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ON THE RIEMANN PROBLEM

ALEXANDER G. RAMM

ABSTRACT. The Riemann problem is stated as follows: find an analytic in a domain
D+ ∪ D− function Φ(z) such that (∗) Φ+(t) = G(t)Φ−(t) + g(t), t ∈ S. Here S

is the boundary of D+, D− complements the complex plane to D+ ∪ S, the functions
G = G(t) and g = g(t) belong to Hµ(S), the space of Hölder-continuous functions.
The theory of problem (*) is developed also for continuous G. If G = 1, S ∈ C∞ and
g is a tempered distribution, then problem (∗) has a solution in tempered distributions. It
is proved that problem (∗) for G ∈ Lp(S) and g a tempered distribution does not make
sense. It is proved that if G ∈ C∞(S), G ̸= 0 on S, and g is a distribution of the class D′,
then the Riemann problem makes sense and a method for solving this problem is given. It
is proved that if S = R = (−∞,∞) and G ∈ Lp(R), where p ≥ 1 is a fixed number,
then | ln G| does not belong to Lq(R) for any q ≥ 1.

1. INTRODUCTION

There is a large literature on the boundary value problems for analytic functions, see
[1], [5]. The problem discussed in our paper is the Riemann problem. It consists of finding
a piece-wise analytic function Φ(z) from the boundary condition:

Φ+(t) = G(t)Φ−(t) + g(t), t ∈ S. (1.1)

Here Φ(z) is analytic in the domain D+ ∪ D−, S is the boundary of D+, D− is the
complement to D+ ∪ S in the complex plane. For simplicity we assume that D+ is a
bounded connected domain and S ∈ C∞ is its closed smooth boundary. The Φ+(t) is the
limiting value of Φ(z) as z → t, t ∈ S, z tends to t along the interior normal Nt to S at
the point t. Similarly Φ−(t) is defined.

Our aim is to investigate under what non-smooth assumptions onG and g problem (1.1)
can or cannot make sense.

Let us recall the known results about Riemann problem (1.1), see [1], [5]. If G = 1,
then

Φ(z) =
1

2πi

∫
S

g(s)ds

s− z
. (1.2)
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This formula solves problem (1.1) even if g is a tempered distribution, see [7]. It is proved
in [6], [7], that

Φ+(t) = Φ(t) +
g(t)

2
, Φ−(t) = Φ(t)− g(t)

2
, (1.3)

and

Φ(t) = Bg :=
1

iπ

∫
S

g(s)ds

s− t
. (1.4)

The operator B on the space of tempered distributions S ′ is defined, see [7], as

(Bg, ψ) = −(g,Bψ), ψ ∈ C∞(S), (1.5)

where ψ is the test function and the (g, ψ) is the value of the linear functional onC∞(S) on
the test function ψ. The sign minus in formula (1.5) should be clear because for g smooth
the necessity of this sign is obvious. If we assume that the boundary S is infinitely smooth,
then Bψ ∈ C∞(S) provided that ψ ∈ C∞(S).

If G ∈ Hµ and g ∈ Hµ, where Hµ is the space of Hölder-continuous functions ([1]),
then to solve problem (1.1) one proceeds as in [1]. Define the index of G as follows:

indG = ν :=
1

2π
∆SargG :=

1

2π

∫
S

d argG, (1.6)

where arg G is the argument of G.
Assume for simplicity that ν = 0 and G does not vanish on S. The case of ν equal to

some integer is reduced to the case ν = 0 as in [1]. If ν = 0, one can solve problem (1.1)
with g = 0 by taking logarithm and getting problem (1.1) with G = 1:

lnΦ+ = lnΦ− + lnG. (1.7)

Since indG = ν = 0, the function Φ(z) does not have zeros in D+ and in D−, so the
function lnΦ(z) is analytic in D+ and in D−. Therefore,

lnΦ(z) =
1

2πi

∫
S

lnG(s)ds

s− z
:= Γ(z). (1.8)

Let us denote
X(z) := eΓ(z), X±(t) := eΓ±(t). (1.9)

Then

G(t) =
X+(t)

X−(t)
. (1.10)

Since Γ(∞) = 0, one has X(∞) = 1. Problem (1.1) can be written as

Φ+

X+
=

Φ−

X− +
g

X+
. (1.11)

If X± are bounded and mins∈S |X±(s)| ≥ ϵ > 0, then g(t)
X+(t) ∈ Lp(S) if g ∈ Lp(S). But

if g is a tempered distribution on S, then g(t)
X+(t) is not a tempered distribution on S because

ψ
X+(t) is not, in general, a C∞(S) function, so it is not a test function for a tempered
distribution, see [3] for the properties of tempered distributions.

The conclusion is:
If g is a tempered distribution, then g(t)

X+(t) is not, in general, a tempered distribution on
S if X+ is not a C∞(S) function bounded away from zero.

Under the same assumptions, namely, S ∈ C∞(S), G ∈ C∞(S) and X+ ̸= 0 on S,
the above argument shows that the Riemann problem makes sense for g ∈ D′.
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The distributions of classes S′ and D′ are studied in [2]

2. A SPECIAL RESULT

Consider the following question:
Suppose S = (−∞,∞) := R and D+ is the upper half-plane of the complex plane.

Problem. If G ∈ Lp := Lp(R), p ≥ 1 is a fixed number, can lnG belong to
Lq = Lq(R) for some q ≥ 1?

Theorem 1. The answer is no.

Proof. If |G| ∈ Lp, then for an arbitrary fixed ϵ ∈ (0, 1) one has

measEϵ = ∞, (2.1)

where
Eϵ = meas{x, x ∈ R, |G(x)| ≤ ϵ}. (2.2)

Therefore,

ln |G(x)| ≤ ln ϵ = − ln
1

ϵ
. (2.3)

So,

| ln |G|| = − ln |G| ≥ ln
1

ϵ
. (2.4)

Consequently,∫
R
| ln |G(s)||qds ≥

∫
Eϵ

| ln |G(s)||qds ≥ (ln
1

ϵ
)qmeasEϵ = ∞. (2.5)

This means that | ln |G|| does not belong to Lq for any q ≥ 1.
Theorem 1 is proved. 2

3. CONCLUSION AND DISCUSSION

The Riemann problem is stated as follows: find an analytic in a domain D+ ∪ D−
function Φ(z) such that (∗) Φ+(t) = G(t)Φ−(t) + g(t) t ∈ S. Here S is the boundary of
D+,D− complements the complex plane toD+∪S, the functionsG = G(t) and g = g(t)
belong to Hµ(S), the space of Hölder-continuous functions. The theory of problem (*) is
developed also for continuous G.

If G = 1 and g is a tempered distribution, then problem (∗) has a solution in tem-
pered distributions. The generalization to G ∈ Lp(S) and g a tempered distribution is not
possible.

A similar result is valid for G ∈ C∞(S), G(s) ̸= 0 on S, and g is a tempered distribu-
tion or g ∈ D′.

It is proved that if S = R = (−∞,∞) and G ∈ Lp(R), where p ≥ 1 is a fixed number,
then | ln G| does not belong to Lq(R) for any q ≥ 1.
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