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VECTOR CONTROL STRATEGIES AND A QUANTITATIVE PARTIAL
DIFFERENTIAL EQUATIONS APPROACH OF SPATIAL MATHEMATICAL

MODEL ON MALARIA TRANSMISSION DYNAMICS

CHARITY JUMAI ALHASSAN* AND KENNETH OJOTOGBA ACHEMA

ABSTRACT. A spatial mathematical model to study the impact of vector control strategies
on the dynamics of malaria transmission and its analysis is considered in this paper. The
resulting model equations are divided into homogeneous and non-homogeneous equations.
The homogeneous equations are solved to determine their disease-free equilibrium (DFE)
and their stability. A basic reproduction number was determined from the DFE. It was
found that when basic reproduction number is less one, the disease will die out, when the
basic reproduction number is exactly one, the model undergoes a backward bifurcation,
when the basic reproduction number is exactly zero, the model undergoes forward bifur-
cation and whenever the basic reproduction is greater than one, the disease will persist
in the population. A quantitative sensitivity analysis of the model parameters was also
conducted through the disease’s basic reproduction number to determine the parameters
that are sensitive to malaria transmission. A travelling wave equation and solutions were
also provided for a possible understanding of the behaviour of mosquitoes’ mobility in the
human environment. Finally, we carried out a simulation of our formulated partial differ-
ential model and quantitatively assessed and investigated the twin effect of the presence
of invasive plants and the spatial dispersion of vectors on malaria dynamics. Sensitivity
analysis was also carried out, and the quantitative effect of diffusion and advection on the
wave front was demonstrated. The speed of the disease propagation by using travelling
wave solutions of the model was also investigated numerically.

1. INTRODUCTION

The Malaria Control Strategy Agenda using Dichlorodiphenyltrichloroethane (DDT),
which became the main tool for the World Health Organisation (WHO) malaria eradication
programme from 1956–1967, fell out because of its effects on environmental management.
Since the failure of this campaign to sustainably eliminate malaria from the tropics, the
effectiveness of environmental management has remained poorly explored. Changes in
invasive plant structure and composition, whether due to deforestation or to due land use
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changes were carefully studied [28]. [28]proposed modern vector control strategies, such
as invasive plant control and the control of vectors, which will significantly reduce vector
proliferation and the spatial dynamics of vectors on the dynamics of malaria within a given
habitat [2].

Mosquitoes, including invasive species (this species has spread to many countries through
the transport of goods and international travel), such as the Asian tiger mosquito Aedes al-
bopictus, alongside the native species Culex pipiens s.l., pose a significant nuisance to
humans and serve as vectors for mosquito-borne diseases in urban areas. Understanding
the impact of water infrastructure characteristics, climatic conditions, and management
strategies on mosquito occurrence and the effectiveness of control measures to assess their
implications for mosquito occurrence is crucial for effective vector control.

Currently, few studies have linked ecological drivers to changes in mosquito populations
within urban environments, often resulting in contradictory conclusions. Some studies
have proposed that alterations in top-down ecological dynamics may lead certain mosquito
species to dominate urban areas due to reduced predation pressures [2, 13]. Conversely,
other research suggests that increasing levels of urban pollution can reduce the quality
of larval habitats, thereby promoting the dominance of genera such as Culex, which are
known for their adaptability to temporary and degraded aquatic habitats and invasive alien
plants [13, 28]. Consequently, the epidemiology of mosquito-borne diseases can be signif-
icantly impacted [12], resulting in severe outbreaks of diverse mosquito-borne pathogens
such as malaria, even in regions previously considered non-endemic. Additionally, this
situation elevates the risk of the introduction and reintroduction of emerging infectious
diseases [15].

Among the most abundant mosquitoes in urban areas, invasive species such as the Asian
tiger mosquito Ae. albopictus are of great concern because they cause nuisance and pose
a global health risk [14, 21]. The economic implications of their presence are also sig-
nificant [17]. While Ae. albopictus is native to Southeast Asia and is typically found in
natural habitats such as bamboo stumps, invasive alien plants, tree holes, discarded tires,
and flower vases [27, 28], its range has expanded globally [20], becoming more common
in urban areas. The spread of Ae. albopictus has been facilitated through the trade of
ornamental plants and used tires over long distances [3], as well as passive transportation
in cars over shorter distances [13]. Urbanisation processes also favour the proliferation
of Ae. albopictus populations [26]. In Catalonia (northeast Spain), Ae. albopictus was
first identified as an invasive species in 2004, with the first records of its presence in the
province of Barcelona [7] and in the city itself since 2005 [31]. This species has suitable
conditions for reproduction along the entire eastern coast of Spain [3].

Although mosquito-borne diseases are significant public health concerns, particularly in
urban environments, it is crucial to understand how ecological drivers affect the population
dynamics of mosquito species such as Ae. albopictus and Cx. pipiens to develop effective
management strategies to mitigate their spread.

Mathematical models for the transmission dynamics of malaria are useful for providing
better insights into the behavior of the disease. These models have played important roles
in influencing decision-making processes regarding intervention strategies for preventing
and controlling malaria. The study of malaria using mathematical modelling began in 1911
[10]. He introduced the first deterministic two-dimensional model with one variable repre-
senting human and the other representing mosquitoes, where it was shown that a reduction
in the mosquito population below a certain threshold was sufficient to eradicate malaria.
In [29], Ross’s model was modified by considering the latency period of the parasites
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in mosquitoes and their survival during that period. However, in this case, reducing the
number of mosquitoes is an inefficient control strategy that would have little effect on the
epidemiology of malaria in areas of intense transmission. Further extension was described
by [5], where the latency of infection in humans was introduced by making the additional
exposed class in humans. This modification further reduces the long-term prevalence of
both infected humans and infected mosquitoes.

