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NEUTROSOPHIC WEAKLY REGULAR SEMI CONTINUOUS FUNCTIONS

E. ELAVARASAN∗, R. VIJAYALAKSHMI AND R. R. PRAVEENA

ABSTRACT. In this paper, we introduce the concept of neutrosophic weakly regular semi
continuous, neutrosophic regular semi q-neighbourhood in neutrosophic topological spaces.
Also, we investigate the relationship among neutrosophic weakly regular semi continuous
and other existing continuous functions. Moreover, some counter examples to show that
these types of mappings are not equivalent. Finally, Neutrosophic retracts, neutrosophic
regular semi retracts, neutrosophic regular semi quasi Urysohn space and neutrosophic
regular semi Hausdorff spaces are introduced and studied.

1. INTRODUCTION

The study of fuzzy sets was initiated by Zadeh [18] in 1965. Thereafter the paper of
Chang [3] paved the way for the subsequent tremendous growth of the numerous fuzzy
topological concepts. Currently fuzzy topology has been observed to be very beneficial in
fixing many realistic problems. Several mathematicians have tried almost all the pivotal
concepts of General Topology for extension to the fuzzy settings. In 1983, Atanassov [1]
introduced the concept of intuitionistic fuzzy set which was generalization of fuzzy set,
where besides the degree of membership and the degree of non-membership of each ele-
ment. Later, Coker [5] introduced the concept of intuitionistic topological spaces, by using
the notion of the intuitionitic fuzzy set. Smarandache [8, 9, 10] introduced the concept of
neutrosophic set. Neutrosophic set is classified into three independent functions namely,
membership function, indeterminacy and non membership function that are independently
related. In 2012, Salama and Alblowi [12, 13, 14] introduced the concept of neutrosophic
topology. Neutrosophic topological spaces are very natural generalizations of fuzzy topo-
logical spaces allow more general functions to be members of fuzzy topology. In 2014,
Salama et. al., [13] introduced the concept of neutrosophic closed sets and neutrosophic
continuous functions.

In general topology, the concept of regular semiopen set was introduced by Cameron
[2] in 1978. In 2021, Praveena and Vijayalakshmi [15, 16] introduced the concept of neu-
trosophic regular semiopen and neutrosophic regular semiclosed sets, neutrosophic regular

2010 Mathematics Subject Classification. 03E72, 54A10, 54A40.
Key words and phrases. NWRSC, NRS-q-nbd, N -retracts, NRS-retracts, NRS-quasi Urysohn space,

NRS-Hausdorff space.
Received: October 29, 2024. Accepted: December 19, 2024. Published: December 31, 2024.
*Corresponding author.

439

https://doi.org/10.62072/acm.2024.070410


440 E. ELAVARASAN, R. VIJAYALAKSHMI AND R. R. PRAVEENA

semi continuous, neutrosophic regular semi open , neutrosophic regular semi closed, neu-
trosophic regular semi irresolute mapping in neutrosophic topological spaces. Recently,
Elavarasan et. al., [6, 7] introduced neutrosophic regular semi Baire spaces and some-
what neutrosophic regular semi continuous, neutrosophic regular semi resolvable and ir-
resolvable spaces. In this paper, we introduce the concept of neutrosophic weakly regular
semi continuous, neutrosophic regular semi q-neighbourhood in neutrosophic topological
spaces. Also, we investigate the relationship among neutrosophic weakly regular semi
continuous and other existing continuous functions. Moreover, some counter examples
to show that these types of mappings are not equivalent. Finally, Neutrosophic retracts,
neutrosophic regular semi retracts, neutrosophic regular semi quasi Urysohn space and
neutrosophic regular semi Hausdorff spaces are introduced and studied.

2. PRELIMINARIES

In this section, we recollect some relevant basic preliminaries about Neutrosophic sets
and its operations.

