Annals of Communications in Mathematics

Volume 7, Number 4 (2024), 386-392 DOI: 10.62072/acm.2024.070406

ISSN: 2582-0818

© http://www.technoskypub.com

FUZZY MULTIPLICATION Γ-SEMIGROUPS

M. A. IBRAHIM AND J. A. AWOLOLA*

ABSTRACT. The concept of fuzzy right multiplication Γ -semigroup is introduced by means of fuzzy right Γ -ideals, and some properties are investigated with the help of some classes of Γ -semigroups. It is shown that for any fuzzy right Γ -ideal ϑ of X, $\vartheta \subseteq X \circ_{\Gamma} \vartheta$. Moreover, if a Γ -semigroup X is simple with $a \in a\Gamma X$ for every $a \in X$, then X is a fuzzy right multiplication Γ -semigroup.

1. Introduction

Nobusawa [11] initiated a new type of algebraic system known as Γ -ring. Γ -ring is an algebraic extension of ring theory. This has given rise to a large body of new results by several researchers in literature as seen in [2, 3, 7, 8]. Motivated by this generalisation of a ring, a similar research line of thought began in the field of semigroups, and the theory of Γ -semigroups was initiated by Sen [14]. Later, Sen collaborated with Saha in [15] to slightly weaken the defining conditions and redefine Γ -semigroup. The development of Γ -semigroups hinges on the fact that subsets of a semigroup naturally inherit associativity but are not necessarily closed. As a result of this, various generalisations and similarities of corresponding results in semigroup theory have been obtained based on the modified definition (see [5, 12, 16, 17, 18]).

Continuing to broaden the theoretical aspect of Γ -semigroup theory, Awolola and Ibrahim [1] were inspired by the research of [9], and the concept of multiplication Γ -semigroups in the non-commutative case was introduced. A non-commutative Γ -semigroup X is said to be a right multiplication Γ -semigroup if there exist any two right Γ -ideals L, M of X with $L \subseteq M$; there is a right Γ -ideal N of X such that $L = N\Gamma M$. Dually, left multiplication Γ -semigroups can be defined. In [1], some properties of right multiplication Γ -semigroup were investigated with the help of some classes of Γ -semigroups.

The algebraic extension of Γ -semigroups using fuzzy ideals was first introduced by Mustafa *et al.* [10]. This idea was developed further by Dutta *et al.* [4], Sardar and Majumder [13], Shashikumar and Reddy [19] and Williams *et al.* [21]. Related to this concept, Subha and Dhanalakshmi [20] introduced the notions of interval rough fuzzy Γ -ideals, bi- Γ -ideals, prime- Γ -ideals, and prime-bi- Γ -ideals in Γ -semigroups and established some properties of these structures.

 $^{2020\ \}textit{Mathematics Subject Classification.}\ \ 20\text{M17}, 20\text{M10}, 20\text{M12}.$

Key words and phrases. Multiplication Γ -semigroup; fuzzy Γ -ideals; regular; idempotent; cancellative. Received: October 08, 2024. Accepted: December 06, 2024. Published: December 31, 2024.

^{*}Corresponding author.

In this class of algebraic structures, we feel it is felicitous to initiate the study of fuzzy multiplication Γ -semigroups induced by multiplication Γ -semigroups. The motivation behind this study is the enhancement of Γ -ideals and their applications in multiplication Γ -semigroups.

The present paper introduces the concept of fuzzy multiplication Γ -semigroup and the validity of some results analogous to those obtained by Awolola and Ibrahim [1] in the case of multiplication Γ -semigroups is examined via fuzzy subsets.

2. Preliminaries

We state some definitions and results that will be useful for this paper in the next section.

Definition 2.1. [15] Let X and Γ be two non-empty sets. Then X is said to be a Γ -semigroup if there is a mapping $X \times \Gamma \times X \longrightarrow X \mid (x, \gamma, y) \longrightarrow x\gamma y \in X$ which satisfies the property $(x\gamma y)\delta z = x\gamma(y\delta z) \ \forall \ x,y,z \in X$ and $\gamma,\delta \in \Gamma$.

The following examples show that Γ -semigroups generalise semigroups.