Thus, all other models that exist for malaria dynamics are developed from the three basic
models explained earlier by incorporating different factors to make them biologically more
realistic in explaining disease prevalence and prediction [29]. For example, a number of
epidemiological studies [8, 19, 23, 1, 4] have considered the inclusion of the recovered
class, which incorporates time-dependent immunity that develops during recovery from
infection in humans. Further work on acquired immunity in malaria has been conducted
by [9]. Their models take into account that acquired immunity to malaria depends on
continuous exposure to reinfection. Moreover, some models have integrated other factors,
such as environmental effects[16, 33], mosquito resistance to insecticides and resistance of
some parasite strains to anti-malaria drugs [34].

The incidence rate is of utmost importance in the transmission dynamics of the disease,
as the qualitative behaviour of the disease depends on it. The incidence of malaria infection
is referred to as the number of new infected individuals (humans or mosquitoes) yielding
in unit time. The most commonly used incidence rates in the formulation of models for
malaria transmission are simple mass-action and standard incidences. For other forms of
incidence functions that arise in epidemiological models [18].

The model presented in this paper is subdivided into eight compartments, which in-
clude four compartments in humans, one compartment in invasive alien plants and three
compartments in mosquitoes, with inclusions of non-linear forces of infection in both the
host and vector populations. The disease-induced death rates for humans and mosquitoes
were also incorporated into the model assumed to be the same as the recruitment rates
for humans and mosquitoes, while the rates for invasive alien plants followed the logistic
model equation.

The remainder of this paper is organised as follows: we provide a full description of
the model in Section 2. In Section 3, we provide the existence of equilibria, including a
derivation of the basic reproduction number and a stability analysis of the equilibria and
backwards bifurcation results. Section 4 provides numerical simulations of the model with
graphical illustrations with specific interest in the PDE model. In Section 5, we formulated
and carry out a travelling wave equations analysis and simulations. Finally, we discuss and
conclude in Section 6 and Section 7 respectively.

2. MODEL FORMULATION

In this section, we provide assumptions of the model,and describe the model variables
and parameters,and the model flow or schematic diagram that will enhance quick under-
standing our formulation system of equations.

2.1. Assumptions of the model equations. For proper understanding and formulation of
system of equations in this study, we present the following assumptions:

(Aα1) Mosquitoes migrate from vegetation/invasive plants to the human population due
to their proximity to human habitat [24].

(Aα2
) To make the population constant over time, we assumed that the recruitment rate

is the same as those that died naturally and due to infection[33].
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(Aα3
) We also assume that recovered humans lost immunity and became susceptible.

(Aα4) We assumed a spatial movement of vectors from the invasive plants sites at the
borders of the community;

(Aα5
) We assumed that the distance measures from where the invasive plants are to hu-

man habitat can be covered by the vectors (Anopheles mosquitoes)[24]
(Aα6

) We consider that susceptible, exposed and infected vectors have the same coeffi-
cients of diffusion, D and of advection, K, because the disease has no effect on
vector movement [33].

(Aα7
) Invasive plants close to the human population is capable of providing shelter for a

high density of the mosquito population.

2.2. Model variables and parameters. The variables and the parameters of our formu-
lated model are given as Table 1 and Table 2 respectively as follows.

Variable/Parameter Interpretation
Sh(t) Number of susceptible human at time t
Eh(t) Number of exposed humans at time t
Ih(t) Number of infected humans at time t
Rh(t) Number of recovered humans at time t
P (t) Invasive Plants population
Sm(t) Number of susceptible mosquitoes at time t
Em(t) Number of Exposed mosquitoes at time t
Im(t) Number of infected mosquitoes at time t
b Number of bite per mosquito/vector
D The coefficient of diffusion
K The coefficient of advection
qh Rate at which exposed human population become infected
vh Recovered rate of infected individual
αh Recovery rate of human
h Control rate of invasive plants
θm recruitment rate of mosquitoes from the density of invasive plants

into the general susceptible mosquito
µh Natural death rate of humans
δh Disease induced death rate
g Growth rate of plant
Kp Plant carrying capacity
µm Natural death rate of mosquitoes
ξm Death rate of mosquito due to insecticide spray
λh(t) Force of infection for humans
λm(t) Force of infection for vectors
βhv probability of malaria from infectious humans to susceptible mosquitoes
βmh probability of malaria from vectors to humans
ϵ Availability of bed-nets
γ Efficacy of bed-nets

TABLE 1. Description of model variables and parameters
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2.3. Model flow diagram. In order to provide easy understanding of the derivation of
the system of equations under consideration, we construct eight (8) compartmental flow
diagram as shown below.

FIGURE 1. Model schematic diagram

2.4. Model equations. Following the assumptions, variables and parameters stated above
in addition to the schematic diagram, our model equations is stated thus:

∂S̄h

∂t
= µhN̄h + δhĪh + αhR̄h − λhS̄h − µhS̄h

∂Ēh

∂t
= λhS̄h − (qh + µh)Ēh

∂Īh
∂t

= qhĒh − (δh + µh + vh)Īh

∂R̄h

∂t
= vhĪh − (µh + αh)R̄h

∂P̄

∂t
= g(1− P̄

KP
)P̄ − hP̄

∂S̄m

∂t
= D

∂2S̄m

∂x2
−K

∂S̄m

∂x
+ µmV̄ + θmP − λmS̄m − µmS̄m

∂Ēm

∂t
= D

∂2Ēm

∂x2
−K

∂Ēm

∂x
+ λmS̄m − (qm + µm)Ēm

∂Īm
∂t

= D
∂2Īm
∂x2

−K
∂Īm
∂x

+ qmĒm − µmĪm

(1)

Where,

λh = (1− ϵγ)βhm
bĪm
N̄h

,

λm = (1− ϵγ)βmh
bĪh
N̄h

0 < ϵ < 1, 0 < γ < 1

(2)

with
S̄h(0, x) > 0,Ēh(0, x) ≥ 0, Īh(0, x) ≥ 0, R̄h(0, x) ≥ 0

P̄ (0, x) ≥ 0
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where D and K are the coefficients of diffusion and advection of the mosquitoes respec-
tively.
The total human population is N̄h = S̄h + Ēh + Īh + R̄h.

