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ON IYENGAR’S AND OSTROWSKI’S INTEGRAL MEANS

JITEN AHUJA∗ AND RICARDO ESTRADA

ABSTRACT. Frullani’s Integral Formula is an old formula that was known to hold under
strict conditions. Iyengar, and later Ostrowski, provided necessary and sufficient conditions
for the existence of the Frullani Integral Formula. Their conditions were different but
equivalent. In this article, we identify other conditions that are equivalent. We show that
these conditions are, in fact, solutions to a family of linear differential equations of the
first order. We study the limiting behavior of these solutions at zero and infinity, and in
doing so, arrive at a new proof of the equivalence of Iyengar’s and Ostrowski’s conditions.
Lastly, we provide applications of our results.

1. INTRODUCTION

The following formula [3, 5]∫ ∞

0

f (ax)− f (bx)

x
dx = C ln

(a
b

)
, (1.1)

for a > 0, b > 0, and some constant C is known as Frullani’s Integral formula [7].
The initial literature assumed strong conditions on f(x) to ensure the validity of (1.1).
For example, [3] considers the formula when an integrable function, f(x), meets certain
growth conditions, whereas [5] assumes finiteness, integrability, and differentiability of
f(x) and more. We refer interested readers to [11] for the history of this formula.

Recent records indicate that Iyengar is the first to investigate conditions on f(x) that
would allow (1.1) to hold. Assuming that f : (0,∞) → R is locally Lebesgue integrable in
(0,∞), he [9] proved that the existence of the Frullani integral for all a, b > 0 is equivalent
to the existence of the following four expressions:∫ 1

0+
f (x) dx = lim

ε→0+

∫ 1

ε

f (x) dx , m∗ = lim
ε→0+

1

ε

∫ ε

0+
f (x) dx , (1.2)∫ ∞

1

f (x)

x2
dx = lim

λ→∞

∫ λ

1

f (x)

x2
dx , M∗ = lim

λ→∞
λ

∫ ∞

λ

f (x)

x2
dx . (1.3)
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We shall, henceforth, refer to the aforementioned four expressions as Iyengar’s integral
means. In this case, equation (1.1) holds with

C = M∗ −m∗ . (1.4)

Iyengar’s proof has some problems; a correct proof was later provided by Agnew [1, 2]
and then by Ostrowski [10, 11], who showed that the improper Frullani integrals exist for
all a, b > 0 if and only if the following two mean values exist:

m = lim
ε→0+

ε

∫ 1

ε

f (x)

x2
dx , (1.5)

M = lim
λ→∞

1

λ

∫ λ

1

f (x) dx , (1.6)

in which case, we have
m∗ = m and M∗ = M . (1.7)

We would refer to equations (1.5) and (1.6) as Ostrowski’s integral means.
In this article, we give a new proof of the equivalence of Iyengar’s and Ostrowski’s

integral means. Our proof applies not only to the Lebesgue integral but also to the more
general Denjoy-Perron-Henstock-Kurzweil integral1.

The outline of this article is as follows: In section 2, we consider a family of differential
equations, Mα(F ) = f , for each α ∈ C and Re α ̸= 0 and prove how the existence of
the limit at zero of one solution ensures the existence of the limit at zero for a subclass of
other solutions. In section 3, we prove the same but at infinity, thereby furnishing the proof
of the equivalence of Iyengar’s and Ostrowski’s integral means. Lastly, in section 4, we
provide some applications to study the Cesàro behavior of order 1 of sequences of partial
sums of a series.

2. EQUIVALENCE OF MEANS

Consider the differential operator

Mα (F ) = −αF + xF ′ = xα+1
(
x−αF (x)

)′
. (2.1)

Any Euler operator of order 1 is a multiple of one of the Mα. Suppose f is a locally
Denjoy-Perron-Henstock-Kurzweil integrable function in (0,∞) . The equation

Mα (F ) = f , (2.2)

has the solution

F (x) = xα

[∫ x

x0

f (t)

tα+1
dt+ C

]
, (2.3)

where x0 is fixed and C is an arbitrary constant. The fact that (2.3) is a solution is obvious
and may be readily verified. We note that the solutions to this family of differential equa-
tions, when they exist, could be interpreted as the various definitions of integral means. We
also note that for α = −1, we obtain Iyengar’s integral mean at zero, and for α = 1, we
obtain Ostrowski’s integral mean at zero. If ℜe α > 0, then if one solution has a limit γα
at x = 0+ then all the others do. If α = −β, ℜe β > 0, then there is at most one constant
C for which the limit exists, and for this constant,

lim
x→0+

∫ x

x0

tβ−1f (t) dt = −C , (2.4)

1Details on the Denjoy-Perron-Henstock-Kurzweil integral can be seen in [8].
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so that the integral ∫ x0

0

tβ−1f (t) dt exists , (2.5)

and

lim
x→0+

1

xβ

∫ x

0

tβ−1f (t) dt = γ−β exists . (2.6)

We have the following result.

