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ON SOMEWHAT NEUTROSOPHIC REGULAR SEMI CONTINUOUS
FUNCTIONS

E. ELAVARASAN∗, R. VIJAYALAKSHMI AND R. R. PRAVEENA

ABSTRACT. In this paper the concept of somewhat neutrosophic regular semi continuous
functions, somewhat neutrosophic regular semi-open functions are introduced and studied.
Besides giving characterizations of these functions, several interesting properties of these
functions are also given. More examples are given to illustrate the concepts introduced in
this paper.

1. INTRODUCTION

The study of fuzzy set was initiated by Zadeh [?] in 1965. Thereafter the paper of
Chang [?] paved the way for the subsequent tremendous growth of the numerous fuzzy
topology concepts. Currently Fuzzy Topology has been observed to be very beneficial in
fixing many realistic problems. Several mathematicians have tried almost all the pivotal
concepts of General Topology for extension to the fuzzy settings. In 1983, Atanassov [?]
introduced the concept of intuitionistic fuzzy set which was generalization of fuzzy set,
where besides the degree of membership and the degree of non-membership of each ele-
ment. Later, Coker [?] introduced the concept of intuitionistic fuzzy topological spaces,
by using the notion of the intuitionitic fuzzy set. Smarandache [?, ?, ?] introduced the
concept of Neutrosophic set. Neutrosophic set is classified into three independent func-
tions namely, membership function, indeterminancy and non membership function that are
independently related. In 2012, Salama and Alblowi [?, ?, ?] introduced the concept of
Neutrosophic topology. Neutrosophic topological spaces are very natural generalizations
of fuzzy topological spaces allow more general functions to be members of fuzzy topol-
ogy. In 2014, Salama et. al., [?] introduced the concept of Neutrosophic closed sets and
Neutrosophic continuous functions.

Gentry and Hoyle [?] introduced and studied the concept of somewhat open functions
which are Frolik functions with some conditions being dropped. These ideas are also
closely related to the idea of weakly equivalent topologies which was first introduced by
Yougslova [?]. Hewitt [?] introduced the concepts of resolvability and irresolvable in topo-
logical spaces. The concept of regular semiopen set was introduced by Cameron [?] in
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1978. In 2021, Vijayalakshmi and Praveena [?, ?, ?] introduced the concept of neutro-
sophic regular semiopen, neutrosophic regular semiclosed, neutrosophic regular semi con-
tinuous, neutrosophic regular semi irresolute, neutrosophic regular semi homeomorphisms
and neutrosophic regular semi C-homeomorphisms in neutrosophic topological spaces. In
this connection we have introduced the concept of somewhat neutrosophic regular semi
continuous functions and somewhat neutrosophic regular semi-open functions and studied
their properties. Also we have introduced the concept of neutrosophic regular semi resolv-
able and neutrosophic regular semi irresolvabe spaces and we have given characterizations
of neutrosophic regular semi-resolvable and neutrosophic regular semi-irresolvable spaces.
Several examples are given to illustrate the concepts introduced in this paper.

2. PRELIMINARIES

Definition 2.1. [?] Let X be a non-empty fixed set. A Neutrosophic set [for short, Ns] A is
an object having the form A = {⟨x,BA(x), σA(x), γA(x)⟩ : x ∈ X} where BA(x), σA(x)
and γA(x) which represents the degree of membership function, the degree of indetermi-
nancy and the degree of non-membership function respectively of each element x ∈ X to
the set A.

Remark. [?] A Ns A = {⟨x,BA(x), σA(x), γA(x)⟩ : x ∈ X} can be identified to an or-
dered triple A = ⟨BA(x), σA(x), γA(x)⟩ in ]−0, 1+[ on X .

Remark. [?] For the sake of simplicity, we shall use the symbol A = ⟨BA, σA, γA⟩ for the
Ns A = {⟨x,BA(x), σA(x), γA(x)⟩ : x ∈ X}.

Example 2.2. [?] Every intuitionsistic fuzzy set A is a non-empty set in X is obviously
on Ns having the form A = {⟨x,BA(x), 1−BA(x) + γA(x)⟩ : x ∈ X}. Since our
main purpose is to construct the tools for developing Neutrosophic set and Neutrosophic
topology, we must introduce the Neutrosophic sets 0N and 1N in X as follows:
0N = {⟨x, 0, 0, 1⟩ : x ∈ X} 1N = {⟨x, 1, 1, 0⟩ : x ∈ X} .