Example 2.2. Let X be a semigroup and $\Gamma = \{\delta\}$. Define a mapping $X \times \Gamma \times X \longrightarrow X$ by $x\delta y = xy \ \forall \ x, y \in X$ and $\delta \in \Gamma$. Then X is a Γ -semigroup.

Example 2.3. Let $X = \{-i, i, 0\}$ and $\Gamma = X$. Then X is a Γ -semigroup with respect to multiplication of complex numbers, whereas X does not reduce to a semigroup with respect to multiplication of complex numbers.

A Γ -semigroup X is said to be regular (right regular) if for every $x \in X$, there exist $y \in X$ and $\gamma, \delta \in \Gamma$ such that $x = x\gamma y\delta x$ ($x = x\gamma x\delta y$). An element x of a Γ -semigroup X is called a δ -idempotent if there exists $\delta \in \Gamma$ such that $x\delta x = x$.

A Γ -semigroup X is said to be left (right) cancellative if $a\gamma x = a\gamma y \Longrightarrow x = y$ ($x\delta b = y\delta b \Longrightarrow x = y$) $\forall \ a,b,x,y \in X$ and $\gamma \in \Gamma$. It is cancellative if X is both left and right Γ -cancellative. A Γ -semigroup X is called left (right) simple if it has no proper left (right) Γ -ideal, i.e., for each $a \in X$, $X\Gamma a = X$ ($a\Gamma X = X$).

Definition 2.4. [6] Let ϑ and ι be any two fuzzy subsets of X. We define the product of ϑ and ι as follows: for every $a \in X$, if there exist $x, y \in X$ and $\delta \in \Gamma$ such that $a = x\delta y$, then

$$\vartheta \circ_{\Gamma} \iota = \max_{a = x\delta y} \min\{\vartheta(x), \iota(y)\}$$

and otherwise, $\vartheta \circ_{\Gamma} \iota = 0$

Definition 2.5. [6] A fuzzy subset ϑ of a Γ-semigroup X is called a fuzzy left Γ-ideal and a fuzzy right Γ-ideal of X if $\vartheta(x\delta y) \geq \vartheta(y)$ and $\vartheta(x\delta y) \geq \vartheta(x) \ \forall \ x,y \in X$ and $\delta \in \Gamma$ respectively. The fuzzy subset ϑ is called a fuzzy Γ-ideal of X if $\vartheta(x\delta y) \geq \max\{\vartheta(x),\vartheta(y)\}\ \forall \ x,y \in X \ \text{and} \ \delta \in \Gamma$.

The following results can be found in [1].

Proposition 2.1. Let X be a right multiplication Γ -semigroup. Then $X\Gamma X = X$.

Proposition 2.2. Let X be a right multiplication Γ -semigroup. Then $A \subseteq X\Gamma A$ for any right Γ -ideal.

Proposition 2.3. Let X be a Γ -semigroup. If $a \in (a\Gamma X)\Gamma(a\Gamma X)$ for every $a \in X$, then X is a right multiplication Γ -semigroup.

Proposition 2.4. Let X be a Γ -semigroup. If X is regular (right regular), then X is a right multiplication Γ -semigroup.

Proposition 2.5. Let X be a Γ -semigroup. If X is simple with $a \in a\Gamma X$ for every $a \in X$, then X is a right multiplication Γ -semigroup.

Proposition 2.6. Let X be a right multiplication Γ -semigroup. If every left Γ -ideal is Γ -ideal, then X is left regular.

Proposition 2.7. Let X be a right multiplication Γ -semigroup. If X contains a left canellative element, then X contains a β -idempotent which is a left identity.

3. Fuzzy multiplication Γ -semigroups

Definition 3.1. Let X be a Γ-semigroup. By a fuzzy right multiplication Γ-semigroup we mean if exist any two fuzzy right Γ-ideals ϑ and ι of X with $\vartheta \subseteq \iota$, there is a fuzzy right Γ-ideal η of X such that $\vartheta = \eta \circ_{\Gamma} \iota$. Dually, left fuzzy multiplication Γ-semigroup can be defined.