Definition 2.1. [12] Let X be a non-empty fixed set. A Neutrosophic set [for short,
Ns] A is an object having the form A = {⟨x, µA(x), σA(x), γA(x)⟩ : x ∈ X} where
µA(x), σA(x) and γA(x) which represents the degree of membership function, the de-
gree of indeterminancy and the degree of non-membership function respectively of each
element x ∈ X to the set A.

Remark. [12] A Ns A = {⟨x, µA(x), σA(x), γA(x)⟩ : x ∈ X} can be identified to an
ordered triple A = ⟨µA(x), σA(x), γA(x)⟩ in ]−0, 1+[ on X .

Remark. [12] For the sake of simplicity, we shall use the symbol A = ⟨µA, σA, γA⟩ for
the Ns A = {⟨x, µA(x), σA(x), γA(x)⟩ : x ∈ X}.

Example 2.2. [12] Every intuitionsistic neutrosophicset A is a non-empty set in X is obvi-
ously on Ns having the form A = {⟨x, µA(x), 1− µA(x) + γA(x)⟩ : x ∈ X}. Since our
main purpose is to construct the tools for developing Neutrosophic set and Neutrosophic
topology, we must introduce the Neutrosophic sets 0N and 1N in X as follows:
0N = {⟨x, 0, 0, 1⟩ : x ∈ X} 1N = {⟨x, 1, 1, 0⟩ : x ∈ X} .

Definition 2.3. [12] Let A = ⟨(µA, σA, γA)⟩ be a Ns on X , then the complement of the set
A( Ac or C(A) for short) may be defined as C(A) = {⟨x, γA(x), 1− σA(x), µA(x)⟩ : x ∈ X} .

Definition 2.4. [12] Let X be a non-empty set and Ns’s A and B in the form A =
{⟨x, µA, σA, γA⟩ : x ∈ X} and B = {⟨x, µB , σB , γB⟩ : x ∈ X}. Then (A ⊆ B)
may defined as: (A ⊆ B) ⇔ µA(x) ⊆ µB(x), σA(x) ⊆ σB(x), γA(x) ≥ γB(x)∀x ∈ X.

Definition 2.5. [12] Let X be a non-empty set and A = {⟨x, µA(x), σA(x), γA(x)⟩ : x ∈
X}, B = {⟨x, µB(x), σB(x), γB(x)⟩ : x ∈ X} are Ns’s. Then A ∩B and A ∪ B may
defined as:

(I1) A ∩B = ⟨x, µA(x) ∧ µB(x), σA(x) ∧ σB(x), γA(x) ∨ γB(x)⟩
(U1) A ∪B = ⟨x, µA(x) ∨ µB(x), σA(x) ∨ σB(x), γA(x) ∧ γB(x)⟩

Definition 2.6. [12] A Neutrosophic topology (for short, NT or nt) is a non-empty set X
is a family τN of neutrosophic subsets in X satisfying the following axioms:

(i) 0N , 1N ∈ τN ,
(ii) G1 ∩G2 ∈ τN for any G1, G2 ∈ τN ,

(iii) ∪Gi ∈ τN for every {Gi : i ∈ J} ⊆ τN .
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Throughout this paper, the pair of (X, τN ) is called a neutrosophic topological space
(for short, nts). The elements of τN or τ are called neutrosophic open set (for short, nos).
A neutrosophic set F is neutrosophic closed if and only if F c is nos.

Definition 2.7. [12] Let (X, τN ) be nts and A = ⟨x, µA, σA, γA⟩ be a Ns in X . Then the
neutrosophic closure and neutrosophic interior of A are defined by NCl(A) = ∩{K : K
is a NCS in X and A ⊆ K}, NInt(A) = {G : G is a NOS in X and G ⊆ A}. It can be
also shown that NCl(A) is NCS and NInt(A) is a NOS in X . A is NOS if and only if
A = NInt(A), A is NCS if and only if A = NCl(A).