Definition 2.3. [?] Let A = ⟨(BA, σA, γA)⟩ be a Ns on X , then the complement of the set
A( Ac or C(A) for short) may be defined as C(A) = {⟨x, γA(x), 1− σA(x), BA(x)⟩ : x ∈ X} .

Definition 2.4. [?] Let X be a non-empty set and Ns’s A and B in the form A = {⟨x,BA, σA, γA⟩ :
x ∈ X} and B = {⟨x,BB , σB , γB⟩ : x ∈ X}. Then (A ⊆ B) may defined as:
(A ⊆ B) ⇔ BA(x) ⊆ BB(x), σA(x) ⊆ σB(x), γA(x) ⊇ γB(x)∀x ∈ X.

Definition 2.5. [?] Let X be a non-empty set and A = {⟨x,BA(x), σA(x), γA(x)⟩ : x ∈
X}, B = {⟨x,BB(x), σB(x), γB(x)⟩ : x ∈ X} are Ns’s. Then A ∩B and A ∪ B may
defined as:

(1) A ∩B = ⟨x,BA(x) ∧BB(x), σA(x) ∧ σB(x), γA(x) ∨ γB(x)⟩
(2) A ∪B = ⟨x,BA(x) ∨BB(x), σA(x) ∨ σB(x), γA(x) ∧ γB(x)⟩

Definition 2.6. [?] A Neutrosophic topology (for short, NT or nt) is a non-empty set X is
a family τN of neutrosophic subsets in X satisfying the following axioms:

(1) 0N , 1N ∈ τN ,
(2) G1 ∩G2 ∈ τN for any G1, G2 ∈ τN ,
(3) ∪Gi ∈ τN for every {Gi : i ∈ J} ⊆ τN .

Throughout this paper, the pair of (X, τN ) is called a neutrosophic topological space
(for short, nts). The elements of τN or τ are called neutrosophic open set (for short, nos).
A neutrosophic set F is neutrosophic closed set (for short, ncs)if and only if F c is nos.
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Definition 2.7. [?] Let (X, τN ) be nts and A = ⟨x,BA, σA, γA⟩ be a Ns in X . Then the
neutrosophic closure and neutrosophic interior of A are defined by NCl(A) = ∩{K : K
is a ncs in X and A ⊆ K}, NInt(A) = {G : G is a nos in X and G ⊆ A}. It can
be also shown that NCl(A) is ncs and NInt(A) is a nos in X . A is nos if and only if
A = NInt(A), A is ncs if and only if A = NCl(A).

Definition 2.8. Let A = {⟨x,BA(x), σA(x), γA(x)⟩ : x ∈ X} be a Ns on a nts (X, τN )
then A is called:

(1) neutrosophic regular open (for short, nro) [?] iff A = NInt(NCl(A)).
(2) neutrosophic regular closed (for short, nrc) [?] iff A = NCl(NInt(A)).
(3) neutrosophic semi-open (for short, nso) [?] iff A ⊆ NInt(NCl(A))
(4) neutrosophic semi-closed (for short, nsc) [?] iff A ⊇ NCl(NInt(A)).
(5) neutrosophic regular semiopen (for short, nrso) [?] if there exists an nro set B in

X such that B ⊆ A ⊆ NCl(B).
(6) neutrosophic regular semiclosed (for short, nrsc) [?] if there exists an nrc set B in

X and NInt(B) ⊆ A ⊆ B.

Definition 2.9. [?] Let (X, τ) be a nts. Then
(1) the neutrosophic regular semiclosure of A defined by nrscl(A) =

⋂
{B | A ⊆

B and B ∈ NRSCS(X, τ)} is a neutrosophic set.
(2) the neutrosophic regular semiinterior of A defined by nrsint(A) =

⋃
{B | B ⊆

A and B ∈ NRSOS(X, τ)} is a neutrosophic set.

Definition 2.10. [?] Let (X, τ) and (Y, σ) be any two nts’s. A map f : (X, τ) → (Y, σ) is
neutrosophic continuous (for short, NC) if the inverse image of every neutrosophic closed
set in (Y, σ) is neutrosophic closed set in (X, τ).

3. SOMEWHAT NEUTROSOPHIC REGULAR SEMI CONTINUOUS FUNCTIONS

Definition 3.1. Let (X, τ) and (Y, σ) be any two nts’s. A function f : (X, τ) → (Y, σ)
is called

(1) somewhat neutrosophic regular continuous (for short, SNRC) if for each nos R
of Y and f−1(R) ̸= 0N there exists a nro S ̸= 0N of X, such that S ⊆ f−1(R).