Example 3.2. Let $X = \{0, 1, 2, 3\}$ be a semigroup under the operation given by the table below:

	0	1	2	3
0	0	0	0	0
1	0	1	1	0
2	0	2	2	0
3	3	3	3	3

Let $\Gamma = \{\alpha\}$. Define $a\delta b = ab$. Clearly, X is a Γ -semigroup. Moreover, the fuzzy subsets ϑ , ι and η of X defined as follows:

$$\vartheta(0) = 0.6, \ \vartheta(1) = \vartheta(2) = \vartheta(3) = 0$$
$$\iota(0) = 0.6, \ \iota(1) = \iota(2) = 0, \ \iota(3) = 0.4$$
$$\eta(1) = 0.6, \ \eta(2) = 0.3, \ \eta(1) = \eta(3) = 0$$

are all fuzzy right Γ -ideals of the Γ -semigroup X. It is not difficult to verify that X is a fuzzy right multiplication Γ -semigroup.

Remark. Let $X \times Y$ be the direct product of two Γ -semigroups X and Y. The fuzzy right Γ -ideals ϑ , ι of $X \times Y$ such that $\vartheta \subseteq \iota$ need not be a fuzzy right multiplication Γ -semigroup for some fuzzy right Γ -ideal η of $X \times Y$, where

$$X \times Y = (a_1, b_1)\delta(a_2, b_2) = (a_1\delta a_2, b_1\delta b_2)$$
 for all $a_1, a_2 \in X$, $b_1, b_2 \in Y$ and $\delta \in \Gamma$.

Example 3.3. Let $X = \{0,1\}$ and $Y = \{0,1,2,3\}$ be Γ -semigroups with $\Gamma = \{\alpha\}$ as shown in the tables below:

α	0	1
0	0	0
1	1	1

α	0	1	2	3
0	0	0	0	0
1	0	1	1	0
2	0	2	2	0
3	3	3	3	3

Clearly, X and Y are right multiplication Γ -semigroups. Now,

$$X \times Y = \{(0,0), (0,1), (0,2), (0,3), (1,0), (1,1), (1,2), (1,3)\}$$

and we define the fuzzy subsets ϑ , ι and η of $X \times Y$ as follows:

$$\vartheta(0,0) = 0.8, \ \vartheta(0,1) = \vartheta(0,2) = \vartheta(0,3) = \vartheta(1,0) = \vartheta(1,1) = \vartheta(1,2) = \vartheta(1,3) = 0$$

$$\iota(0,0) = 0.8, \ \iota(0,2) = 0.5, \ \iota(0,1) = \iota(0,3) = \iota(1,0) = \iota(1,1) = \iota(1,2) = \iota(1,3) = 0$$

$$\eta(0,0) = 0.8, \ \eta(0,3) = 0.2, \ \eta(0,1) = \eta(0,2) = \eta(1,0) = \eta(1,1) = \eta(1,2) = \eta(1,3) = 0.$$

By the Definition 2.5, it is obvious that ϑ , ι , and η are fuzzy right Γ -ideals of $X \times Y$. From Definition 2.4, let

$$\eta \circ_{\Gamma} \iota(a,b) = \max_{(a,b)=(x_1,y_1)\delta(x_2,y_2)} \min\{\eta(x_1,y_1),\iota(x_2,y_2)\}$$

and by routine calculation process, we have

$$\eta \circ_{\Gamma} \iota(0,0) = 0.8 \qquad \eta \circ_{\Gamma} \iota(0,1) = 0
\eta \circ_{\Gamma} \iota(0,2) = 0 \qquad \eta \circ_{\Gamma} \iota(0,3) = 0.2
\eta \circ_{\Gamma} \iota(1,0) = 0 \qquad \eta \circ_{\Gamma} \iota(1,1) = 0
\eta \circ_{\Gamma} \iota(1,2) = 0 \qquad \eta \circ_{\Gamma} \iota(1,3) = 0$$

Since $\eta \circ_{\Gamma} \iota(0,3) = 0.2 \neq \vartheta(0,3)$, this means that $\vartheta \neq \eta \circ_{\Gamma} \iota$, and thus $X \times Y$ is not a fuzzy right multiplication Γ -semigroup.

Definition 3.4. A fuzzy Γ -ideal is called idempotent if $\vartheta = \vartheta \circ_{\Gamma} \vartheta$.

Definition 3.5. A fuzzy Γ -ideal η of X is said to be maximal if it has no proper fuzzy Γ -ideal ϑ of X such that $\eta \subset \vartheta$.