Substituting the following change of variables
Sh = S̄h

N̄h
, Eh = Ēh

N̄h
, Ih = Īh

N̄h
, Rh = R̄h

N̄h
, P = P̄

P∗ , Sm = S̄m

N̄m
, Em = Ēm

N̄m
and

Im =
¯Im

N̄m
. into Eq. (1), we obtain

∂Sh

∂t
= µh(1− Sh) + δhIh + αhRh − k1ShIm

∂Eh

∂t
= k1ShIm − (qh + µh)Eh

∂Ih
∂t

= qhEh − (δh + µh + vh)Ih

∂Rh

∂t
= vhIh − (µh + αh)Rh

∂P

∂t
= g(1− P )P − hP

∂Sm

∂t
= D

∂2Sm

∂x2
−K

∂Sm

∂x
+ µm(1− Sm) + θmcP − k2IhSm

∂Em

∂t
= D

∂2Em

∂x2
−K

∂Em

∂x
+ k2IhSm − (qm + µm)Em

∂Im
∂t

= D
∂2Im
∂x2

−K
∂Im
∂x

+ qmEm − µmIm

(3)

where

k1 = (1− ϵγ)βhmb
N̄m

N̄h
,

k2 = (1− ϵγ)βmhb

c =
kp
N̄m

0 < ϵ < 1, 0 < γ < 1

Now, from the normalization and rescaling carried out, we can now uncouple the system
to become:

∂eh
∂t

= λh(1− eh − ih − rh)− (qh + µh)eh

∂ih
∂t

= qheh − (δh + vh + µh)ih

∂rh
∂t

= vhih − (µh + αh)rh

∂em
∂t

= D
∂2em
∂x2

−K
∂em
∂x

+ λm(1− em − im)− (qm + µm)em

∂im
∂t

= D
∂2im
∂x2

−K
∂im
∂x

+ qmem − µmem

(4)
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In order to carry out some qualitative analyses of our formulated model, we decoupled the
homogeneous part of Eq. (3) as given by

dSh

dt
= µh(1− Sh) + δhIh + αhRh − k1ShIm

dEh

dt
= k1ShIm − (qh + µh)Eh

dIh
dt

= qhEh − (δh + µh + vh)Ih

d

dt
= vhIh − (µh + αh)Rh

dP

dt
= g(1− P )P − hP

dSm

dt
= µm(1− Sm) + θmcP − k2IhSm

dEm

dt
= k2IhSm − (qm + µm)Em

dIm
dt

= qmEm − µmIm

(5)

where

k1 = (1− ϵγ)βhmb
N̄m

N̄h
,

k2 = (1− ϵγ)βmhb

c =
kp
N̄m

0 < ϵ < 1, 0 < γ < 1

3. BASIC PROPERTIES OF THE SPATIAL HOMOGENEOUS EQUATIONS

Let Nh(t) = Sh(t)+Eh(t)+ Ih(t)+Rh(t) be the total population of human at time, t.
Also, let Nm(t) = Sm(t) + Em(t) + Im(t) be the total population of mosquitoes at time,
t. Let R1 = P (t) be the plants population at time, t. The feasible region of the model (5)
is given by

Ω = {(Sh+Eh+Ih+Rh, P, Sm+Em+Im) ∈ ℜ8
+ : Sh+Eh+Ih+Rh = 1;P = g

h ;Sm+
Em + Im = 1, Sh > 0, Eh ≥ 0, Ih ≥ 0, Rh ≥ 0;P > 0;Sm > 0, Em ≥ 0, Im ≥ 0} is
positively invariant.

3.1. Disease Free Equilibrium (DFE) Analysis. In this section, we shall carry out a
qualitative analysis of the model equations as follows.

3.2. Case I: When there are invasive plants in human environment. Disease Free-
equilibrium (DFE) corresponding to the presence of invasive plants is given by

E1 = (S∗
h, E

∗
h, I

∗
h, R

∗
h, P

∗, S∗
m, E

∗
m, I

∗
m)

= (1, 0, 0, 0,
(g − h)

g
,
µmg + θmc(g − h)

µmg
, 0, 0)

(6)
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for g − h > 0 (which denotes the higher growth rate of plants than control rate). Even
when g = h, there is still a DFE. In this case, the DFE becomes a DFE without invasive
plants (i.e. the equilibrium E1 becomes E2 = (1, 0, 0, 0, 0, 1, 0, 0).

The biological implication of this equilibrium, E1, is that the DFE state in the presence
of invasive plants and susceptible mosquitoes is possible for malaria to be eradicated from
the local community even when the invasive plants are present in the target community.

3.3. Reproduction Number (R0). To calculate the effective reproduction number, we
divide system (5) into appearance of infection and transfer of infection as matrix Fi(x)
and Vi(x) respectively as follows:

F =


0 0 0 (1− ϵγ)βhmb
0 0 0 0

0
Vhg+Kpθm(g−h)

g(ξm+µm) (1− ϵγ)βhmb
Λ
µh

0 0

0 0 0 0

 ,

V =


qh + µh 0 0 0
−qh δh + µh + vh 0 0
0 0 qm + ξm + µm 0
0 0 −qm ξm + µm



V −1 =


1

qh+µh
0 0 0

qh
(qh+µh)(vh+δh+µh)

1
δh+µh+vh

0 0

0 0 1
qm+ξm+µm

0

0 0 qm
(µm+ξm)(qm+µm+ξm)

1
(µm+ξm)


Therefore, the spectral radius of FV −1 gives the effective reproduction number as shown
below.