(2) somewhat neutrosophic regular semi continuous (for short, SNRSC) if for each
nos R of Y and f−1(R) ̸= 0N there exists a nrso S ̸= 0N of X, such that
S ⊆ f−1(R).

(3) somewhat neutrosophic semi continuous (for short, SNSC) if for each nos R of
Y and f−1(R) ̸= 0N there exists a nso S ̸= 0N of X, such that S ⊆ f−1(R).

Example 3.2. Let X = {a, b}, τ = {0N , 1N , A,B}, Y = {p, q} and σ = {0N , 1N , D},
where A and B are Ns of X and C is Ns of Y , defined as follows:
A =

〈
( µa

0.4 ,
µb

0.5 ), (
σa

0.5 ,
σa

0.5 ), (
γa

0.6 ,
γb

0.5 )
〉
,

B =
〈
( µa

0.4 ,
µb

0.5 ), (
σa

0.5 ,
σa

0.5 ), (
γa

0.4 ,
γb

0.5 )
〉
,

C =
〈
(
µp

0.5 ,
µq

0.5 ), (
σp

0.5 ,
σq

0.5 ), (
γp

0.6 ,
γq

0.5 )
〉
.

D =
〈
(
µp

0.5 ,
µq

0.5 ), (
σp

0.5 ,
σq

0.5 ), (
γp

0.6 ,
γq

0.6 )
〉
.

Clearly τ and σ are NT on X and Y . If we define the function f : X → Y as f(a) = p
and f(b) = q, then f is SNRSC. Since a nos D of Y , f−1(D) ̸= 0N , there exist a nrso
set C ̸= 0N such that C ⊆ f−1(D).

Remark. (1) Every SNRC function is SNRSC but not conversely.
(2) Every SNRSC function is SNSC but not conversely.
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Example 3.3. In Example ??, f is SNRSC but not SNRC, because C is not nrc set in
X such that C ⊆ f−1(D).

Example 3.4. Let X = {a, b} and τ = {0N , 1N , A,B}, Y = {p, q} and σ = {0N , 1N , D},
where A and B are Ns of X and C is Ns of Y , defined as follows:
A =

〈
( µa

0.3 ,
µb

0.5 ), (
σa

0.5 ,
σa

0.5 ), (
γa

0.6 ,
γb

0.5 )
〉
,

B =
〈
( µa

0.6 ,
µb

0.5 ), (
σa

0.5 ,
σa

0.5 ), (
γa

0.5 ,
γb

0.5 )
〉
,

C =
〈
(
µp

0.4 ,
µq

0.5 ), (
σp

0.5 ,
σq

0.5 ), (
γp

0.6 ,
γq

0.5 )
〉
.

D =
〈
(
µp

0.4 ,
µq

0.5 ), (
σp

0.5 ,
σq

0.5 ), (
γp

0.6 ,
γq

0.6 )
〉
.

Clearly τ and σ are NT on X and Y . If we define the function f : X → Y as f(a) = p
and f(b) = q, then f is SNSC but not SNRSC, Since for each nos D, f−1(D) ̸= 0N ,
there exist a nso set C ̸= 0N (since ∃ a nos B such that B ⊆ C ⊆ NCl(B)) such that
C ⊆ f−1(D). but C is not nrso.

Definition 3.5. A Ns R in a nts (X, τ) is called NRS-dense if there exists no nrsc set S
such that R ⊂ S ⊂ 1N .

Proposition 3.1. Let (X, τ) and (Y, σ) be any two nts’s and f : (X, τ) → (Y, σ) be a
function. Then the following are equivalent:

(1) f is SNRSC,
(2) If R is a ncs of Y such that f−1(R) ̸= 1N , then there exists a nrsc set S ̸= 1N of

X such that S ⊇ f−1(R),
(3) If R is a NRS-dense set in X , then f(R) is a NRS-dense set in Y .

Proof. (1) ⇒ (2). Suppose f is SNRSC-continuous and R is a ncs in Y such that
f−1(R) ̸= 1N . Clearly Rc is nos and f−1(Rc) = (f−1(R))c ̸= 0N (since f−1(R) ̸=
1N ). By (1), there exists a nrso set T in X such that T ⊆ f−1(Rc) = (f−1(R))c. That is,
f−1(R) ⊆ T c. Clearly T c is nrsc and taking T c = S, we find that (1) ⇒ (2) is proved.

