2.1 (Bicomplex Numbers( [1, 9] )). The set of the bicomplex numbers is defined
as

BC := {z1 + z2i2 | z1, z2 ∈ C1(i1)} (2.1)
where i1, i2 are the imaginary units and governed by the rules

i21 = i22 = −1, i1i2 = i2i1 = j (2.2)

and so,
j2 = 1, i1j = ji1 = −i2, i2j = ji2 = −i1. (2.3)

Note that
C1(ik) := {x+ yik | i2k = −1 and x, y ∈ R for k = 1, 2} (2.4)

where C1 is the set of all complex numbers with the imaginary units ik for k = 1, 2. Thus
the bicomplex numbers are complex numbers with complex coefficients, which explain the
name of bicomplex.
With the addition and the multiplication of two bicomplex numbers defined in the obvious
way, the set BC makes up a commutative ring (in fact they are the particular case of the so
called multicomplex numbers).
Clearly the bicomplex numbers

BC ∼= ClC(1, 0) ∼= ClC(0, 1) (2.5)

are unique among the complex Clifford algebras in that they are commutative but not divi-
sion algebras. It is also convenient to write the set of bicomplex numbers as

BC := {x0 + x1i1 + x2i2 + x3i1i2 | x0, x1, x2, x3 ∈ R}. (2.6)

We know the complex conjugation plays an important role for both algebraic and geometric
properties of C1. So for bicomplex numbers there are three possibilities of conjugations.
Let z ∈ BC and z1, z2 ∈ C1(i1), such that z := z1 + z2i2, then we define the three
conjugation as:

z†1 = (z1 + z2i2)
†1 = z1 + z2i2 (2.7)

z†2 = (z1 + z2i2)
†2 = z1 − z2i2 (2.8)

z†3 = (z1 + z2i2)
†3 = z1 − z2i2. (2.9)

All the three kinds of conjugations have some of the standard properties of conjugations,
such as

(z1 + z2)
†k = z†k1 + z†k2 (2.10)

(z†k1 )†k = z1 (2.11)

(z1.z2)
†k = z†k1 .z

†k
2 . (2.12)

We know that the product of a standard complex number with its conjugate gives the square
of the Euclidean metric in R2. Thus the analogs of this, for bicomplex numbers, are the
following. Let z1, z2 ∈ C1(i1) and z := z1 + z2i2 ∈ BC, then we have:

| z |2i1= z.z†2 = z21 + z22 ∈ C1(i1) (2.13)

| z |2i2= z.z†1 = (| z1 |2 − | z2 |2) + 2Re(z1z2)i2 ∈ C1(i2) (2.14)

| z |2j= z.z†3 = (| z1 |2 + | z2 |2)− 2Im(z1z2)j ∈ D. (2.15)
Where D is the subalgebra of hyperbolic numbers, and is defined as

D := {x+ yj | j2 = 1, x, y ∈ R, } ∼= ClR(0, 1). (2.16)
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Note that for z1, z2 ∈ C1(i1) and z := z1+z2i2 ∈ BC, we can define the usual (Euclidean

in R4) norm of z as | z |=
√
| z1 |2 + | z2 |2 =

√
Re(| z |2j ). It is easy to verifying that

z. z†2

|z|2i1
= 1. Hence the inverse of z is given by

z−1 =
z†2

| z |2i1
. (2.17)

Idempotent basis:
Bicomplex algebra is considerably simplified by the introduction of two bicomplex

numbers e1 and e2 defined as e1 = 1+i1i2
2 , e2 = 1−i1i2

2 In fact e1 and e2 are hyper-
bolic numbers (i1i2 = i2i1 = j). They make up the so called idempotent basis of the
bicomplex numbers, and one easily can check that

e21 = e1, e
2
2 = e2, e1 + e2 = 1, e1.e2 = 0, e†3k = ek (for k = 1, 2). (2.18)

Thus any bicomplex number can be written as

z = z1 + z2i2 = α1e1 + α2e2,where α1 = z1 − z2i1, α2 = z1 + z2i1. (2.19)

