Annals of Communications in Mathematics

Volume 7, Number 4 (2024), 451-454 DOI: 10.62072/acm.2024.070411

ISSN: 2582-0818

© http://www.technoskypub.com

ON THE RIEMANN PROBLEM

ALEXANDER G. RAMM

ABSTRACT. The Riemann problem is stated as follows: find an analytic in a domain $D_+\cup D_-$ function $\Phi(z)$ such that (*) $\Phi^+(t)=G(t)\Phi^-(t)+g(t),\ t\in S$. Here S is the boundary of $D_+,\ D_-$ complements the complex plane to $D_+\cup S$, the functions G=G(t) and g=g(t) belong to $H^\mu(S)$, the space of Hölder-continuous functions. The theory of problem (*) is developed also for continuous G. If $G=1,\ S\in C^\infty$ and g is a tempered distribution, then problem (*) has a solution in tempered distributions. It is proved that problem (*) for $G\in L_p(S)$ and g a tempered distribution does not make sense. It is proved that if $G\in C^\infty(S),\ G\neq 0$ on S, and g is a distribution of the class \mathcal{D}' , then the Riemann problem makes sense and a method for solving this problem is given. It is proved that if $S=\mathbb{R}=(-\infty,\infty)$ and $G\in L_p(\mathbb{R})$, where $p\geq 1$ is a fixed number, then $|\ln G|$ does not belong to $L_q(\mathbb{R})$ for any $q\geq 1$.

1. Introduction

There is a large literature on the boundary value problems for analytic functions, see [1], [5]. The problem discussed in our paper is the Riemann problem. It consists of finding a piece-wise analytic function $\Phi(z)$ from the boundary condition:

$$\Phi^{+}(t) = G(t)\Phi^{-}(t) + g(t), \quad t \in S.$$
(1.1)

Here $\Phi(z)$ is analytic in the domain $D_+ \cup D_-$, S is the boundary of D_+ , D_- is the complement to $D_+ \cup S$ in the complex plane. For simplicity we assume that D_+ is a bounded connected domain and $S \in C^{\infty}$ is its closed smooth boundary. The $\Phi^+(t)$ is the limiting value of $\Phi(z)$ as $z \to t$, $t \in S$, z tends to t along the interior normal N_t to S at the point t. Similarly $\Phi^-(t)$ is defined.

Our aim is to investigate under what non-smooth assumptions on G and g problem (1.1) can or cannot make sense.

Let us recall the known results about Riemann problem (1.1), see [1], [5]. If G=1, then

$$\Phi(z) = \frac{1}{2\pi i} \int_{S} \frac{g(s)ds}{s-z}.$$
(1.2)

²⁰²⁰ Mathematics Subject Classification. 45E05.

Key words and phrases. singular integral operators; Riemann problem; boundary values of analytic functions; analytic functions.

Received: November 07, 2024. Accepted: December 20, 2024. Published: December 31, 2024.

This formula solves problem (1.1) even if g is a tempered distribution, see [7]. It is proved in [6], [7], that

$$\Phi^{+}(t) = \Phi(t) + \frac{g(t)}{2}, \quad \Phi^{-}(t) = \Phi(t) - \frac{g(t)}{2},$$
(1.3)

and

$$\Phi(t) = Bg := \frac{1}{i\pi} \int_{S} \frac{g(s)ds}{s-t}.$$
(1.4)

The operator B on the space of tempered distributions S' is defined, see [7], as

$$(Bg, \psi) = -(g, B\psi), \quad \psi \in C^{\infty}(S), \tag{1.5}$$

where ψ is the test function and the (g, ψ) is the value of the linear functional on $C^{\infty}(S)$ on the test function ψ . The sign minus in formula (1.5) should be clear because for g smooth the necessity of this sign is obvious. If we assume that the boundary S is infinitely smooth, then $B\psi \in C^{\infty}(S)$ provided that $\psi \in C^{\infty}(S)$.

If $G \in H^{\mu}$ and $g \in H^{\mu}$, where H^{μ} is the space of Hölder-continuous functions ([1]), then to solve problem (1.1) one proceeds as in [1]. Define the index of G as follows:

$$ind G = \nu := \frac{1}{2\pi} \Delta_S arg G := \frac{1}{2\pi} \int_S d \, arg G, \tag{1.6}$$

where arg G is the argument of G.

Assume for simplicity that $\nu=0$ and G does not vanish on S. The case of ν equal to some integer is reduced to the case $\nu=0$ as in [1]. If $\nu=0$, one can solve problem (1.1) with g=0 by taking logarithm and getting problem (1.1) with G=1:

$$\ln \Phi^+ = \ln \Phi^- + \ln G. \tag{1.7}$$

Since $ind G = \nu = 0$, the function $\Phi(z)$ does not have zeros in D^+ and in D^- , so the function $\ln \Phi(z)$ is analytic in D^+ and in D^- . Therefore,

$$\ln \Phi(z) = \frac{1}{2\pi i} \int_{S} \frac{\ln G(s)ds}{s-z} := \Gamma(z). \tag{1.8}$$

Let us denote

$$X(z) := e^{\Gamma(z)}, \quad X^{\pm}(t) := e^{\Gamma_{\pm}(t)}.$$
 (1.9)