Definition 2.8. Let A = {⟨x, µA(x), σA(x), γA(x)⟩ : x ∈ X} be a Ns on a nts (X, τN )
then A is called:

(i) neutrosophic regular open (for short, nro) [17] if A = NInt(NCl(A)).
(ii) neutrosophic regular closed (for short, nrc) [17] if A = NCl(NInt(A)).

(iii) neutrosophic semi-open (for short, nso) [17] if A ⊆ NInt(NCl(A)).
(iv) neutrosophic regular semiopen (for short, nrso) [15] if there exists an nro set B in

X such that B ⊆ A ⊆ NCl(B).
(v) neutrosophic regular semiclosed (for short, nrsc) [15] if there exists an nrc set B

in X and NInt(B) ⊆ A ⊆ B.

We shall denote the family of all nrso sets (nrsc sets) of a nts (X, τ) by NRSOS(X),
NRSCS(X).

Definition 2.9. [15] Let (X, τ) be a nts. Then
(1) the neutrosophic regular closure of A, denoted by nrcl(A) or NRCl(A), and is

defined by nrcl(A) =
⋂
{B|B ⊇ A,B is nrc }.

(2) the neutrosophic regular interior of A, denoted by nrint(A) or NRInt(A), and
is defined by nrint(A) =

⋃
{B|B ⊆ A,B is nro }.

(3) the neutrosophic regular semiclosure of A defined by NRSCl(A) or nrscl(A) =⋂
{B | A ⊆ B and B ∈ NRSCS(X, τ)} is a neutrosophic set.

(4) the neutrosophic regular semiinterior of A defined by NRSInt(A) or nrsint(A) =⋃
{B | B ⊆ A and B ∈ NRSOS(X, τ)} is a neutrosophic set.

Definition 2.10. [4] Let X be a nonempty set. If r, t, s be real standard or non standard
subsets of ]0−, 1+[, then the neutrosophic set xr,t,s is called a neutrosophic point (briefly
NP) in X given by

xr,t,st(xp) =

{
(r, t, s), if x = xp

(0, 0, 1) if x ̸= xp.

for xp ∈ X is called the support of xr,t,s, where r denotes the degree of membership value,
t the degree of indeterminacy and s the degree of non-membership value of xr,t,s.

Definition 2.11. [11] Let A be a Ns over X , let xα,β,γ be NP in X .
(i) xα,β,γ is contained in A if α ≤ TA(x), β ≥ IA(x), γ ≥ FA(x).

(ii) xα,β,γ is belong to A if α ≤ TA(x), β ≥ IA(x), γ ≥ FA(x).

Definition 2.12. [11] A NP xα,β,γ ∈ N(X) is said to be quasi-coincident with a NS A ∈
N(X) or xα,β,γ ∈ N(X) quasi-coincides with a NS A ∈ N(X), denoted by xα,β,γqA,
iff α > TAc(x) or β < IAc(x) or γ < FAc(x), i.e., α > FA(x) or β < 1 − IA(x)
or γ < TA(x). A NS A is said to be quasi-coincident with a NS B at x ∈ X or A
quasi-coincides with B, denoted by AqB at x iff TA(x) > TBc(x) or IA(x) < IBc(x) or
FA(x) < FBc(x).
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Definition 2.13. [11] A neutrosophic set A is called an neutrosophic quasi-neighbourhood
(for short, N -q-nbd) of a neutrosophic point xα,β,γ iff there exists a NS B ∈ τ such that
xr,t,sqB ⊆ A.

Theorem 2.1. For any Ns A in an nts (X, τ), NRInt(A) ⊆ NRSInt(A) ⊆ A ⊆
NRSCl(A) ⊆ NCl(A).