Lemma 2.1. Let f be a Denjoy-Perron-Henstock-Kurzweil integrable function in (0,∞) .
Suppose that the limit

lim
x→0+

f (x) = γ , (2.7)

exists. If ℜe α > 0 then all solutions of Mα (F ) = f have a limit as x → 0+. If ℜe α < 0
then there is one solution with a limit as x → 0+. In either case,

lim
x→0+

F (x) = −γ

α
. (2.8)

Proof. Let ε > 0. There exists x0 such that |f (x)− γ| < ε for x ≤ x0. When ℜe α > 0
we have that for x ≤ x0 and F given by (2.3),

F (x) +
γ

α
= xα

{∫ x0

x

γ − f (t)

tα+1
dt+ C̃

}
, (2.9)

where

C̃ = C +
γ

α

∫ ∞

x0

dt

tα+1
, (2.10)

so that ∣∣∣F (x) +
γ

α

∣∣∣ ≤ xℜe α

{∫ x0

x

|γ − f (t)|
tℜe α+1

dt+
∣∣∣C̃∣∣∣}

≤ ε

ℜe α
+ xℜe α

∣∣∣C̃∣∣∣ .

Hence lim supx→0+ |F (x) + γ/α| ≤ ε/ℜe α and consequently limx→0+ F (x) = −γ/α.
If ℜe β > 0, β = −α, then the integral (2.5) exists since f has a limit at 0+. Also,∣∣∣∣ 1

xβ

∫ x

0

f (t) tβ−1 dt− γ

β

∣∣∣∣ = ∣∣∣∣ 1

xβ

∫ x

0

(f (t)− γ) tβ−1dt

∣∣∣∣
≤ 1

xℜe β

∫ x

0

|f (t)− γ| tℜe β−1dt

≤ ε

ℜe β
,

and it follows that limx→0+ F (x) = γ/β. □

The result of this lemma does not hold when ℜe α = 0 since we can find functions f
that have a limit at x = 0+ but such that no solution of Mα (F ) = f has a limit at x = 0+.
Indeed, suppose that for η small, η < e−1,

f (x) =
xα

lnx
, x < η . (2.11)

Then F (x) = −xα
∫ η

x
f (t) /tα+1 dt+ Cxα is the sum of −xα

∫ η

x
f (t) dt/tα+1, which

satisfies

lim
x→0+

∣∣∣∣xα

∫ η

x

f (t)

tα+1
dt

∣∣∣∣ = ∞ , (2.12)
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since the integral
∫ η

0
f (t) dt/tα+1 =

∫ η

0
dt/t ln t diverges, and an oscillatory term, Cxα,

that remains bounded and does not have a limit at 0+.
We can now give our equivalence result.

Theorem 2.2. If f is locally Denjoy-Perron-Henstock-Kurzweil integrable in (0,∞) and
for some value ℜe α0 > 0 the limit

lim
x→0+

xα

∫ x

1

f (t)

tα+1
dt = γα , (2.13)

exists, then the limit will exist for all α with ℜe α > 0. Also for each α with ℜe α < 0 we
have that∫ 1

0

t−α−1f (t) dt exists and lim
x→0+

1

x−α

∫ x

0

t−α−1f (t) dt = γα exists . (2.14)

On the other hand, if (2.14) holds for some α0 with ℜe α0 < 0, then it will hold for all α
with ℜe α < 0, and (2.13) holds for all α with ℜe α > 0. In those cases, we have that

γα
α

=
γβ
β

, (2.15)

for all α and β that are not purely imaginary; ergo, γα

α is a constant whenever Re α ̸= 0.