Then

$$G(t) = \frac{X^{+}(t)}{X^{-}(t)}. (1.10)$$

Since $\Gamma(\infty) = 0$, one has $X(\infty) = 1$. Problem (1.1) can be written as

$$\frac{\Phi^+}{X^+} = \frac{\Phi^-}{X^-} + \frac{g}{X^+}. ag{1.11}$$

If X^{\pm} are bounded and $\min_{s \in S} |X^{\pm}(s)| \ge \epsilon > 0$, then $\frac{g(t)}{X^{+}(t)} \in L_p(S)$ if $g \in L_p(S)$. But if g is a tempered distribution on S, then $\frac{g(t)}{X^{+}(t)}$ is not a tempered distribution on S because $\frac{\psi}{X^{+}(t)}$ is not, in general, a $C^{\infty}(S)$ function, so it is not a test function for a tempered distribution, see [3] for the properties of tempered distributions.

The conclusion is:

If g is a tempered distribution, then $\frac{g(t)}{X^+(t)}$ is not, in general, a tempered distribution on S if X^+ is not a $C^{\infty}(S)$ function bounded away from zero.

Under the same assumptions, namely, $S \in C^{\infty}(S)$, $G \in C^{\infty}(S)$ and $X^{+} \neq 0$ on S, the above argument shows that the Riemann problem makes sense for $g \in \mathcal{D}'$.

The distributions of classes S' and \mathcal{D}' are studied in [2]

2. A SPECIAL RESULT

Consider the following question:

Suppose $S = (-\infty, \infty) := \mathbb{R}$ and D_+ is the upper half-plane of the complex plane.

Problem. If $G \in L_p := L_p(\mathbb{R})$, $p \ge 1$ is a fixed number, can $\ln G$ belong to $L_q = L_q(\mathbb{R})$ for some $q \ge 1$?

Theorem 1. The answer is no.

Proof. If $|G| \in L_p$, then for an arbitrary fixed $\epsilon \in (0,1)$ one has

$$measE_{\epsilon} = \infty,$$
 (2.1)

where

$$E_{\epsilon} = meas\{x, x \in \mathbb{R}, |G(x)| \le \epsilon\}. \tag{2.2}$$

Therefore,

$$\ln|G(x)| \le \ln\epsilon = -\ln\frac{1}{\epsilon}.$$
(2.3)

So,

$$|\ln|G|| = -\ln|G| \ge \ln\frac{1}{\epsilon}.$$
(2.4)

Consequently,

$$\int_{\mathbb{R}} |\ln |G(s)||^q ds \ge \int_{E_{\epsilon}} |\ln |G(s)||^q ds \ge (\ln \frac{1}{\epsilon})^q \operatorname{meas} E_{\epsilon} = \infty.$$
 (2.5)

This means that $|\ln |G||$ does not belong to L_q for any $q \ge 1$.

Theorem 1 is proved.

3. CONCLUSION AND DISCUSSION

The Riemann problem is stated as follows: find an analytic in a domain $D_+ \cup D_-$ function $\Phi(z)$ such that (*) $\Phi^+(t) = G(t)\Phi^-(t) + g(t)$ $t \in S$. Here S is the boundary of D^+, D^- complements the complex plane to $D^+ \cup S$, the functions G = G(t) and g = g(t) belong to $H^\mu(S)$, the space of Hölder-continuous functions. The theory of problem (*) is developed also for continuous G.

If G=1 and g is a tempered distribution, then problem (*) has a solution in tempered distributions. The generalization to $G \in L_p(S)$ and g a tempered distribution is not possible.

A similar result is valid for $G \in C^{\infty}(S)$, $G(s) \neq 0$ on S, and g is a tempered distribution or $g \in \mathcal{D}'$.

It is proved that if $S=\mathbb{R}=(-\infty,\infty)$ and $G\in L_p(\mathbb{R})$, where $p\geq 1$ is a fixed number, then $|\ln G|$ does not belong to $L_q(\mathbb{R})$ for any $q\geq 1$.

Disclosure statement. There are no competing interests to declare. There is no financial support for this work.

Conflict of interest. There is no conflict of interest.

REFERENCES

- [1] F. Gahov, Boundary value problems, Nauka, Moscow, 1977. (in Russian)
- [2] I. Gel'fand, G. Shilov, Generalized functions, Vol. 1, Gos. Izdat. Fiz.-Math. Lit., Moscow, 1959. (In Russian)
- [3] L. Hörmander, The analysis of linear partial differential operators I, Springer-Verlag, 6 New York, 1983.
- [4] S. Mikhlin, S. Prössdorf, Singular integral operators, Springer-Verlag, New York, 1986.
- [5] N. Muskhelishvili, Singular integral equations, Nauka, Moscow, 1968. (In Russian)
- [6] A.G. Ramm, Boundary values of analytic functions, Far East Journal of Appl. Math., 116, N3, (2023), 215-227.
- [7] A.G. Ramm, New definition of singular integral operator, Annals of Communications in Mathematics, Volume 6, Number 4 (2023), 220-224.

ALEXANDER G. RAMM

DEPARTMENT OF MATHEMATICS, KANSAS STATE UNIVERSITY, MANHATTAN, KS 66506, USA.

Email address: ramm@ksu.edu