(2) ⇒ (3). Let R be a NRS-dense set in X and suppose f(R) is not NRS-dense in Y.
Then there exists a nrsc set T (say) in Y such that

f(R) ⊂ T ⊂ 1N (3.1)

Since T ⊂ 1N , f−1(T ) ̸= 1N and so by (2) there exists a nrsc set U (U ̸= 1N ) such
that U ⊇ f−1(T ) ⊇ f−1f(R) ⊇ R [from ??]. That is, there exists a nrsc set U such that
U ⊃ R which is a contradiction to the assumption on R. Therefore (2) ⇒ (3) is proved.

(3) ⇒ (1). Suppose R ̸= 0N be a nro set and obviously nos in Y and f−1(R) ̸= 0N .
Suppose there exists no nrso set S in X such that S ⊆ f−1(R). Then (f−1(R))c is a
Ns in X such that there is no nrsc set U in X with (f−1(R))c ⊂ U ⊂ 1N . [Other-
wise (f−1(R))c ⊂ U implies U c ⊂ f−1(R) and U c is nrso, a contradiction]. That is,
(f−1(R))c is a NRS-dense set in X. Then by (3) f((f−1(R))c) is NRS-dense in (Y, σ).
But f((f−1(R))c) = f((f−1(Rc))) ⊆ Rc ⊂ 1N and f((f−1(R))c) ⊆ Rc ⊂ 1N implies
NRSCl(f((f−1(R))c)) ⊆ NRSCl(Rc). Then since f([f−1(R)]c) is NRS-dense, we
have 1N ⊆ NRSCl(Rc) = Rc [Rc is nrc ⇒ Rc is nrsc]. This implies R ⊆ 0N . That is,
R = 0N . But this a contradiction to the fact that R ̸= 0N . Therefore there exists a nrso set
S in X such that S ⊆ f−1(R). This proves that f is SNRSC. □

Remark. 3. Product of nrso sets is nrso sets.

Proposition 3.2. Let (X1, τ1), (X2, τ2), (Y1, σ1) and (Y2, σ2) be nts’s such that X1 is
product related to X2 and Y1 is product related to Y2. Let f1 : X1 → Y1 and f2 : X2 → Y2

be SNRSC. Then f1 × f2 : X1 ×X2 → Y1 × Y2 is a SNRSC.
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Proof. Let R =
⋃
i, j

(Ri × Sj) be a nos in Y1 × Y2 where Ri and Sj are nrso sets in Y1

and Y2 respectively. We can assume that Ri ̸= 0N and Sj ̸= 0N . If any one is zero, that
factor can be omitted. Now (f1 × f2)

−1(R) = (f1 × f2)
−1

( ⋃
i,j

(Ri × Sj)
)
=

⋃
i,j

(
f1 ×

f2
)−1

(Ri × Sj) =
⋃
i,j

(
f−1
1 (Ri)× f−1

2 (Sj)
)
. Since f1 : X1 → Y1 is SNRSC and Ri is

nos in Y1 and f−1
1 (R1) ̸= 0N , there exists a nrso set Ui in X1 such that Ui ⊆ f−1

1 (Ri).
Since f2 : X2 → Y2 is SNRSC and Sj is nos in Y2 and f−1

2 (Sj) ̸= 0N , there exists
a nrso set Tj in X2 such that Tj ⊆ f−1

2 (Sj). Therefore Ui × Tj ⊆ f−1
1 (Ri) × f−1

2 (Sj)

and Ui × Tj is a nrso set [Remark ??]. Also
⋃
i,j

Ui × Tj ⊆
⋃
i,j

f−1
1 (Ri) × f−1

2 (Sj) and⋃
i,j

Ui×Tj is nrso in X1×X2 [Remark ??]. That is
⋃
i,j

Ui×Tj ⊆
⋃
i,j

(f1×f1)
−1(Ri×Sj).

Thus f1 × f2 is a SNRSC. □

Lemma 3.3. Let g : X → X × Y be the graph of a function f : X → Y. If R is a Ns of
X and S is a Ns of Y, then g−1(R× S) = R ∩ f−1(S).

Proposition 3.4. Let f : (X, τ) → (Y, σ) be a function. Then, if the graph g : X →
X × Y of f is SNRSC, then f is also SNRSC.

Proof. Let R ̸= 0N be a nos in Y. Then, by Lemma ??, we have f−1(R) = 1N∩f−1(R) =
g−1(1N × R). Since g is SNRSC and 1N × R(̸= 0N ) is a nos in X × Y, there exists a
nrso set S ̸= 0N (say) of X such that S ⊆ g−1(1N ×R) = f−1(R). This proves that f is
a SNRSC function. □

Proposition 3.5. Let X , X1 and X2 be nts’s and pi : X1 ×X2 → Xi (i = 1, 2) be any
NC function. If f : X → X1 ×X2 is SNRSC, then pi ◦ f is also a SNRSC function
for i = 1, 2.