Theorem 2.2. [14] Let f : X → Y a function. Then

(i) A1 ⊆ A2 ⇔ f(A1) ⊆ f(A2),
(ii) B1 ⊆ B2 ⇔ f−1(B1) ⊆ f−1(B2),

(iii) A ⊆ f−1(f(A)) and if f is injective, then A = f−1(f(A)),
(iv) f−1(f(B)) ⊆ B and if f is surjective, then f−1(f(B)) = B,
(v) f−1(∪Bi) = ∪f−1(Bi), f−1(∩Bi) = ∩f−1(Bi),

(vi) f(∪Ai) = ∪f(Ai), f(∩Ai) ⊆ ∩f(Ai) and if f is injective, then f(∩Ai) =
∩f(Ai),

Definition 2.14. [14] Let (X, τ) and (Y, σ) be any two nts’s. A map f : (X, τ) → (Y, σ)
is neutrosophic continuous if the inverse image of every neutrosophic closed set in (Y, σ)
is neutrosophic closed set in (X, τ).

Definition 2.15. [16] Let (X, τ) and (Y, σ) be any two nts’s. A map f : (X, τ) →
(Y, σ) is neutrosophic regular continuous (for short, NRC) if the inverse image of every
neutrosophic closed set in (Y, σ) is neutrosophic regular semi closed set in (X, τ).

Definition 2.16. [16] Let (X, τ) and (Y, σ) be any two nts’s. A map f : (X, τ) → (Y, σ)
is neutrosophic regular open (for short, NRO) if the image of every neutrosophic open set
in (X, τ) is neutrosophic regular open set in (Y, σ).

Definition 2.17. [16] Let (X, τ) and (Y, σ) be any two nts’s. A map f : (X, τ) → (Y, σ)
is neutrosophic regular semi continuous (for short, NRSC) (neutrosophic regular semi
irresolute (for short, NRSI)) if the inverse image of every neutrosophic closed (neutro-
sophic regular semi closed) set in (Y, σ) is neutrosophic regular semi closed (neutrosophic
regular semi closed) set in (X, τ).

Equivalently, A mapping f : X → Y is NRSC iff for any neutrosophic point xr,t,s

in X and any nos B in Y with f(xr,t,s) ∈ B, there exists A ∈ NRSO(X) such that
xr,t,s ∈ A and f(A) ⊆ B.

Theorem 2.3. [16] If f : X → Y is NRSC and NAO, then f is NRSI .

3. NEUTROSOPHIC WEAKLY REGULAR SEMI CONTINUOUS FUNCTIONS

Definition 3.1. A mapping f : X → Y is called the :
(i) neutrosophic weakly regular continuous (for short, NWRC) iff for any NP xr,t,s

in X and any nos B in Y containing f(xr,t,s), there exists an nro set A containing
xr,t,s such that f(A) ⊆ NRCl(B).

(ii) neutrosophic weakly regular semi continuous (for short, NWRSC) iff for any
NP xr,t,s in X and any nos B in Y containing f(xr,t,s), there exists an nrso set A
containing xr,t,s such that f(A) ⊆ NRSCl(B).

(iii) neutrosophic weakly semi continuous (for short, NWSC) iff for any NP xr,t,s in
X and any nos B in Y containing f(xr,t,s), there exists an nso set A containing
xr,t,s such that f(A) ⊆ NSCl(B).
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Example 3.2. Let X = {a, b}, τ = {0N , 1N , A,B}, Y = {p, q} and σ = {0N , 1N , C},
where A and B are Ns’s of X and C is Ns of Y , defined as follows:
A =

〈
( µa

0.4 ,
µb

0.5 ), (
σa

0.5 ,
σa

0.5 ), (
γa

0.6 ,
γb

0.5 )
〉
,

B =
〈
( µa

0.4 ,
µb

0.5 ), (
σa

0.5 ,
σa

0.5 ), (
γa

0.4 ,
γb

0.5 )
〉
,

C =
〈
(
µp

0.5 ,
µq

0.5 ), (
σp

0.5 ,
σq

0.5 ), (
γp

0.6 ,
γq

0.5 )
〉
.