R01 =

√
k1k2k3qm(qm + µm)

µm(qh + µh)(vh + δh + µh)(qm + µm)(qm + µm)

where k1 = (1− ϵγ)βhmb, k2 = (1− ϵγ)βmhb, k3 = µmg+θmc(g−h)
µg .

3.4. Case II: When there are no invasive plants in human environment. Here, we
recompute the basic reproduction number of system (5), where there are no invasive plants.
Equilibrium, E2, is used in this case and is given by

E2 = (S+
h , E

+
h , I

+
h , R

+
h , P

+, S+
m, E

+
m, I

+
m)

= (1, 0, 0, 0, 0, 1, 0, 0)
(7)

3.5. Analysis of basic reproduction number (R0). Following the matrix generation ap-
proach, used above, we calculated the reproduction number of the homogeneous system
corresponding to equilibrium, E2 to be

R02 =

√
k1k2qm(qm + µm)

µm(qh + µh)(vh + δh + µh)(qm + µm)(qm + µm)

where k1 = (1− ϵγ)βhmb, k2 = (1− ϵγ)βmhb.
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3.6. Local asymptotic stability (LAS) of E1 equilibrium. Linearising the spatial homo-
geneous model(5) with the corresponding equilibrium, E1, we obtained the following:

J(E1) =



−µh 0 δh αh 0 0 0 −k1
0 −m1 0 0 0 0 0 k1
0 qh −m2 0 0 0 0 0
0 0 vh −(αh + µh) 0 0 0 0
0 0 0 0 h− g 0 0 0
0 0 −k2k3 0 θmc −µm 0 0
0 0 k2k3 0 0 0 −(qm + µm) 0
0 0 0 0 0 0 qm −µm


(8)

where m1 = (qh + µh),m2 = (δh + µh + vh)
The eigenvalues corresponding to equation (8) is given by λ1 = h − g < 0, λ2 =

−µh, λ3 = −(αh + µh), λ4 = −µm

The rest four roots can be obtain from the following polynomial

P (λ) = λ4 +A0λ
3 +A1λ

2 +A2λ+A3 (9)

where
A0 = δh + 2µh + qh + vh + 2µm + qm

A1 = δhµh + µ2
h + 2δhµm + 4µhµm + δhqm + 2µhqm + 2qhµm

+ vhqm + qhqm + 2vhµm + δhqh + µhqh + qhvh + µhvh + µ2
m + µmqm

A2 = 2δhµhµm + δhµ
2
m + 2µ2

hµm + 2µhµ
2
m + δhµhqm + 2δhqhµm

+ δhµmqm + δhqhqm + µ2
hqm + µhqhqm + 2µhqhµm + 2µhµmqm + qhµ

2
m

+ qhµmqm + µhvhqm + 2qhvhµm + vhµmqm + qhvhqm + 2µhvhµm + vhµ
2
m

A3 = −k1k2k3qm + δhµhµ
2
m + µ2

hµ
2
m + δhµhµmqm + δhqhµ

2
m + δhqhµmqm

+ µ2
hµmqm + µhqhµ

2
m + µhqhµmqm + µhvhµmqm + qhvhµ

2
m + qhvhµmqm + µhvhµ

2
m

=
(k0 − k1k2k3qm)[µm(qh + µh)(vh + δh + µh)(qm + µm)]

k1k2k3qhqm + (µ(qh + µh)(vh + δh + µh)(qm + µm))

[
R2

01 − 1
]

where
k0 = δhµhµ

2
m + µ2

hµ
2
m + δhµhµmqm + δhqhµ

2
m

+ δhqhµmqm + µ2
hµmqm + µhqhµ

2
m + µhqhµmqm

+ µhvhµmqm + qhvhµ
2
m + qhvhµmqm + µhvhµ

2
m

3.7. Remark 1. Clearly, A0, A1, A2 > 0 and A3 > 0 provided that R2
01 < 1 and

(k0−k1k2k3qm)[µm(qh+µh)(vh+δh+µh)(qm+µm)]
[k1k2k3qm+(µ(qh+µh)(vh+δh+µh)(qm+µm))] < 0. Thus, the DFE corresponding to the

continuous presence of invasive plants in human environment is locally asymptotically
stable (LAS).

3.8. Local asymptotic stability (LAS) of E2 equilibrium. Also, we linearised the ho-
mogeneous part of our model equations (5) with the corresponding equilibrium, E2 and
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obtained the following:

J(E2) =



−µh 0 δh αh 0 0 0 −k1
0 −m1 0 0 0 0 0 k1
0 qh −m2 0 0 0 0 0
0 0 vh −(αh + µh) 0 0 0 0
0 0 0 0 g − h 0 0 0
0 0 −k2 0 θmc −µm 0 0
0 0 k2 0 0 0 −(qm + µm) 0
0 0 0 0 0 0 qm −µm


(10)

where m1 = (qh + µh),m2 = (δh + µh + vh) The eigenvalues corresponding to equation
(10) is given by x1 = g − h = 0, x2 = −µh, x3 = −(αh + µh), x4 = −µm