Definition 2.2 (Multicomplex Numbers([1, 9] )). We must firstly define the multiicomplex
space in which we have to work, that will do so inductively. For the base case k = 0, we
define C0 := R, that is the set of all real numbers with additions, multiplication and
norm being defined as usual. The case for k = 1 is also familiar to C1, which is simply
the standard complex plane with arithmetic and norm usually defined. The case of k =
2 and k = 3 are familiar with C2 and C3 are the simply bicomplex plane and tricomplex
plane. So we define

Ck := {z1+z2ik | z1, z2 ∈ Ck−1, k > 1, i2k = −1 and imin = inim form ̸= n}. (2.20)

The arithmetic is defined in usual way and if z1, z2, z3 and z4 ∈ Ck−1 andw1, w2 andw3 ∈
Ck , then

(z1 + z2ik) + (z3 + z4ik) = (z1 + z3) + (z2 + z4)ik (2.21)
(z1 + z2ik)(z3 + z4ik) = (z1z3 − z2z4) + (z1z4 + z2z3)ik (2.22)

w1(w2 + w3) = w1w2 + w1w3. (2.23)
With this definition it is simple to show that for all natural numbers k,Ck is a commutative
ring with unity. Further, assuming have defined the norm
∥ . ∥k−1: Ck−1 → R≥0, we define the norm ∥ . ∥k: Ck → R≥0 by

∥ z1 + z2ik ∥2k=∥ z1 ∥2k−1 + ∥ z2 ∥2k−1, (2.24)

with this definition of the norm, the space Ck becomes a modified Banach algebra.
Other useful representations of the multicomplex numbers can be found by repetitively ap-
plying to the multicomplex coefficients of lower dimension, that is decomposing z1 and z2
into lower dimension repetitively. We obtain

Ck := {z11 + z12ik−1 + z21ik + z22ikik−1 | z11, z12, z21, z22 ∈ Ck−2}. (2.25)

For all x0, · · · , xk, · · · , x1···k ∈ R,

Ck := {x0+x1i1+· · ·+xkik+x12i1i2+· · ·+xk−1kik−1ik+· · ·+x1···ki1 · · · ik}. (2.26)

It is clear that we can represent each element of Ck with
(
k
0

)
+
(
k
1

)
+· · ·+

(
k
k

)
{where

(
k
r

)
=

k!
r!(k−r)!}, coefficients in R. One coefficients x0 for the real part k, and coefficients
x1, · · · , xk for the pure imaginary directions and additional coefficients corresponding to
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’cross coupled’imaginary directions. We note that the cross directions do not exit in R or
C, but appear only in Ck for k ≥ 2.

The multicomplex space for k ≥ 2 has many idempotents elements, that is elements I
with the property that I2 = I

I1 =
1 + ikik−1

2
and I2 =

1− ikik−1

2
(2.27)

I21 = (
1 + ikik−1

2
)2 =

1 + ikik−1

2
= I1 (2.28)

I22 = (
1− ikik−1

2
)2 =

1− ikik−1

2
= I2 (2.29)

I1 + I2 = (
1 + ikik−1

2
) + (

1− ikik−1

2
) = 1 (2.30)

I1I2 = (
1 + ikik−1

2
)(
1− ikik−1

2
) = 0. (2.31)

Definition 2.3 (Tricomplex Numbers ( [1, 9] )). The set of the tricomplex numbers is
defined as

TC := {z1 + z2i3 | z1, z2 ∈ C2(i2)} (2.32)
where i2, i2 are the imaginary units and governed by the rules. For allm = 1, 2, 3, 4 and l =
1, 2, 3,

i2m = −1, i1i2 = i2i1 = j1, i2i3 = i3i2 = j2, i1i3 = i3i1 = j3, j
2
l = 1, (2.33)

and so, With this definition it is simple to show that C3 is a commutative ring with unity.
Further, assuming have defined the norm
∥ . ∥2: C2 → R≥0, we define the norm ∥ . ∥k: C3 → R≥0 by