Clearly τ and σ are NT on X and Y . If we define the function f : X → Y as f(a) = p and
f(b) = q, then f is NWRSC but not NWRC, for any NP x0.5,0.6,0.6 in X and a nos C of
Y containing f(x0.5,0.6,0.6), there exists a nrso D =

〈
(
µp

0.5 ,
µq

0.5 ), (
σp

0.5 ,
σq

0.5 ), (
γp

0.6 ,
γq

0.5 )
〉

[D
is nrso set of X , since ∃ a nro set B such that B ⊆ C ⊆ NCl(B)] containing x0.5,0.6,0.6

such that f(D) ⊆ NRSCl(C). But D is not nro set.

Example 3.3. Let X = {a, b} and τ = {0N , 1N , X,A,B}, Y = {p, q} and σ =
{0N , 1N , C}, where A and B are Ns of X and C is Ns of Y , defined as follows:
A =

〈
( µa

0.3 ,
µb

0.5 ), (
σa

0.5 ,
σa

0.5 ), (
γa

0.6 ,
γb

0.5 )
〉
,

B =
〈
( µa

0.6 ,
µb

0.5 ), (
σa

0.5 ,
σa

0.5 ), (
γa

0.5 ,
γb

0.5 )
〉
,

C =
〈
(
µp

0.4 ,
µq

0.5 ), (
σp

0.5 ,
σq

0.5 ), (
γp

0.6 ,
γq

0.5 )
〉
.

Clearly τ and σ are NT on X and Y . If we define the function f : X → Y as f(a) = p and
f(b) = q, then f is NWSC but not NWRSC, for any NP x0.4,0.5,0.6 in X and a nos C
of Y containing f(x0.5,0.6,0.6), there exists a nrso D =

〈
(
µp

0.4 ,
µq

0.5 ), (
σp

0.5 ,
σq

0.5 ), (
γp

0.6 ,
γq

0.5 )
〉

[D is nso set of X , since ∃ a nos B such that B ⊆ C ⊆ NCl(B)] containing x0.4,0.5,0.6

such that f(D) ⊆ NSCl(C). But D is not nrso.

Remark. The above Definition and Examples 3.2 and 3.3, it clear that
(i) Every NWRC functions is NWRSC but not conversely.

(ii) Every NWRSC functions is NWSC but not conversely.

Definition 3.4. An Ns A is called an neutrosophic q-nbd ( neutrosophic regular-q-nbd (for
short, NR-q-nbd), neutrosophic regular semi-q-nbd (for short, NRS-q-nbd)) of an NP
xr,t,s in an nts (X, τ) iff there exists an nos (nro, nrso) set B of X such that xr,t,sqB ⊆ A.

Definition 3.5. An nts (X, τ) is NR-regular iff for each NP xr,t,s in X and each N -open-
q-nbd A of xr,t,s, there exists NR-open-q-nbd B of xr,t,s such that NRCl(B) ⊆ A.

Theorem 3.1. If Y is an NR-regular space, then a mapping f : X → Y is NWRSC iff
f is NRSC.

Proof. The necessary part follows from Remark 3. We prove only the sufficient part. Let
f be NWRSC and Y be an NR-regular space. Let xr,t,s be any NP of X and B be
any nro (it is nos) set in Y containing f(xr,t,s). Since Y is NR-regular, there exists an
NR-q-nbd C of f(xr,t,s) = Yr,t,s (where y = f(x)) such that NRSCl(C) ⊆ B. Since
f is NWRSC and C is an NR-q-nbd of f(xr,t,s), there exists A ∈ NRSOS(X) with
xr,t,s ∈ A such that f(A) ⊆ NRSCl(C). By Theorem 2.3, NRSCl(C) ⊆ NRSCl(C)
and so f(A) ⊆ NRSCl(C) ⊆ NCl(C) ⊆ B. Thus f is NRSC by Definition 3.1 and
this completes the proof. □

In the following theorems we give some characterization of NWRSC functions.