The rest four roots can be obtain from the following polynomial

x4 +B0x
3 +B1x

2 +B2x+B3 = 0 (11)

where
B0 = δh + 2µh + qh + vh + 2µm + qm

B1 = δhµh + µ2
h + 2δhµm + 4µhµm + δhqm + 2µhqm + 2qhµm

+ vhqm + qhqm + 2vhµm + δhqh + µhqh + qhvh + µhvh + µ2
m + µmqm

B2 = 2δhµhµm + δhµ
2
m + 2µ2

hµm + 2µhµ
2
m + δhµhqm + 2δhqhµm

+ δhµmqm + δhqhqm + µ2
hqm + µhqhqm + 2µhqhµm + 2µhµmqm + qhµ

2
m

+ qhµmqm + µhvhqm + 2qhvhµm + vhµmqm + qhvhqm + 2µhvhµm + vhµ
2
m

B3 = −k1k2qm + δhµhµ
2
m + µ2

hµ
2
m + δhµhµmqm + δhqhµ

2
m + δhqhµmqm

+ µ2
hµmqm + µhqhµ

2
m + µhqhµmqm + µhvhµmqm + qhvhµ

2
m + qhvhµmqm + µhvhµ

2
m

=
(k0 − k1k2qm)[µm(qh + µh)(vh + δh + µh)(qm + µm)]

k1k2qm + (µ(qh + µh)(vh + δh + µh)(qm + µm))

[
R2

02 − 1
]

where
k0 = δhµhµ

2
m + µ2

hµ
2
m + δhµhµmqm + δhqhµ

2
m

+ δhqhµmqm + µ2
hµmqm + µhqhµ

2
m + µhqhµmqm

+ µhvhµmqm + qhvhµ
2
m + qhvhµmqm + µhvhµ

2
m

3.9. Remark 1. Clearly, B0, B1, B2 > 0 and B3 > 0 provided that R2
02 < 1 and

(k0−k1k2qhqm)[µm(qh+µh)(vh+δh+µh)(qm+µm)]
[k1k2qm+(µ(qh+µh)(vh+δh+µh)(qm+µm))] < 0. Since one of the eigenvalues is zero,

further analysis using the Center Manifold Theory, will have to be used in establishing the
LAS of E2 in the manifold of interest. However, since the other eigenvalues are negative,
with the associated reproduction number less than unity, we conjecture that E2, at most
stable, and an attractor of trajectories in its neighbourhood. E2 is stable but may not be
asymptotically stable, since this DFE exists only when g = h.

These results shows an important effect of the presence of invasive plants on malaria
dynamics: they can lead to the existence of two DFEs, an important contribution to knowl-
edge.
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3.10. Disease endemic equilibrium (DEE). To obtain this equilibrium, we set the right
hand sides of (5), and solve for the state variables. After several calculations, we have that

E3 = (S∗∗
h , E∗∗

h , I∗∗h , R∗∗
h , P

∗∗, S∗∗
m , E∗∗

m , I∗∗m )

where,

S∗∗
h =

µha1a2a3
(a1a2a3 − δhαh − δhµh − αhvh)λ∗∗h + µha1a2a3

E∗∗
h =

a2a3µhλ
∗∗
h

(a1a2a3 − δhαh − δhµh − αhvh)λ∗∗h + µha1a2a3

I∗∗h =
µha3qhλ

∗∗
h

(a1a2a3 − δhαh − δhµh − αhvh)λ∗∗h + µha1a2a3

R∗∗
h =

µhvhqhλ
∗∗
h

(a1a2a3 − δhαh − δhµh − αhvh)λ∗∗h + µha1a2a3

P ∗∗ =
Kp(g − h)

g
, g > h

S∗∗
m =

µmg + θmc(g − h)

g(µm + λ∗∗m )
,

E∗∗
m =

λ∗∗m (µmg + θmc(g − h))

g(µm + λ∗∗m )(qm + µm)
,

I∗∗m =
λ∗∗m (µmg + θmc(g − h)

µmg(µm + λ∗∗m )(qm + µm)
,

N∗∗
h =

µh(a1a2a3 + λ∗∗h (a2a3 + a3qh + vhqh))

(a1a2a3 − δhαh − δhµh − αhvh)λ∗∗h + µha1a2a3
where

a1 = qh + µh, a2 = δh + µh + vh, a3 = µh + αh

and
λ∗∗h = ϕβhm

bI∗∗m
N∗∗

h

, λ∗∗m = ϕβmh
bI∗∗h
N∗∗

h

where
ϕ = (1− ϵγ)

3.11. Backward bifurcation phenomenon. Backward bifurcation may occur under cer-
tain conditions for R2

01 < 1. The presence of backward bifurcation indicates that the
necessary requirement of R2

01 < 1, is not sufficient for disease elimination. The Center
Manifold Theory will be used to prove the conditions on existence of backward bifurca-
tion. To investigate the existence of the backward bifurcation of the spatially homogeneous
of Eq. (5), we shall rewrite it in vector form as:

dY

dt
= H(y)

where
X = (y1, y2, y3, y4, y5, y6, y7, y8)

T

and
H = (h1, h2, h3, h4, h5, h6, h7, h8)

T

so that

Sh = y1, Eh = y2, Ih = y3, Rh = y4, P = y5, Sm = y6, Em = y7, Im = y8
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.
Thus, it becomes

ẏ1 = h1 = µh(1− y1) + δhy3 + αhy4 − (1− ϵγ)βhmby1y8

ẏ2 = h2 = (1− ϵγ)βhmby1y8 − (qh + µh)y2

ẏ3 = h3 = qhy2 − (δh + µh + vh)y3

ẏ4 = h4 = vhy3 − (µh + αh)y4

ẏ5 = h5 = g(1− y5)y5 − hy5

ẏ6 = h6 = µm(1− y6) + θmcy5 − (1− ϵγ)bxy3y6

ẏ7 = h7 = (1− ϵγ)bxy3y6 − (qm + µm)y7

ẏ8 = h8 = qmy7 − µmy8

Choosing βmh as the bifurcation parameter at R01 = 1, We have

βmh = β∗
mh =

√
k1k2k3qm(qm + µm)

µm(qh + µh)(vh + δh + µh)(qm + µm)(qm + µm)

By virtue of the Center Manifold Theory (Castillo Chavez and Song, 2014), we calculated
the bifurcation parameter to be

a = v1

8∑
i,j=1

wiwj
∂2h1
∂yi∂yj

+ v2

8∑
i,j=1

wiwj
∂2h2
∂yi∂yj

+ v5

8∑
i,j=1

wiwj
∂2h5
∂yi∂yj

+ v6

8∑
i=1

wiwj
∂2h6
∂yi∂yj

+ v7

8∑
i,j=1

wiwj
∂2h7
∂yi∂yj

= (1− ϵγ)β∗
hmbv2 + (1− ϵγ)β∗

mhbv7 > 0.