Proof. We need to prove that if for some α with ℑmα ̸= 0 there is a solution F of the
equation Mα (F ) = f with a limit as x = 0+ then the same holds for all ρ with ℑmρ ̸= 0.
But the Lemma 2.1 tell us that we can find a solution G of Mρ (G) = F with a limit at 0+.
Thus

f = Mα (F ) = Mρ (F ) + (ρ− α)F = Mρ (F + (ρ− α)G) ,

and F + (ρ− α)G has a limit at 0+. □

In particular, we obtain the equivalence of the Iyengar condition (α = −1) [9] and the
Ostrowski condition (α = 1) [10, 11].

Corollary 2.3. Let f be locally Denjoy-Perron-Henstock-Kurzweil integrable in (0,∞) .
Then the Ostrowski mean

lim
x→0+

x

∫ 1

x

f (t)

t2
dt = γ , (2.16)

exists if and only if
∫ 1

0
f (t) dt exists and the Iyengar mean

lim
ε→0+

1

ε

∫ ε

0

f (x) dx = γ∗ , (2.17)

exists. We then have γ = γ∗.

It is convenient to give the following definition at this point.

Definition 2.1. Let f be locally Denjoy-Perron-Henstock-Kurzweil integrable in (0, a) for
some a > 0. We say that f has the limit γ in the average sense2 as x → 0+, and write
f (0+) = γ (av) or

lim
x→0+

f (x) = γ (av) , (2.18)

if any of the conditions of the Corollary 2.3 are satisfied.

2Other names, as for example a Cesàro limit of order 1, or a (C,1) limit, could be employed. We prefer to reserve
that term for limits at infinity.
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Lemma 2.1 states that if f (0+) = γ, then f (0+) = γ (av) . The converse is of course
not true, as functions like cosx−1 or sinx−1 show.

Theorem 2.2 gives other equivalent ways to show that f (0+) = γ (av) . This theorem
also shows that some changes of variables are valid for average limits.

Proposition 2.4. Let f be locally Denjoy-Perron-Henstock-Kurzweil integrable in (0,∞) .
Suppose that f (0+) = γ (av) . Let α > 0 and put g (x) = f (xα) . Then g (0+) = γ (av) ,
that is,

lim
x→0+

f (xα) = γ (av) . (2.19)

Proof. In order to prove (2.19) we need to show that

lim
x→0+

x

∫ 1

x

f (tα)

t2
dt = γ .

However, a change of variables and (2.15) yield

lim
x→0+

x

∫ 1

x

f (tα)

t2
dt = lim

x→0+

x

α

∫ 1

xα

f (u)

u1+1/α
dt

= lim
z→0+

1

α
z1/α

∫ 1

z

f (u)

u1+1/α
dt

=
1

α

γ

(1/α)
= γ ,

as required. □

Notice that many changes of variable, like t → 1/ ln t, do not preserve average limits.
In fact, for f (x) = cosx−1 we have f (0+) = 0 (av) , but f (1/ ln t) = cos ln t does not
have an average limit as x → 0+ [4].

3. LIMITS AT INFINITY

The results of Section 2 are also valid at other points, as a change of variables shows.
More importantly, the change u = 1/t immediately yields that they also hold at infinity.
We have the ensuing equivalence of means at infinity.

Theorem 3.1. If f is locally Denjoy-Perron-Henstock-Kurzweil integrable in (0,∞) and
for some value ℜe ρ0 < 0 the limit

lim
x→∞

xρ

∫ x

1

f (t)

tρ+1
dt = µρ , (3.1)

exists, then the limit will exist for all ρ with ℜe ρ < 0. Also for all ρ with ℜe ρ > 0 we
have that ∫ ∞

1

f (t)

tρ+1
dt exists and lim

x→∞
xρ

∫ ∞

x

f (t)

tρ+1
dt = −µρ exists . (3.2)

On the other hand, if (3.2) holds for some ρ0 with ℜe ρ0 > 0, then it will hold for all ρ
with ℜe ρ > 0 and (3.1) holds for all ρ with ℜe ρ < 0. In those cases, we have that

µρ

ρ
=

µσ

σ
, (3.3)

for all ρ and σ that are not purely imaginary; ergo, µρ

ρ is a constant whenever Re ρ ̸= 0.

Proof. It follows from Theorem 2.2 if we use the change u = 1/t. □
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In particular, as with limits at the origin, the Iyengar and Ostrowski means are equiva-
lent.