Proof. For any nos R ̸= 0N of Xi, we have (pi◦f)−1(R)= f−1
(
p−1
i (R)

)
. Now p−1

i (R) ̸=
0N (since R ̸= 0N ). Since pi is neutrosophic continuous, p−1

i (R) is nos and since f is
a SNRSC function, then there exists a nrso set S of X such that S ⊆ f−1

(
p−1
i (R)

)
=

(pi ◦ f)−1(R). Therefore pi ◦ f is a SNRSC function. □

Proposition 3.6. Let (X, τ) and (Y, σ) be any two nts’s. If the function f : (X, τ) →
(Y, σ) is SNRSC and onto and if NRSInt(R) = 0N for any Ns R ̸= 0N in (X, τ),
then NRSInt

(
f(R)

)
= 0N in (Y, σ).

Proof. Let R ̸= 0N be a Ns in (X, τ) such that NRSInt(R) = 0N . Then (NRSInt(R))c =
1N implies that NRSCl(Rc) = 1N . Since f is SNRSC and RC is NRS-dense in
(X, τ), f(Rc) is NRS-dense in (Y, σ) [by Proposition ??]. That is, NRSCl(f(Rc)) =
1N . Then NRSCl((f(R))c) = 1N . [since f is onto]. Therefore we have (NRSInr(f(R))c =
1N which implies that NRSInt(f(R)) = 0N . Hence the proposition. □

Definition 3.6. A nts (X, τ) is called a NRS-D-space if every nos R ̸= 0N of X is
NRS-dense in X.

Proposition 3.7. If f : (X, τ) → (Y, σ) is a SNRSC function from X onto Y and X is
a NRS-D-space, then Y is a NRS-D-space.

Proof. Let R ̸= 0N be a nos in Y. We want to show that R is NRS-dense in Y. Sup-
pose not. Then there exists a nrsc set S in Y such that R ⊂ S ⊂ 1N and f−1(R) ⊂
f−1(S) ⊂ f−1(1N ) = 1N . Since R ̸= 0N , f−1(R) ̸= 0N and since f is SNRSC, there
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exists a nrso set T ̸= 0N in X such that T ⊂ f−1(R) and T ⊂ f−1(R) ⊂ f−1(S) ⊂
NRSCl(f−1(S)) ⊂ 1N . That is, T ⊂ NRSCl(f−1(S)) ⊂ 1N . This contradicts the fact
that (X, τ) is a NRS-D-space and it proves that Y is a NRS-D-space. □

Definition 3.7. Let (X, τ) and (Y, σ) be any two nts’s. A function f : (X, τ) → (Y, σ)
is called somewhat neutrosophic regular semi open function (for short, SNRS-O) if for
each nos R and R ̸= 0N , there exists a nrso set S ̸= 0N of (Y, σ) such that S ⊆ f(R).

Example 3.8. In Example ??, f : Y → X as f(p) = a and f(q) = b, then f is SNRS-O.
Since a nos D ̸= 0N of Y , there exist a nrso set C ̸= 0N of X such that C ⊆ f(D).

Proposition 3.8. Let (X, τ), (Y, σ) and (Z, γ) be nts’s. Suppose that f : (X, τ) →
(Y, σ) is neutrosophic open and g : (Y, σ) → (Z, γ) is SNRS-O, then g ◦f : (X, τ) →
(Z, γ) is SNRS-O.

Proof. Straightforward. □

Proposition 3.9. Suppose that (X, τ) and (Y, σ) be nts’s. Let f : (X, τ) → (Y, σ) be
an onto function. Then the following conditions are equivalent:

(1) f is SNRS-O.
(2) If R is a NRS-dense set in Y, then f−1(R) is a NRS-dense set in X .

Proof. (1) ⇒ (2). Assume (1). Suppose R is a NRS-dense set in Y. We want to show
that f−1(R) is a NRS-dense set in X. Suppose not. Then there exists a nrsc set S in X
such that f−1(R) ⊂ S ⊂ 1N . Since f is SNRS-O and Sc is nrso, there exists a nrso set
T ̸= 0N in Y such that T ⊂ f(Sc). Therefore T ⊂ f(Sc) ⊂ f(f−1(Rc)) ⊆ Rc. That is,
R ⊂ T c ⊂ 1N (since T ̸= 0N ). Now T c ̸= 0N is a nrsc set and R ⊂ T c ⊂ 1N ⇒ R is not
a NRS-dense set in Y, which is a contraction. Therefore f−1(R) must be a NRS-dense
set in X. This prove (1) ⇒ (2).