∥ z1 + z2i3 ∥23=∥ z1 ∥22 + ∥ z2 ∥22 (2.34)

with this definition of the norm, the space C3 becomes a modified Banach algebra.
Other useful representations of the tricomplex numbers can be found by repetitively apply-
ing to the tricomplex coefficients of lower dimension, that is decomposing z1 and z2 into
lower dimension repetitively. We obtain

C3 := {x0+x1i1+x2i2+x3i3+x4i4+x5j1+x6j2+x7j3 | x0, · · · , x3, · · · , x7 ∈ R}.
(2.35)

In the tricomplex space the idempotents representation as follows,

I1 =
1 + i3i2

2
and I2 =

1− i3i2
2

(2.36)

I2
1 = (

1 + i3i2
2

)2 =
1 + i3i2

2
= I1 (2.37)

I2
2 = (

1− i3i2
2

)2 =
1− i3i2

2
= I2 (2.38)

I1 + I2 = (
1 + i3i2

2
) + (

1− i3i2
2

) = 1 (2.39)

I1I2 = (
1 + i3i2

2
)(
1− i3i2

2
) = 0. (2.40)

Theorem 2.1. ([3] ) Let X1 and X2 be open sets in C1(i1)}. If fe1 : X1 → C1(i1) and
fe2 : X2 → C1(i1) be holomorphic functions of C1(i1) on X1 and X2 respectively. Then
the function f : X1 ×e X2 → C2 is defined as

f(z1 + z2i2) = fe1(z1 − z2i1)e1 + fe2(z1 + z2i1)e2,∀z1 + z2i2 ∈ f : X1 ×eX2 (2.41)
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which is C2 holomorphic on the open set X1 ×e X2, and

f ′(z1+z2i2) = f ′e1(z1−z2i1)e1+f
′
e2(z1+z2i1)e2,∀z1+z2i2 ∈ f : X1×eX2. (2.42)

Definition 2.4. ([2] ) Let zn = αne1 + βne2 for n ≥ 1. The sequence {zn}n≥1 is said
to be convergent component-wise if the sequence of the complex numbers {αn} and {βn}
are convergent in the complex plane to complex numbers α0 and β0, respectively. In this
case, we write zn → z0 = α0e1 + β0e2, and we say that zn has limit z0.

Theorem 2.2. ([3] ) Let {zn = z1,n + z2,ni2}∞n=1 ⊆ C2 be invertible for each posi-
tive integer n. Then

∏∞
n=1 zn converges if and only if both (

∏∞
n=1 z1,n − z2,ni1) and

(
∏∞

n=1 z1,n + z2,ni1) converge. Further, when convergent, we obtain the identity.
∞∏

n=1

zn = (

∞∏
n=1

z1,n − z2,ni1)e1 + (

∞∏
n=1

z1,n + z2,ni1)e2.

Definition 2.5 (Bicomplex holomorphic functions ([4] )). Let U be an open set of BC and
z0 ∈ U . Then, f : U ⊂ BC → BC is said to be BC- differentiable at z0 with derivative
equal to f ′(z0) ∈ BC if

lim
z→z0

z−z0 inv.

f(z)− f(z0)

z − z0
= f ′(z0). (2.43)

We also say that the function f is bicomplex holomorphic (BC- holomorphic) on an
open set U if and only if f is BC- differentiable at each point of U . Using z = z1 +
z2i2, a bicomplex number z can be seen as an element (z1, z2) of C2, so a function
f(z1 + z2i2) = f1(z1, z2) + f2(z1, z2)i2 of BC can be seen as a mapping f(z1, z2) =
(f1(z1, z2), f2(z1, z2)) of C2.

Theorem 2.3. ([4] ) Let f : U ⊂ C2 → C2 be a function, and f(z1+z2i2) = f1(z1, z2)+
f2(z1, z2)i2, where z1, z2 ∈ C1. Then the following are equivalent

(i) f is holomorphic in U .
(ii) f1 and f2 are holomorphic in z1 and z2 and satisfying the bicomplex Cauchy-

Riemann equations:
∂f1
∂z1

=
∂f2
∂z2

, and
∂f2
∂z1

= −∂f1
∂z2

(2.44)

(iii) f can be represented, near every point z0 ∈ U , by a Taylor series.