Theorem 3.2. A mapping f : X → Y is NWRSC iff for each nos B in Y , f−1(B) ⊆
NRSInt(f−1(NRSCl(B))).

Proof. Let f be NWRSC and B be any nos set in Y . Let xr,t,s be an NP in f−1(B).
Thus f(xr,t,s) ∈ B, f is NWRSC implies that there exists an A ∈ NRSOS(X) such
that xr,t,s ∈ A and f(A) ⊆ NRSCl(B). By Theorem 2.2(2) and (3) we have A ⊆
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f−1(NRSCl(B)). Hence NRSInt(A) ⊆ NRSInt(f−1(NRSCl(B))) and since A is
nrso, A ⊆ NRSInt(f−1(NRSCl(B))). So f−1(B) ⊆ A ⊆ NRSInt(f−1(NRSCl(B))).

Conversely let xr,t,s be an NP in X and B be any nos set in Y such that f(xr,t,s) ∈
B. By hypothesis, f−1(B) ⊆ NRSInt(f−1(NRSCl(B)) = A(say). Hence xr,t,s ∈
f−1(B) ⊆ A, which implies that A is an nrso set in X containing xr,t,s. So A =
NRSInt(f−1(NRSCl(B))) ⊆ f−1(NRSCl(B), i.e., f(A) ⊆ NRSCl(B) (by The-
orem 2.2(4)). Hence f is NWRSC and this proves the result. □

Theorem 3.3. A mapping f : X → Y is NWRSC if for each nos B in Y , f−1(NRSCl(B)) ∈
NRSOS(X).

Proof. Straightforward. □

Theorem 3.4. If f : X → Y is NRSI and g : Y → Z is NWRSC, then g ◦ f : X → Z
is NWRSC.

Proof. Let xr,t,s be an NP in X and C be any nos in Z containing ((g ◦ f)(xr,t,s)) =
g(f(xr,t,s)). Since g is NWRSC there exists an nro B in Y containing f(xr,t,s) such
that g(B) ⊆ NRSCl(C). Also since f is NRSI and B [every nro set is nos and every
nro set is nrso] is nos in Y , it follows that f−1(B) is nrso in X . Let A = f−1(B). Now
(g ◦ f)(A) = g(f(A)) ⊆ g(B) ⊆ NRSCl(C). So g ◦ f is NWRSC and this completes
the proof. □

Corollary 3.5. If f : X → Y is NRSC and NRO and g : Y → Z is NWRSC, then
g ◦ f is NWRSC.

Proof. The proof follows from Theorems 2.3 and 3.4. □

4. NEUTROSOPHIC WEAKLY REGULAR SEMI CONTINUOUS IN TERMS OF
q-COINCIDENCE, q-NEIGHBORHOODS AND θ-CLUSTER POINTS

Definition 4.1. A Ns A in an nts (X, τ) is said to be an neutrosophic-θ-nbd ( neutrosophic
regular-θ-nbd (for short, NR-θ-nbd), neutrosophic regular semi-θ-nbd (for short, NRS-θ-
nbd)) of an NP xr,t,s iff there exists an N -closed-q-nbd (NR-closed-q-nbd, NRS-closed-
q-nbd) B of xr,t,s such that BqAc, i.e., B ⊆ A.

Definition 4.2. A NP xr,t,s in a nts (X, τ) is called an neutrosophic regular semi clus-
ter point (for short, NRS-cluster point) of an Ns A iff every NRS-q-nbd of xr,t,s is
q-coincident with A. The set of all NRS-cluster points of an Ns A is called neutrosophic
regular semi closure of A.

Definition 4.3. A NP xr,t,s in a nts (X, τ) is called an neutrosophic regular semi θ-cluster
point (for short, NRSθ-cluster point) of an Ns A iff every NRS-open-q-nbd B of xr,t,s,
NRSCl(B) is q-coincident with A. The set of all NRSθ-cluster points of an Ns A is
called neutrosophic regular semi θ closure of A and it is denoted by NRSθCl(A).