Corollary 3.2. Let f be locally Denjoy-Perron-Henstock-Kurzweil integrable in (0,∞) .
Then the Ostrowski mean

lim
x→∞

1

x

∫ x

1

f (t) dt = µ , (3.4)

exists if and only if
∫∞
1

f (t) dt/t2 exists and the Iyengar mean

lim
x→∞

x

∫ ∞

x

f (t)

t2
dt = µ∗ , (3.5)

also exists. We then have µ = µ∗.

Thus, we introduce the following terminology.

Definition 3.1. If f is locally Denjoy-Perron-Henstock-Kurzweil integrable in (a,∞) for
some a > 0 and it satisfies the conditions of Corollary 3.2 we say that the limit of f (x) as
x → ∞ in the Cesàro sense of order 1 exists and equals µ, and write

f (∞) = lim
x→∞

f (x) = µ (C, 1) . (3.6)

We also have that if the ordinary limit limx→∞ f (x) = µ exists, then limx→∞ f (x) =
µ (C, 1) , but not conversely. Furthermore, as with limits at the origin, we obtain the
following.

Proposition 3.3. Let f be locally Denjoy-Perron-Henstock-Kurzweil integrable in (0,∞) .
Suppose that f (∞) = µ (C,1) . Let ρ > 0 and put g (x) = f (xρ) . Then g (∞) = µ (C,1) ,
that is,

lim
x→∞

f (xρ) = µ (C,1) . (3.7)

4. APPLICATIONS

We now consider applications of our results. Let {an}∞n=1 be a sequence. Let us put

f (x) = an , n ≤ x < n+ 1 . (4.1)

Observe that limx→∞ f (x) = L (C,1) if and only if limn→∞ an = L (C,1) , that is, if
and only if

lim
N→∞

1

N

N∑
n=1

an = L , (4.2)

the usual definition of the limit in the Cesàro sense of order 1 of a sequence [6, Chp. 6].
Using the equivalence of the Iyengar, and the Ostrowski means at infinity, we thus obtain

the ensuing equivalence.

Theorem 4.1. If {an}∞n=1 is a sequence of real or complex numbers, then

lim
n→∞

an = L (C, 1) , (4.3)

if and only if the series
∞∑

n=1

an
n (n+ 1)

, (4.4)
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converges and the tails of this series have the asymptotic behavior
∞∑

n=N

an
n (n+ 1)

∼ L

N
, (4.5)

that is,

lim
N→∞

N

∞∑
n=N

an
n (n+ 1)

= L . (4.6)

We can obtain a more general equivalence if we start with a sequence {λn}∞n=1 of
different positive numbers that increases to infinity and then for a sequence {an}∞n=1 put

f (x) =
an

λn+1 − λn
, λn ≤ x < λn+1 . (4.7)

We have that if λN ≤ λ < λN+1 then∫ λ

0

f (t) dt =

N−1∑
n=1

an + aN
λ− λN

λN+1 − λN
. (4.8)

Suppose now that λn/λn+1 → 1 as n → ∞, which is satisfied, for instance, if λn = nα

for some α > 0. If an = o (λn) then

lim
λ→∞

1

λ

∫ λ

0

f (t) dt = L , (4.9)

if and only if

lim
N→∞

1

λN

N∑
n=1

an = L . (4.10)

The equivalence of Iyengar and Ostrowski means yields that (4.10) is equivalent to the
convergence of the series

∞∑
n=1

an
λnλn+1

, (4.11)

and the following asymptotic behavior of the tails,

lim
N→∞

λN

∞∑
n=N+1

an
λnλn+1

= L . (4.12)

5. CONCLUSION

Ostrowski [11] proved the equivalence of Iyengar’s Means (1.2), (1.3) and Ostrowski’s
Means (1.5), (1.6). However, that proof is long and limited to the framework of Lebesgue
integration. The authors in this paper provide a new proof using the theory of differential
operators of first order. This proof is arguably shorter, provides a range of other equiv-
alent conditions, and is applicable in the more general framework of the Denjoy-Perron-
Henstock-Kurzweil integral. The authors note that each of these equivalent conditions may
be recognized as a type of integral mean, two of which are the aforementioned Iyengar’s
and Ostrowski’s means.

The authors expect this paper to inspire more results involving some higher-order dif-
ferential operators related to 2.2.
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