3. MAIN RESULTS

We define the following theorem and corollaries given below in tricomplex space

Definition 3.1 (Tricomplex Polynomial). Let z = z1 + z2i3 = α1I1 + α2I2 be a tri-
complex number, where α1 = (z1 − z2i2), α2 = (z1 + z2i2) and I1, I2 are idempotent
basis and let Ap := δpI1 + γpI2 be tricomplex coefficients for p = 0, · · · , n. Then
f(z) :=

∑n
p=0 Apz

p is called the tricomplex polynomial and written as

f(z) :=

n∑
p=0

(δpα
p
1)I1 +

n∑
p=0

(γpα
p
2)I2 = f1(α1)I1 + f2(α2)I2.

If we denote the set of all r1 and r2 distinct roots of f1(α1) and f2(α2) by ξ1 and ξ2,
and if we denote by ξ the set of all distinct roots of polynomial f(z), then f(z) has r1.r2
distinct roots and it is easy to see that ξ := ξ1I1 + ξ2I2 and so the structure of the zero set
of a tricomplex polynomial f(z) of degree n is fully described by the following corollary.
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Corollary 3.1. If both the polynomials f1(α1) and f2(α2) are of degree at least one, and
if ξ1 = {µ1, · · · , µσ} has r1 distinct roots and ξ2 = {ν1, · · · , ντ} has r2 distinct roots,
then the set of the distinct roots of f is given by

ξ := ws,t = µsI1 + νtI2 | s = 1, · · · , σ, and t = 1, · · · , τ.

Example 3.2. Let f(z) := ( 1+i3i2
2 )z5+{(−1−4i2)+(4−2i2)i3}z4+{(−11+6i2)−(12+

11i2)i3}z3+{( 29+26i2
2 )+(−26+47i2

2 )i3}z2+{( 13−34i2
2 )+(34+13i2

2 )i3}z+(−11−2i2
2 )+

( 2−11i2
2 ). Then

we have
f(z) := f1(α1)I1 + f2(α2)I2

where
I1 := (

1 + i3i2
2

), I2 := (
1− i3i2

2
)

f1(α1) := α5
1+(−3−8i2)α

4
1+(−22+18i2)α

3
1+(38+26i2)α

2
1+(13−34i2)α1+(−11−2i2)

f2(α2) := α4
2 − 6i2α

3
2 − 9α2

2

ξ1 := {µ1 = i2, µ2 = 1 + 2i2}
ξ2 := {ν1 = 0, ν2 = 3i2}

ξ := {Ws,t = µsI1 + νtI2 | s, t = 1, 2}
has 4 distinct roots.

ξ := { i2 − i3
2

, 2i2 + i3, (
1 + 2i2

2
) + (

−2 + i2
2

)i3, (
1 + 5i2

2
) + (

1 + i2
2

)i3}.

Corollary 3.2. If f1(α1) = 0, then ξ1 = C2 and ξ2 = {ν1, · · · , ντ}, where τ ≤ n; and
ξ := zt = ωI1 + νtI2 | ω ∈ C2, t = 1, · · · , τ . If f2(α2) = 0, then ξ2 = C2 and
ξ1 = {µ1, · · · , µσ}, where σ ≤ n; and

ξ := zs = µsI1 + ωI2 | ω ∈ C2, s = 1, · · · , σ.

Example 3.3. Let f(z) := (1− i3i2)z
2 + i3 − i2. Then

we have
f(z) := f1(α1)I1 + f2(α2)I2

where
I1 := (

1 + i3i2
2

), I2 := (
1− i3i2

2
)

f1(α1) := 2(α2
1 − i2)I1

f1(α1) := 0

ξ := zs = µsI1 + ωI2 = {±(
1 + i2√

2
)I1 + ωI2 | ω ∈ C2(ω =

√
i2)}.