Also,

b = v1

8∑
i=1

wi
∂2h1

∂yi∂β∗
hm

+ v2

8∑
i=1

wi
∂2h2

∂yi∂β∗
hm

+ v6

8∑
i=1

wi
∂2h6

∂yi∂β∗
mh

+ v7

8∑
i=1

wi
∂2h7

∂yi∂β∗
mh

= (1− ϵγ)bv2 +
(1− ϵγ)b(µmg + θmc(g − h))v7

µmg
> 0.

We therefore conclude that a backward bifurcation occurs since a > 0 and b > 0.

4. NUMERICAL SIMULATIONS

Here, we use Runge-kutta method to simulate the ordinary differential equations part
of the model while a constructed finite difference scheme was used to simulate the partial
differential equations part of the formulated model. In Table 3, we present the numerical
values of the model equations’ parameters as shown below.

D =
L2

2T
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where L is the average distance covered by mosquito in a day and T is the time taken to
travel [24].

FIGURE 2. Bifurcation diagram of the homogeneous part of Equations (3)

4.1. PDE Simulation of Equations (4). In this section, we carefully simulate the PDE
part of the formulated model in order to explore the behaviour of the vector and the disease
transmission dynamics.

Em(x, 0) = Im(x, 0) =

{
1

Nm
, |x| ≤ L;

0, |x| > L.

Eh(x, 0) = Ih(x, 0) = Rh(x, 0) = 0

Parameter Value Baseline Reference
µh 0.00004643/day ( 1

61×365 − 1
58×365 )/day Kenya National Bureau of Statistics

βhm 0.24/day (0.072 - 0.64)/day [30]
βmh 0.14/day (0.027 - 0.64)/day [30]
qh 0.083/day (0.06 - 0.203)/day [30])
αh 0.000017/day (0.0000055 - 0.011)/day [32]
vh 0.00265/day (0.001 - 0.023)/day [30]
Kp 1 (0− 1) Variable
ϵ 0.5 (0 - 1) Variable
γ 0.6 (0 - 1) Variable
δh 0.0003454/day (0.0000000001 - 0.00041)/day [32]
b 0.5 (0 - 1) Variable
θm 0.343/day (0.333 - 1)/day [30]
qm 0.091 (0.029 - 0.33)/day [32]
g 1.84 (1 - 500)/day [30]
µm 0.1041 (0.0941 - 0.1234)/day [32]
h 0.05 (0.01 - 0.1)/day Variable
D 3.125km2 (2.5km2 - 12km2)/day Computed
k 4.5 (0km - 6km)/day [25]
L 2.5 (3km - 5km)/day [25]

TABLE 2. Description of the model parameters’ values
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FIGURE 3. Plot of the infected population over time

FIGURE 4. Plot of the infected population over time

FIGURE 5. Plot of the infected population over time

5. TRAVELLING WAVE ANALYSIS OF THE SPATIAL SYSTEM

In this section, we shall assess the spatial spread of malaria disease with spatial dis-
persion of vectors. Using our formulated model, we obtain the traveling wave system of
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FIGURE 6. Plot of the infected population over time

FIGURE 7. Plot of the infected compartment of Equations (4) with ini-
tial conditions eh(0) = 0, ih(0) = 0, em(0) = 0 and im(0) = 0.1

FIGURE 8. Plot of the infected compartment of Equations (4) with ini-
tial conditions eh(0) = 0, ih(0) = 0, em(0) = 0 and im(0) = 0.3

equations to be

e′+ c1
v
(1− eh − ih − rh)im − (qh + µh)

v
eh = 0

i′h +
qh
v
eh− (δh + µh + vh)

v
ih = 0

r′h +
vh
v
ih − (µh + αh)

v
rh = 0

Dem′′ − (k − v)e′m − c2
v
(1− em − im)ih + (qm + µm)em = 0

Dim′′ − (k − v)i′m − qmem − µmim = 0

(12)
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FIGURE 9. Plot of the effective reproduction number, R01 over the bit-
ing rate, b

FIGURE 10. Plot of the effective reproduction number, R02 over the
biting rate, b

FIGURE 11. Plot of the effective reproduction number, R01 over the
disease induced death rate, δh

where c1 = ϕβhmb, c2 = ϕβmhb and ϕ = 1− ϵγ.

This system is equivalent to the following system of first-order differential equations:
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FIGURE 12. Plot of the effective reproduction number, R02 over the
disease induced death rate, δh

FIGURE 13. Plot of the effective reproduction number, R01 over the
recovered individuals with immunity, vh

FIGURE 14. Plot of the effective reproduction number, R02 over the
recovered individuals with immunity, vh

deh
dz

= −c1
v
(1− eh − ih − rh)im +

(qh + µh)

v
eh +

δh + vh + µh

v
ih

dih
dz

= −qh
v
eh +

(δh + vh + µh)

v
ih

rh
dz

=
vh
v
ih +

(αh + µh)

v
rh

em
dz

= u1

du1
dz

=
1

D
(k − v)u1 −

c2(1− em − im)

D
ih +

(qm + µm)

D
em

dim
dz

= u2

du2
dz

=
1

D
(k − v)u2 −

qm
D
em +

µm

D
im

(13)
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FIGURE 15. Plot of the effective reproductive number, R01 over the
bed net efficacy, γ

FIGURE 16. Plot of the effective reproductive number, R02 over the
bed net efficacy, γ

FIGURE 17. Plot of the effective reproductive number, R01 over the
invasive plants control rate, h

where
dim
dt

= i
′′

m(z),
dem
dt

= e
′′

m(z)
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FIGURE 18. Plot of the effective reproductive number, R01 over the
invasive plants growth rate, g

FIGURE 19. Graph of the solutions of system (4) for the paramters
outlined in Table 2, considering the diffusion coefficient D =
3.125km2/day and the advection coefficient k = 0.