(2) ⇒ (1). Assume (2). Suppose for a nro set (obviously nos) R and R ̸= 0N .
We want to show that NRSInt(f(R)) ̸= 0N . Suppose NRSInt(f(R)) = 0N . Now
NRSC((f(R))c) = (NRSInt(f(R)))c = 1c. That is (f(R))c is NRS-dense in Y.
Therefore by assumption (2), f−1((f(R))c) is NRS-dense in X. But f−1((f(R))c) =
(f−1(f(R)))c ⊆ Rc. Then we have NRSCl(f−1((f(R))c)) ⊆ NRSCl(Rc) = Rc

[since Rc is nrc set ⇒ Rc is nrsc set]. That is, 1N ⊆ Rc. Then R ⊆ 0N . That is, R = 0N
which is a contradiction to R ̸= 0N . Therefore NRSInt(f(R)) ̸= 0N . This proves that f
is SNRS-O. □

Proposition 3.10. Suppose (X, τ) and (Y, σ) be nts’s. Let the function f : (X, τ) →
(Y, σ) be a bijection function. Then the following are equivalent:

(1) f is SNRS-O.
(2) If R is a ncs in X such that f(R) ̸= 1N , then there exists a nrsc set S in Y such

that S ̸= 1N and S ⊃ f(R).

Proof. (1) ⇒ (2): Let S be a ncs on X such that f(S) ̸= 1N . Since f is bijective and Sc is
a nos on X , f(Sc) = (f(S))c ̸= 0N . From the definition, there exists a nrso set U ̸= 0N
on Y such that U ⊂ f(Sc) = (f(S))c. Consequently, f(S) ⊂ U c = V ̸= 1N and V is a
nrsc set on Y.

(2) ⇒ (1): Let S be a nos on X such that f(S) ̸= 0N . Then Sc is a ncs on X and
f(Sc) ̸= 1N . Hence there exists a nrsc set V ̸= 1N on Y such that f(Sc) ⊂ V. Since f
is bijective, f(Sc) = (f(S))c ⊂ V. Thus V c ⊂ f(S) and V c ̸= 0c is a nrso set on Y.
Therefore, f is SNRS-O. □
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Proposition 3.11. Let (X, τ) and (Y, σ) be any two nts’s. If the function f : (X, τ) →
(Y, σ) is SNRS-open and if NRSInt(R) = 0N for any Ns R ̸= 0N in (Y, σ), then
NRSInt(f−1(R)) = 0N in (X, τ).

Proof. Let R ̸= 0N be a Ns in (Y, σ) such that NRSInt(R) = 0N . Then (NRSInt(R))c =
1N implies that NRSCl(Rc) = 1N . Since the function f is SNRS-O and Rc is NRS-
dense in (Y, σ), f−1(Rc) is NRS-dense in (X, τ) [by Proposition ??]. That is, NRSCl(f−1(Rc)) =
1N . Then NRSCl([f−1(R))c) = 1N . Therefore (NRSInt(f−1(R)))c = 1N implies
that NRSInt(f−1(R)) = 0N . Hence the proposition. □

4. NEUTROSOPHIC REGULAR SEMI RESOLVABLE AND IRRESOLVABLE SPACES

Definition 4.1. A nts (X, τ) is said to be NRS-resolvable if there exists a NRS-dense
set R ̸= 0N in (X, τ) such that NRSCl(Rc) = 1N . Otherwise (X, τ) is called a NRS-
irresolvable space.

Proposition 4.1. A nts (X, τ) is a NRS-resolvable space if and only if (X, τ) has a pair
of NRS-dense sets R1 and R2 such that R1 ⊆ R2

c.

Proof. Let (X, τ) be a NRS-resolvable space. Suppose that for all NRS-dense sets
Ri and Rj , we have Ri ̸⊆ Rj

c. Then we have Ri ⊃ Rj
c for some i and j. Then,

we have NRSCl(Ri) ⊃ NRSCl(Rj
c) which implies that 1N ⊃ NRSCl(Rj

c). Then
NRSCl(Rj

c) ̸= 1N . Also Rj ⊃ Ri
c. Then NRSCl(Rj) ⊃ NRSCl(Ri

c) which im-
plies that 1N ⊃ NRSCl(Ri

c). Then NRSCl(Ri
c) ̸= 1N . Hence NRSCl(Ri) = 1N ,

but NRSCl(Ri
c) ̸= 1N for all NRS-dense sets Ri in (X, τ), which is a contradiction to