Proposition 3.1. In a fuzzy right multiplication Γ -semigroup X, the following assertions hold.

- (i) $\vartheta = \vartheta \circ_{\Gamma} \vartheta$.
- (ii) For any fuzzy right Γ -ideal ϑ of X, $\vartheta \subseteq X \circ_{\Gamma} \vartheta$.
- (iii) If ϑ is a maximal fuzzy right Γ -ideal containing every proper fuzzy right Γ -ideal η of X, then $\vartheta = \vartheta \circ_{\Gamma} \vartheta$.

Proof. (i) Let ϑ be a fuzzy right Γ -ideal of X. Since $\vartheta \subseteq \vartheta$, there exist a fuzzy right Γ -ideal η of X such that $\vartheta = \eta \circ_{\Gamma} \vartheta$ and so $\vartheta = \vartheta \circ_{\Gamma} \vartheta$.

- (ii) Let ϑ be any fuzzy right Γ -ideal of X. Since $\vartheta \subseteq \vartheta$, there exist a fuzzy right Γ -ideal η of X such that $\vartheta = \eta \circ_{\Gamma} \vartheta$ and thus $\vartheta \subseteq X \circ_{\Gamma} \vartheta$.
- (iii) Let ϑ be a maximal right Γ -ideal of X. Since $\vartheta \subseteq \vartheta$, we have $\vartheta = \eta \circ_{\Gamma} \vartheta$ for some fuzzy right Γ -ideal η of X. If $\eta \subseteq \vartheta$, then $\eta \circ_{\Gamma} \vartheta \subseteq \vartheta \circ_{\Gamma} \vartheta$. Hence, $\vartheta = \vartheta \circ_{\Gamma} \vartheta$.

Theorem 3.2. Let X be a Γ -semigroup. If every fuzzy right Γ -ideal ϑ of X is idempotent, then X is a fuzzy right multiplication Γ -semigroup.

Proof. Let ϑ and ι be two fuzzy right Γ-ideals of X such that $\vartheta \subseteq \iota$. For every fuzzy right Γ-right ϑ of X, we have $\vartheta \subseteq \vartheta \circ_{\Gamma} \vartheta \subseteq \vartheta \circ_{\Gamma} \iota \subseteq \vartheta$. Thus, $\vartheta \subseteq \vartheta \circ_{\Gamma} \iota \subseteq \vartheta$ and so $\vartheta = \vartheta \circ_{\Gamma} \iota$. This proves that X is a fuzzy right multiplication Γ-semigroup. \Box

Theorem 3.3. Let X be a Γ -semigroup. If X is right regular, then X is a fuzzy right multiplication Γ -semigroup.

Proof. Let X be right regular. Let ϑ and ι be any two fuzzy right Γ -ideals of X such that $\vartheta \subseteq \iota$. Then $\vartheta \circ_{\Gamma} \iota \subseteq \vartheta$. Next, let $a \in X$. Then there exists $x \in X$ and $\gamma, \delta \in \Gamma$ such that

 $a = a\gamma a\delta x$. Thus

$$\begin{array}{lcl} \vartheta \circ_{\Gamma} \iota(a) & = & \max_{a=a\gamma a\delta x} \min\{\vartheta(a), \iota(a\delta x)\} \\ & \geq & \min\{\vartheta(a), \iota(a\delta x)\} \\ & \geq & \min\{\vartheta(a), \iota(a)\} \ (\because \ \iota(a\delta x) \geq \iota(a)) \\ & = & \vartheta(a) \end{array}$$

Hence, $\vartheta \subseteq \vartheta \circ_{\Gamma} \iota$ and thus $\vartheta \circ_{\Gamma} \iota = \vartheta$. Therefore, X is a fuzzy right multiplication Γ -semigroup. \square

Analogously, we have the following theorem and corollary.

Theorem 3.4. If X is regular, then X is a fuzzy right multiplication Γ -semigroup.

Corollary 3.5. If every γ -idempotent element of X is regular, then X is a fuzzy right multiplication Γ -semigroup.

Theorem 3.6. Let X be a left cancellative Γ -semigroup. If X is left simple and regular (right regular), then X is a fuzzy right multiplication Γ -semigroup.