FIGURE 20. 3D plot of exposed human population

The corresponding eigenvalues of the wave equations are the roots of the polynomial

m(Ψ) = Ψ7 + b0Ψ
6 + b1Ψ

5 + b2Ψ
4 + b3Ψ

3 + b4Ψ
2 + b5Ψ+ b6 (14)
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FIGURE 21. 3D plot of infected human population

FIGURE 22. 3D plot of exposed mosquito population

FIGURE 23. 3D plot of infected mosquito population

where

b0 = P1 + P2 + P3 + P5 + P6

b1 = −(µm

D − P1P2 − P3P2 − P5P2 − P6P2 − P1P3 + P4 − P1P5 − P3P5 − P1P6 −
P3P6 − P5P6)

b2 = −(P3µm

D − P1µm

D − P2µm

D − P5µm

D +P1P2P3−P4P3+P1P5P3+P2P5P3+P1P6P3+
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P2P6P3 + P5P6P3 − P1P4 − P2P4 + P1P2P5 + P1P2P6 − P4P6 + P1P5P6 + P2P5P6)

b3 = −(−P4µm

D + P1P2µm

D + P1P3µm

D + P2P3µm

D + P1P5µm

D + P2P5µm

D + P3P5µm

D +P1P2P4+
P1P3P4+P2P3P4+P1P6P4+P2P6P4+P3P6P4−P1P2P3P5−P1P2P3P6−P1P2P5P6−
P1P3P5P6 − P2P3P5P6)

b4 = −(P1P4µm

D + P2P4µm

D + P3P4µm

D − P1P2P3µm

D − P1P2P5µm

D − P1P3P5µm

D − P2P3P5µm

D −
P1P2P3P4 − P1P2P6P4 − P1P3P6P4 − P2P3P6P4 + P1P2P3P5P6)

b5 = −( c1c2qhqmD2v2 + P1P2P3P5µm

D − P1P2P4µm

D − P1P3P4µm

D − P2P3P4µm

D + P1P2P3P4P6)

b6 = c1c2P3qhqm
D2v2 − P1P2P3P4µm

D

and P1 = qh+µh

v , P2 = δh+vh+µh

v , P3 = αh+µh

v , P4 = qm+µm

D , P5 = P6 = k−v
D

5.1. Numerical simulation of wave equation. Here, we carried out the numerical simu-
lations of the wave equation to investigating the results obtained from the PDE simulations
studied above.

Ψ v = 0.001(k = 0) v = 0.001(k = 4.5)
Ψ1 −0.201146− 0.11614i −0.144577− 0.0834711i
Ψ2 −0.201146 + 0.11614i −0.144577 + 0.0834711i
Ψ3 0.000020719− 0.232251i −0.0000004429− 0.166943i
Ψ4 0.000020719 + 0.232251i −0.0000004429 + 0.166943i
Ψ5 0.201125− 0.1161081i 0.144577− 0.0834718i
Ψ6 0.201125 + 0.1161081i 0.144577 + 0.0834718i
Ψ7 1440 10440

TABLE 3. Different velocity values with their respective roots of a poly-
nomial (14) D = 3.125 km2

FIGURE 24. Graph of the polynomialm(ψ) for the parameters outlined
in Table 3
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FIGURE 25. Graph of the polynomialm(ψ) for the parameters outlined
in Table 3

FIGURE 26. Graph of the polynomialm(ψ) for the parameters outlined
in Table 3

FIGURE 27. Graph of the propagation speed as a function of the diffu-
sion coefficient D when k = 0. The values used for the other parameters
are outlined in Table 3
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6. DISCUSSION

Figure 2 shows the backward bifurcation diagram of the homogeneous part of Equation
(3). The system is stable at R01 < 1 and unstable if otherwise. Figure 3 shows the plots
of infected sub-populations over time when b = 0.2, the exposed mosquito population
declined to a steady state after a short time while the rest of the sub-populations declined
to a steady state after a long period of time. Figure 4 is a repetition of Figure 3 by increasing
the biting rate to b = 0.4. This shows that even at a slight change of biting rate, the disease
can trigger and persists. Figure 5 is a repetition of Figure 4 with control rate of invasive
plants, h = 0.7, both the infected human and mosquito sub-populations approached zero
steady state overtime. Figure 6 is a repetition of Figure 4 with growth rate of invasive
plants, g = 0, both the infected human and mosquito attained a steady state faster. Figure
7 shows the plots of the infected sub-populations of Equations (4) with the initial values
eh = ih = em = 0 and im = 0.1. Each of the sub-populations grows beyond its initial
value due to the presence of parasite infection in the population. Figure 8 is a repetition of
Figure 7 with im = 0.3. Each of the sub-populations grow higher than the growth observed
in Figure 7 due to 20% increase of the infected mosquito sub-population.