(X, τ) being a NRS-resolvable space. Therefore (X, τ) has a pair of NRS-dense sets
R1 and R2 such that R1 ⊆ R2

c.
Conversely, suppose that the nts (X, τ) has a pair of NRS-dense sets R1 and R2,

such that R1 ⊆ R2
c. We want to show that (X, τ) is NRS-resolvable. Suppose that

(X, τ) is a NRS-irresolvable space. Then for all NRS-dense sets Ri in (X, τ), we have
NRSCl(Ri

c) ̸= 1N . In particular NRSCl(R2
c) ̸= 1N implies that there exist a nrsc set

S in (X, τ) such that (R2
c) ⊂ S ⊂ 1N . Then R1 ⊆ R2

c ⊂ S ⊂ 1N ⇒ R1 ⊂ S ⊂ 1N ,
which is a contradiction to NRSCl(R1) = 1N . Hence our assumption that (X, τ) is a
NRS-irresolvable space, is wrong. Hence (X, τ) is a NRS-resolvable space. □

Proposition 4.2. A nts (X, τ) is a NRS-resolvable space if
i=n⋃
i=1

Ri = 1N where NRSInt(Ri) =

0N .

Proof.
n⋃

i=1

Ri = 1N where NRSInt(Ri) = 0N , implies that (
n⋃

i=1

Ri)
c = 0N . Then we

have
n⋂

i=1

(Ri
c) = 0N . Then there must be at least two non-zero disjoint Ns’s (Ri)

c, (Rj)
c

in (X, τ). Hence ((Ri)
c) + ((Rj)

c) ⊆ 1N . Therefore ((Ri)
c) ⊆ Rj which implies that

NRSCl((Ri)
c) ⊆ NRSCl(Rj). But NRSInt(Ri) = 0N implies that NRSCl((Ri)

c) =
1N . Hence 1N ⊆ NRSCl(Rj) which implies that NRSCl(Rj) = 1N . Also NRSInt(Rj) =
0N implies that NRSCl((Rj)

c) = 1N . Therefore (X, τ) has a NRS-dense set Rj such
that NRSCl((Rj)

c) = 1N . Hence (X, τ) is a NRS-resolvable space. □

Proposition 4.3. If (X, τ) is NRS-irresolvable if and only if NRSInt(R) ̸= 0N for all
NRS-dense sets R in (X, τ).
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Proof. Since (X, τ) is NRS-irresolvable, for all NRS-dense sets R in (X, τ), we have
NRSCl(Rc) ̸= 1N . Then (NRSInt(R))c ̸= 1N implies that NRSInt(R) ̸= 0N .

Conversely, let NRSInt(R) ̸= 0N for each NRS-dense set R in (X, τ). Suppose that
(X, τ) is NRS-resolvable. Then there exists a NRS-dense set R ̸= 0N in (X, τ) such that
NRSCl(Rc) = 1N . Then we have NRSInt(R) = 1N and therefore NRSInt(R) = 0N
which is a contradiction. Hence (X, τ) is a NRS-irresolvable space. □

5. FUNCTIONS AND NEUTROSOPHIC REGULAR SEMI IRRESOLVABLE SPACES

Definition 5.1. A function f : (X, τ) → (Y, σ) is said to be weakly somewhat neutro-
sophic regular semi open function (for short, WSNRSO)if for each NRS-dense set R in
(Y, σ) with NRSInt(R) ̸= 0N , we have that f−1(R) is also a NRS-dense set in (X, τ).

The above definition leads to a characterization of NRS-irresolvable space as follows:

Proposition 5.1. The following statements are equivalent for a nts (Y, σ).
(1) (Y, σ) is NRS-irresolvable.
(2) For every nts (X, τ), every WSNRSO function f : (X, τ) → (Y, σ) is SNRS-

O.

Proof. (1) ⇒ (2) Let f : (X, τ) → (Y, σ) be a WSNRSO function from a nts (X, τ)
to a NRS-irresolvable space (Y, σ). Since (Y, σ) is NRS-irresolvable space, (Y, σ) has
a pair of NRS-dense sets R1 and R2 such that R1 ̸⊆ (R2)

c. Now NRSInt(R1) ̸= 0N
and NRSInt(R2) ̸= 0N . For, if NRSInt(R1) = 0N then, (NRSCl((R1)

c))c = 0N .
Now R1 ⊃ (R2)

c ⇒ R2 ⊃ (R1)
c. Therefore NRSCl(R2) ⊃ NRSCl((R1)

c). In other
words (NRSCl(R2))

c ⊂ (NRSCl((R1)
c))c = 0N . Then 1N ⊂ NRSCl(R2) implies

1N ⊂ 1N , which is a contradiction. Therefore NRSInt(R1) ̸= 0N . Similarly we can have
NRSInt(R2) ̸= 0N . Since f is WSNRSO, f−1(R1) and f−1(R2) are NRS-dense sets
in (X, τ). Therefore by Proposition ?? f is WSNRSO.