Proof. Let ϑ and ι be any two fuzzy right Γ -ideals of X such that $\vartheta \subseteq \iota$. Then $\vartheta \circ_{\Gamma} \iota \subseteq \vartheta$. Let $a \in X$. Since X is left simple, $x = x\gamma a$ for some $x \in X$ and $\gamma \in \Gamma$. Again, $x\gamma a = x\gamma a\gamma x\delta a$. Therefore, by left cancellation of X we have $a = a\gamma x\delta a$. Now, the completion of this proof follows from Theorem 3.3. Similar argument holds if X is left simple and right regular.

By Theorem 3.6, we have the subsequent theorem.

Theorem 3.7. Let X be a right cancellative Γ -semigroup. If X is right simple and regular (right regular), then X is a fuzzy right multiplication Γ -semigroup.

Proof. Same as the proof of Theorem 3.6.

Theorem 3.8. Let X be a left cancellative Γ -semigroup. If X is left simple and idempotent, then X is a fuzzy right multiplication Γ -semigroup.

Proof. Let ϑ and ι be any two fuzzy right Γ-ideals of X such that $\vartheta \subseteq \iota$. Then $\vartheta \circ_{\Gamma} \iota \subseteq \vartheta$. Let $a \in X$. Since X is left simple, we have $x = x\gamma a$ for some $x \in X$ and $\gamma \in \Gamma$. Clearly, $x\gamma a = x\gamma a\gamma a$ and thus $a = a\gamma a$ since X is left cancellative. Therefore, $\vartheta(a) = \min\{\vartheta(a), \iota(a)\} \le \max_{a=a\gamma a} \min\{\vartheta(a), \iota(a)\} = \vartheta \circ_{\Gamma} \iota(a)$. Thus, $\vartheta = \vartheta \circ_{\Gamma} \iota$ and so X is a fuzzy multiplication Γ-semigroup. \square

Theorem 3.9. Let X be a right cancellative Γ -semigroup. If X is right simple and idempotent, then X is a fuzzy right multiplication Γ -semigroup.

Proof. Same as the proof of Theorem 3.8.

The next theorem gives a condition for a simple Γ -semigroup X to be a fuzzy right multiplication Γ -semigroup.

Theorem 3.10. Let X be a Γ -semigroup. If X is simple with $a \in a\Gamma X$ for every $a \in X$, then X is a fuzzy right multiplication Γ -semigroup.

Proof. Let ϑ and ι be any two fuzzy right Γ -ideals of X such that $\vartheta \subseteq \iota$. Then $\vartheta \circ_{\Gamma} \iota \subseteq \vartheta$. Let Let X be a simple Γ -semigroup with $a \in a\Gamma X$. Then $a = a\delta x$ for some $x \in X$ and $\delta \in \Gamma$. Clearly, $x = x\gamma a\delta x$ for some $\gamma \in \Gamma$. Hence, $a = a\delta x\gamma a\delta x$. Now,

```
\begin{array}{lcl} \vartheta \circ_{\Gamma} \iota(a) & = & \max_{a=a\delta x\gamma a\delta x} \min\{\vartheta(a\delta x), \iota(a\delta x)\} \\ & \geq & \min\{\vartheta(a\delta x), \iota(a\delta x)\} \\ & \geq & \min\{\vartheta(a), \iota(a)\} \ (\because \ \vartheta(a\delta x) \geq \vartheta(a) \ \text{and} \ \iota(a\delta x) \geq \iota(a)) \\ & = & \vartheta(a) \end{array}
```

Thus, $\vartheta \subseteq \vartheta \circ_{\Gamma} \iota$ and hence $\vartheta \circ_{\Gamma} \iota = \vartheta$. Therefore, X is a fuzzy right multiplication Γ -semigroup. \square

Remark. Similar characterisation can be proved for fuzzy left multiplication Γ -semigroups.

4. CONCLUSION

We have proven in this paper that in a fuzzy right multiplication Γ -semigroup, some fuzzy right Γ -ideal theoretic properties are true. Some classes of Γ -semigroup such as regular Γ -semigroups, right regular Γ -semigroups, simple Γ -semigroups, cancellative Γ -semigroups, and idempotent Γ -semigroups, form subclasses of fuzzy right multiplication Γ -semigroups. For future research, one can study the condition for a semisimple Γ -semigroup to be a fuzzy right multiplication Γ -semigroup. Also, the sufficient condition for a fuzzy right multiplication Γ -semigroup to be a regular Γ -semigroup.