Corollary 3.3. If all the coefficients Ap with the exception of A0 = δ0I1 + γ0I2 are not
tricomplex multiples of I1 (respectively I2), but A0 has γ0 ̸= 0 (respectively δ0 ̸= 0), then
polynomial f has no root.

Example 3.4. Let f(z) := (1− i3i2)z
2 + 1 + i3 − i2 − i3i2. Then

we have
f(z) := f1(α1)I1 + f2(α2)I2

where
f1(α1) = 2(α2

1 − i2) and f2(α2) = 2.

Clearly polynomial has no root.
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Corollary 3.4. (Analogue of Fundamental Theorem of Algebra for tricomplex Polynomi-
als)
Let f(z) :=

∑n
p=0 Apz

p be tricomplex Polynomial, where Ap := δpI1 + γpI2, and
zp = αp

1I1 + αp
2I2, with α1 = (z1 − z2i2), α2 = (z1 + z2i2). If all the coefficients Ap

with the exception of A0 = δ0I1 + γ0I2 are not tricomplex multiples of I1 (respectively
I2), but A0 has γ0 ̸= 0 (respectively δ0 ̸= 0), then polynomial f has no root. In all other
cases f has at least one root.

Remark. A tricomplex polynomial may not have a unique factorization into linear poly-
nomials.

Example 3.5. Let f(z) := z3 + 1. Then
we have

f1(α1) = α3
1 + 1, f2(α2) = α3

2 + 1

ξ1 = {µ1 = −1, µ2 =
1 +

√
3i3

2
, µ3 =

1−
√
3i3

2
}

ξ2 = {ν1 = −1, ν2 =
1 +

√
3i3

2
, ν3 =

1−
√
3i3

2
}

ξ := zs,t = µsI1 + νtI2 | s, t = 1, 2, 3

z3 + 1 := (z + 1)(z − 1

2
−

√
3

2
i3)(z −

1

2
+

√
3

2
i3)

z3 + 1 := (z + 1)(z − 1

2
−

√
3

2
i2)(z −

1

2
+

√
3

2
i2).

Note: It is clear from what we have indicated that the tricomplex polynomials also do
not satisfy the Fundamental theorem of algebra in its original form.

Theorem 3.5. Let C3 := z = {z1 + z2i3 | z1, z2 ∈ C2} be a tricomplex number, and let
f : U ⊂ C3 → C3 be a tricomplex holomorphic function in U . Then f can be expanded in
a Taylor series about a real point a as follows:

f(a+h(i1+i2+i3)) := f(a)+h(i1+i2+i3)f
′(a)+· · ·+hn(i1+i2+i3)n

fn(a)

(n)!
+O(h(n+1))

(3.1)
where fn denotes the nth order derivative, and

(i1 + i2 + i3)
n :=

∑
x1,x2,x3

x1+x2+x3=n

n!

x1!x2!x3!
ix1
1 i

x2
2 i

x3
3 (3.2)

Proof. Easy to proof. □

Theorem 3.6. Let f, g : U ⊂ C3 → C3 be tricomplex holomorphic functions in U and if
f(a) = 0 and g(a) = 0, but g′(a) ̸= 0. Then

lim
z→a

f(z)

g(z)
=
f ′(a)

g′(a)
(3.3)

and hence, in general, if fn(a) = 0 = gn(a), but g(n+1)(a) ̸= 0. Then

lim
z→a

f(z)

g(z)
=
fn+1(a)

gn+1(a)
. (3.4)
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Proof. From Taylor series we have,

f(a+ h(i1 + i2 + i3)) :=

n+1∑
r=0

hr(i1 + i2 + i3)
r f

(r)(a)

r!
+O(h(n+2)) (3.5)

g(a+ h(i1 + i2 + i3)) :=

n+1∑
r=0

hr(i1 + i2 + i3)
r g

(r)(a)

r!
+O(h(n+2))

Put a+ h(i1 + i2 + i3) = z.
Then h(i1 + i2 + i3) = z − a.

f(z) :=

n+1∑
r=0

(z − a)r
f (r)(a)

r!
+O(h(n+2))

g(z) :=

n+1∑
r=0

(z − a)r
f (r)(a)

r!
+O(h(n+2))

f(z)

g(z)
:=

∑n+1
r=0 (w − a)r f(r)(a)

r! +O(h(n+2))∑n+1
r=0 (z − a)r f(r)(a)

r! +O(h(n+2))
.