(2) ⇒ (1) Suppose that nts (Y, σ) is NRS-resolvable. This means that there exists
a pair of NRS-dense sets R1 and R2 such that R1 ⊆ [R2]

c. Define f : (X, τ) →
(Y, σ) to be the identity function. Then f is not SNRS-O, since f−1(R2) is not a
NRS-dense set in (Y, τ). For, f−1(R2) = R2 and R2 ⊆ (R1)

c ̸= 1N . Then R2 ⊆
(R1)

c ⇒ NRSCl(R2) ⊆ NRSCl((R1)
c). Since (R1)

c is nrc set and hence nrsc in
(Y, τ), NRSCl(R2) ̸= 1N . That is, R2 is not a NRS-dense set. We shall now show that
f is WSNRSO. Let R be any NRS-dense set in (Y, σ) such that NRSInt(R) ̸= 0N .
Then f−1(R) = R. We have to show that NRSCl[f−1(R)] = NRSCl(R) = 1N
in (Y, τ). Now NRSInt(R) ̸= 0N and R1 is NRS-dense implies that R ̸⊆ (R1)

c.
Therefore NRSCl(R) = 1N . That is, R is NRS-dense in (Y, τ). This proves that f is
WSNRSO. Hence (2) ⇒ (1) is proved. □

Proposition 5.2. Let (X, τ) and (Y, σ) be any two nts’s. Let f : (X, τ) → (Y, σ) be
a SNRS-O function. If (X, τ) is a NRS-irresolvable space, then (Y, σ) is a NRS-
irresolvable space.

Proof. Let R ̸= 0N be an arbitrary neutrosophic set in (Y, σ) such that NRSCl(R) = 1N .
We claim that NRSInt(R) ̸= 0N . Assume the contrary. That is, NRSInt(R) = 0N .
Then by Proposition ??, we have NRSInt(f−1(R)) = 0N in (X, τ). Now R is NRS-
dense in (Y, σ), then by Proposition ??, we have f−1(R) is NRS-dense in (X, τ). There-
fore for the NRS-dense that f−1(R), we have NRSInt(f−1(R)) = 0N in (X, τ), which
is a contradiction [since (X, τ) is NRS-irresolvable, by Proposition ?? NRSInt(R) ̸=
0N for all NRS-dense sets R in (X, τ)]. Hence we must have NRSInt(R) ̸= 0N for
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all NRS-dense sets R in (Y, σ). Hence by Proposition ??, (Y, σ) is a NRS-irresolvable
space. □

Proposition 5.3. Let (X, τ) and (Y, σ) be any two nts’s and f : (X, τ) → (Y, σ) be
a SNRSC and onto function. If (Y, σ) is a NRS-irresolvable space, then (X, τ) is a
NRS-irresolvable space.

Proof. Let R ̸= 0N be an arbitrary neutrosophic set in (X, τ) such that NRSCl(R) =
1N . We claim that NRSInt(R) ̸= 0N . Assume the contrary. That is, NRSInt(R) =
0N . Then by Proposition ??, we have NRSInt(f(R)) = 0N . Now R is NRS-dense in
(X, τ), then by Proposition ??, we have f(R) is NRS-dense in (Y, σ). Therefore for the
NRS-dense set f(R) in (Y, σ), we have NRSInt(f(R)) = 0N , which is a contradiction
[since (Y, σ) is NRS-irresolvable, NRSInt(S) ̸= 0N for all NRS-dense sets S in
(X, τ)]. Therefore we must have NRSInt(R) ̸= 0N for all NRS-dense sets R in (Y, τ).
Hence by Proposition ??, the nts (X, τ) is a NRS-irresolvable space. □

6. CONCLUSIONS

In this paper, the concept of somewhat neutrosophic regular semi continuous, somewhat
neutrosophic regular semi-open functions are introduced and studied. Besides giving char-
acterizations of these functions, several interesting properties of these functions are also
given. More examples are given to illustrate the concepts introduced in this paper. In fu-
ture, we can be extended to somewhat neutrosophic regular semi irresolute, somewhat neu-
trosophic regular semi irresolute homeomorphisms, somewhat neutrosophic regular semi
contra continuous, neutrosophic regular semi compact and connected in nts.
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