Figure 9 shows a linear relationship between the effective basic reproduction number,
R01 and the biting rate parameter, b. it can be observed that a high biting rate leads to
malaria endemicity in human population. Figure 10 shows a linear relationship between
the effective basic reproduction number, R02 and the biting rate parameter, b. it can be
observe that a high biting rate led to malaria endemicity in human population. Figure 11
shows a linear relationship between the effective basic reproduction number, R01 and the
biting rate parameter, δh. The disease induced death rate δh of human population shows
a drastic reduction of malaria disease. Figure 12 shows a linear relationship between the
effective basic reproduction number, R02 and the biting rate parameter, δh. The disease
induced death rate δh of human population shows a drastic reduction of malaria disease.
Figure 13 shows a linear relationship between the effective basic reproduction number,
R01 and the biting rate parameter, vh. The recovered rate, vh parameter has high impact
on malaria disease reduction. Figure 14 shows a linear relationship between the effective
basic reproduction number, R02 and the biting rate parameter, vh. The recovered rate, vh
parameter has high impact on malaria disease reduction. Figure 15 shows a linear relation-
ship between the effective basic reproduction number, R01 and the biting rate parameter,
γ. The Efficacy of bednet, γ parameter also has high impact on malaria disease control.
Figure 16 shows a linear relationship between the effective basic reproduction number,R02

and the biting rate parameter, γ. The Efficacy of bednet, γ parameter also has high impact
on malaria disease control. Figure 17 shows a relationship plot between the effective ba-
sic reproduction number, R01 and the control of invasive plant parameter h, The malaria
disease will be eliminated totally if 70% of the invasive plants can be achieved based on
the parameter values of this model. Figure 18 shows a relationship between the R01 and
the growth rate parameter, g. The malaria disease burden persists higher with increase of
invasive plants.

Figure 19 shows the minimum speed of the disease transmission. The disease spread
faster with increase of diffusion and advection coefficients of the model. Figure 20 shows
the minimum speed of the disease transmission. The exposed human sub-population grows
faster with increase of diffusion and advection coefficients of the model. Figure 21 shows
the minimum speed of the disease transmission. The infected human sub-population grows
faster with increase of diffusion and advection coefficients of the model. Figure 22 shows
the minimum speed of the disease transmission. The exposed mosquito sub-population
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grows faster with increase of diffusion and advection coefficients of the model. Figure
23 shows the minimum speed of the disease transmission. The infected mosquito sub-
population grows faster with increase of diffusion and advection coefficients of the model.
There is a presence of backward bifurcation phenomenon of the model even when control
measure ensures that the reproduction number is less than one, there is still a possibility of
disease presence in the community.

If 70% of invasive plants can be control, the disease can be eliminated based on the
parameter values of this model. Even with invasive plants , we can control malaria. Those
plants have their usefulness ecologically. Efficacy of bed net and treatment of infected
individual reduce malaria burden in human population. The higher the diffusion, D value
the higher the distribution of the malaria disease in human population.

Figure 24 shows a plot of polynomial equation at k = 0 over its eigenvalues. The wave
speed increases with the negative eigenvalues and decreases with the positive eigenvalues.
Figure 25 shows a plot of polynomial equation at k = 4.5 over its eigenvalues. The wave
speed decreases as the eigenvalues of the polynomial increases. Figure 26 shows a plot of
polynomial equation at v = 0.0001 over its eigenvalues. The wave speed increases with
the negative eigenvalues and decreases with the positive eigenvalues. Figure 27 shows a
relationship between the wave speed and the Diffusion coefficient. The wave speed in-
creases as the diffusion coefficient increases and thereby leading to decrease in the disease
transmission.

When we consider the advection movement (k =4.5) from the expression of the poly-
nomial (14) coefficients b0, b1, b2, b3, b4, b5 and b6, we observed that k appears adding the
value of v. Hence, advection increases the wave speed when it is in the same direction
of the wave front and decreases when it is in the opposite direction. The higher the ad-
vection coefficient is, the higher the speed of the spread of the disease, which follows a
linear relationship. The flight distance rate of anopheles mosquitoes is motivated by the
diffusion coefficient, D and thereby lead to more mosquitoes in human environment even
if the invasive plants are located 100km a way from villages or communities.

7. CONCLUSION

This study aimed to analyze the spread of spatial dispersal dynamics of malaria disease
by mathematical modeling. We propose a spatial nonlinear mathematical model that de-
scribes the impact of invasive plants and dispersion of vectors on the dynamics of malaria
disease.

We analyzed the homogeneous part of the spatial model for the spread of the disease,
and we found out that the model has three disease equilibria which include two DFEs
and one DEE. The two DFEs occurred due to the impact of invasive plants on malaria
dynamics, and this result is an important contribution to knowledge since no malaria model
has this report. The stability of the equilibria were also investigated. The analysis of the
possibility of the disease existence of backward bifurcation was carefully investigated.
We have also formulated the traveling wave equations that enable us to determine the
propagation speed of the disease transmission.

The numerical simulation of the model equations were carried out in order to validate
the obtained qualitative results. We found that the effective reproduction number deter-
mines the endemic steady-state existence, the stability of the spatial dynamics and the
wave speed of disease spread. This finding has biological aspects, such as the prevalence
of the disease, eradication and spatial dissemination.
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The results obtained for the sensitivity of the effective reproduction number showed that
it is quite sensitive in relation to biting rate, disease induced death rate, recovered rate of
individual with immunity, bed net efficacy, invasive plants control rate and the growth rate.
Therefore, important activities for the disease control include: control of invasive plants
and the provision of bed net with 70 - 90% efficacy.

Our next step was to study the spread of the disease in a human population using a spa-
tial model and considering the same temporal dynamics. We conducted the analysis of the
model under the condition R01 > 1. When this condition held, infection was established
in the population, and there was a trajectory linking the disease-free equilibrium and the
endemic equilibrium, enabling the determination of the minimum disease spread rate. The
wave propagation speed was determined in relation to the diffusion and advection term.
We also used different diffusion and advection coefficient values to assess the wave speed
and to analyze the relationship between these parameters.

Finally, understanding the invasion speed could be used to support control interven-
tions aiming to decrease the speed of propagation, even if the eradication of vectors is not
possible.
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