If f(a) = 0 = g(a), but g′(a) ̸= 0. Then

lim
z→a

f(z)

g(z)
=
f ′(a)

g′(a)
.

If f ′(a) = 0 = g′(a), but g′′(a) ̸= 0, then

lim
z→a

f(z)

g(z)
=
f ′′(a)

g′′(a)
.

Hence in general, if fn(a) = 0 = gn(a), but g(n+1)(a) ̸= 0. Then

lim
z→a

f(z)

g(z)
=
fn+1(a)

gn+1(a)
.

□

Definition 3.6 ( Tricomplex Matrices). The set of m× n matrices C3
m×n with tricomplex

entries, is denoted as A := {(alj) ∈ C3
m×n, 1 ≤ l ≤ m, 1 ≤ j ≤ n} = Bi3I1 + Ci3I2 :=

Bi2I1 + Ci2I2, where Bi3 , Ci3 ∈ C2
m×n and Bi2 , Ci2 ∈ C2

m×n and I1 = 1+i3i2
2 , I2 =

1−i3i2
2 .

Definition 3.7 (Eigenvalues for Tricomplex Matrices). let A := {(alj) ∈ C3
m×n =

A1I1 +A2I2} and Au = λu which is equivalent to{
A1u1 = λ1u1,
A2u2 = λ2u2.

Then λ is called the eigenvalue of the tricomplex matrix A corresponding to eigenvector
u where λ := λ1I1 + λ2I2 ∈ C3 and u = u1I1 + u2I2. If λ is not a zero divisor and
u1 ̸= 0, u2 ̸= 0 then λ is an eigenvalue of A if and only if λ1 and λ2 be an eigenvalue of
A1 and A2 corresponding to eigenvector of u1 and u2.

We define and prove the following theorem given bellow.
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Theorem 3.7. let A := {(alj) ∈ C3
m×n = A1I1 + A2I2} and Au = λu which is

equivalent to {
A1u1 = λ1u1,
A2u2 = λ2u2.

Where λ = λ1I1 + λ2I2 ∈ C3 and u = u1I1 + u2I2. Then tricomplex matrix A has
{λ = p1.q1}} distinct eigenvalues if and only if A1 has {λ1 = p1} distinct eigenvalues
and A2 has {λ2 = q1} distinct eigenvalues.

Proof. We have λ = {αsI1 + βtI2 | 1 ≤ s ≤ p1, 1 ≤ t ≤ q1}

= {α1, α2, · · · , αp1
}I1 + {β1, β2, · · · , βq1}I2 = λ1I1 + λ2I2

Au = λu⇒ (A1I1 +A2I2)u = (λ1I1 + λ2I2)u{
A1u1 = λ1u1,
A2u2 = λ2u2.

Conversely: If λ1 = {α1, α2, · · · , αp1
}, λ2 = {β1, β2, · · · , βq1}

Au = (A1I1 +A2I2)u = (λ1I1 + λ2I2)u

Au = λu.

Implies that

λ = {λ1I1 + λ2I2 = αsI1 + βtI2 | 1 ≤ s ≤ p1, 1 ≤ t ≤ q1}

□

Example 3.8.