5. ACKNOWLEDGEMENTS

The authors are grateful to the anonymous referee for the constructive suggestions to improve the presentation of this paper.

REFERENCES

- J. A. Awolola and M. A. Ibrahim, Multiplication Γ-semigroups, Jordan J. Math. Stat., 16(3) (2023), 411–420.
- [2] W. E. Barnes, On the Γ -ring of Nobusawa, Pacific J. Math., 31 (1966), 411–422.
- [3] G. L. Booth, Operator rings of a Γ-ring, Math. Japonica, 18(2) (1986), 175–183.
- [4] T. K. Dutta, S. K. Sardar and S. K. Majumder, Fuzzy ideal extensions of Γ-semigroup, Int. Mathl. Forum, 4 (2009), 2093–2100.
- [5] T. K. Dutta and S. Chattopadhyay, On uniformly strongly prime Γ-semigroup, Analele Stiintifice Ale Universitatii "AL. I. CUZA" IASI, Tomul LII (2006), f.2, 325–335.
- [6] M. A. Ibrahim and J. A. Awolola, Some results on operator semigroups of a Γ-semigroup in terms of fuzzy subsets, Ann. Fuzzy Math. Inform, 24(1) (2022), 75–84.
- [7] S. Kyuno, On prime Γ-ring, Pacific J. Math., 75 (1978), 185–190.
- [8] J. Luh, On the theory of simple Γ -ring, Michigan Math. J., 16 (1969), 65–75.
- [9] V. L. Mannepalli and M. Satyanarayana, Multiplication semigroups III, Semigroup Forum, 12 (1964), 165– 175.
- [10] U. Mustafa, A. Mehmet and J. Y. Bae, Intuitionistic fuzzy sets in Γ-semigroups, Bull. Korean Math. Soc., 44(2) (2007), 359–367.
- [11] N. Nobusawa, On generalization of ring theory, Osaka J. Math., 1 (1964), 81-89.
- [12] N. K. Saha, On Γ-semigroups II, Bull. Cal. Math. Soc., 79 (1987), 331–335.
- [13] S. K. Sardar and S. K. Majumder, On fuzzy ideals in γ -semigroups, Int. J. of Alg., 3(16) (2009), 775–784.
- [14] M. K. Sen, On Γ-semigroups, Proc. Int. Conf. Algebra Appl., Decker Publisher, New York, (1981), 301–308.
- [15] M. K. Sen and N. K. Saha, On Γ-semigroups I, Bull. Cal. Math. Soc., 78 (1986), 180–186.
- [16] M. K. Sen and N. K. Saha, Orthodox Γ-semigroups, Int. J. Mat. Math. Soc., 13(3) (1990), 527–534.
- [17] M. K. Sen and S. Chattopadhyay, Semidirect product of a monoid and a Γ-semigroups, East-West J. Math., 6(2) (2004), 131–138.

- [18] A. Seth, Γ -group congruences on regular Γ -semigroups, Int. J. Mat. Math. Sci., 15(1) (1992), 103–106.
- [19] H. C. Shashikumar and T. R. Reddy, Fuzzification of Γ -semigroups satisfying the identity $x\alpha y\beta x=x\alpha y$, Int. J. Sci. Eng. Research, 8(5) (2017), 115–128.
- [20] V. S. Subha and P. Dhanalakshmi, Rough approximations of interval rough fuzzy ideals in Γ -semigroups, Annals of Communications in Mathematics, 3(4) (2020), 326–332.
- [21] D. R. Williams, K. B. Latha and E. Chandrasekeran, Fuzzy bi-ideals in Γ-semigroups, *Hacettepe Journal of Mathematics and Statistics*, 38(1) (2009), 1–15.

MUSA ADEKU IBRAHIM

DEPARTMENT OF MATHEMATICS, FEDERAL UNIVERSITY LOKOJA, KOGI STATE, NIGERIA *Email address*: musa.ibrahim@fulokoja.edu.ng

JOHNSON ADEREMI AWOLOLA

DEPARTMENT OF MATHEMATICS, JOSEPH SARWUAN TARKA UNIVERSITY, MAKURDI, NIGERIA *Email address*: remsonjay@yahoo.com