A2,2 =

(
1− i2 + i3 + i2i3 1 + i2 + i3 − i2i3
1− i2 − i3 + i2i3 −1 + i2 + i3 − i2i3

)
A = A1I1 +A2I2

A =

(
2(1− i2) 0

2 −2

)
I1 +

(
0 2(1 + i2)

−2i2 2i2

)
I2

det(A− λI) := λ2 − 2i3λ+ 4(i2 − 1)

det(A1 − λ1I) := λ21 + 2i2λ1 + 4(i2 − 1)

det(A2 − λ2I) := λ22 − 2i3λ2 + 4(i2 − 1)

λ = {(−i2+
√
3− 4i2)I1+(i2+

√
3− 4i2)I2, (−i2+

√
3− 4i2)I1+(i2−

√
3− 4i2)I2, (−i2−√

3− 4i2)I1 + (i2 +
√
3− 4i2)I2, (−i2 −

√
3− 4i2)I1 + (i2 −

√
3− 4i2)I2}

Theorem 3.8. let A := {(alj) ∈ C3
n×n = (αlj)I1 + (βlj)I2, 1 ≤ l, j ≤ n} be any

tricomplex matrix and det(λIn − A) be the characteristic polynomial, then the matrix A
is zero of det(λIn −A).

Proof. We have

det(λIn −A) := det(λ1In − αlj)I1 + det(λ2In − βlj)I2,
where

det(λIn −A) =

n∑
p=0

apλ
p = (

n∑
p=0

δpλ
p
1)I1 + (

n∑
p=0

γpλ
p
2)I2

det(λIn −A) = (λIn −A).Adj(λIn −A) = Adj(λIn −A).(λIn −A).
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And

Adj(λIn −A) =

n−1∑
p=0

ωpλ
p = (

n−1∑
p=0

ϕpλ
p
1)I1 + (

n−1∑
p=0

ψpλ
p
2)I2.

Take
A = A1I1 +A2I2, λ = λ1I1 + λ2I2.

Then we have
ϕn−1 = δnI

ϕn−2 −A1ϕn−1 = δn−1I

ϕn−3 −A1ϕn−2 = δn−2I
...

. . .
...

ϕ0 −A1ϕ1 = δ1I

−A1ϕ0 = δ0I

And
ψn−1 = γnI

ψn−2 −A1ψn−1 = γn−1I

ψn−3 −A1ψn−2 = γn−2I
...

. . .
...

ψ0 −A1ψ1 = γ1I

−A1ψ0 = γ0I

Multiplying by An
1 ,An−1

1 , · · · ,A1, I

An
1ϕn−1 = An

1 δnI

An−1
1 ϕn−2 −An

1ϕn−1 = An−1
1 δn−1I

An−2
1 ϕn−3 −An−1

1 ϕn−2 = An−2
1 δn−2I

...
. . .

...
A1ϕ0 −A2

1ϕ1 = A1δ1I

−A1ϕ0 = δ0I

δnAn
1 + δn−1An−1

1 + · · ·+ δ1A1 + δ0I = 0 (3.6)
Similarly multiplying by An

2 ,An−1
2 , · · · ,A2, I

We have
γnAn

2 + γn−1An−1
2 + · · ·+ γ1A2 + ψ0I = 0 (3.7)

From above equation we have

anAn + an−1An−1 + · · ·+ a1A+ a0I = 0 (3.8)

□

Theorem 3.9. let A := {(alj) ∈ C3
n×n = A1I1 +A2I2} be any tricomplex matrix, then

A is zero of det(λIn − A) if and only if A1 is zero of det(λ1In − A1) and A2 is zero of
det(λ2In −A2) where λ = λ1I1 + λ2I2.

Proof. Very simple, can be easily □

Example 3.9. From above example clearly

f(A) := A2 − 2i3A+ 4(i2 − 1) = 0
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f1(A1) := A2
1 + 2i2A1 + 4(i2 − 1) = 0

f2(A2) := A2
2 − 2i3A2 + 4(i2 − 1) = 0.

4. CONCLUSION & OBSERVATION

We conclude that in our work, we introduce the algebraic form of tricomplex numbers,
which is a generalization of the field of bicomplex numbers. We describe how to de-
fine some basic formulas in the form of algebra polynomials, Taylor series for tricomplex
holomorphic functions, algebra of eigenvalues and eigenvectors. We define a tricomplex
polynomial as a better generalization of a bicomplex polynomial. Moreover, we can ap-
ply the properties of Multicomplex polynomials to generalize tricomplex and bicomplex
polynomials.
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