Theorem 4.1. A mapping f : X → Y is NWRSC iff corresponding to each NR-
open-q-nbd B of yr,t,s in Y , there exists an NRS-open-q-nbd A of xr,t,s in X such that
f(A) ⊆ NRSCl(B), where f(xr,t,s) = (f(x))r,t,s = yr,t,s.

Proof. Let f be NWRSC and B be an NR-open-q-nbd of yr,t,s, where f(x) = y in
Y . So, B(y) + (r, t, s) > 1N . We can choose a positive real number (u, v, w) such that
B(y) > (u, v, w) > 1 − (r, t, s). Hence B is an NR-open-nbd of yu,v,w in Y . Since f
is NWRSC, there exists an nrso set A containing xu,v,w such that f(A) ⊆ NRSCl(B).
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Now A(x) ≥ (u, v, w) implies A(x) > 1 − (r, t, s), i.e., A(x) + (r, t, s) > 1N . Thus
xr,t,sqA. So A is an NRS-open-q-nbd of xr,t,s.

Conversely, let the condition of the theorem hold, i.e., let xr,t,s be an NP in X and
B be an nos set in Y containing yr,t,s = (f(x))r,t,s. So xr,t,s ∈ f−1(B) = C (say).
Hence C(x) ≥ (r, t, s). We can choose a (u, v, w) such that C(x) ≥ 1/(u, v, w). Put
(r, t, s)n = 1 + (1/n) − C(x), for any positive integer n ≥ (u, v, w). Clearly 0 <
(r, t, s)n ⊆ 1 for all n ≥ (u, v, w). Now B(y) + (r, t, s)n = B(y) + 1+ (1/n)−C(x) =
1 + (1/n) > 1 (Since C(x) = f−1(B)(x) = B(f(x)) = B(y)). Hence yr,t,snqB, i.e.,
B is an NR-open-q-nbd of yr,t,sn for all n ≥ (u, v, w). So by hypothesis there exists an
NRS-open-q-nbd An of xr,t,sn such that f(An) ⊆ NRSCl(B), for all n ≥ (u, v, w).
Now A = ∪n≥(u,v,w)An is nrso in X . It remains to show that xr,t,s ∈ A. We have
An(X) > 1−(r, t, s)n = C(x)−(1/n) for all n ≥ (u, v, w). Thus A(x) > C(x)−(1/n)
for all n ≥ (u, v, w). Since xr,t,s ∈ C, A(x) ≥ C(x) ≥ (r, t, s). So A is an nrso set in
X such that f(A) = f(∪n≥(u,v,w)An) = ∪n≥(u,v,w)f(An) ⊆ NRSCl(B). Hence f is
NWRSC and this completes the proof. □

Lemma 4.2. For any two Ns’s A and B in X , A ⊆ B iff for each NP xr,t,s in X , xr,t,s ∈ A
then xr,t,s ∈ B.

Lemma 4.3. Let f : X → Y be any neutrosophic function and xr,t,s be any NP in X ,
then

(i) for A ⊆ X and xr,t,sqA, we have f(xr,t,s)qf(A).
(ii) for B ⊆ Y and f(xr,t,s)qB, we have xr,t,sqf

−1(B).

Theorem 4.4. If f : X → Y is an NWRSC, then for each nos B in Y , NRSCl(f−1(B) ⊆
f−1(NRSCl(B).

Proof. A Ns is the union of all of its NP. Suppose that there is an NP xr,t,s ∈ NRSCl(f−1(B))
but xr,t,s /∈ f−1(NRSCl(B)). Since f(xr,t,s) /∈ NRCl(B) there exists an nro set C in
Y with f(xr,t,s) ∈ C such that CqNRCl(B). Thus CqB and NRCl(C)qB. Since
f is NWRSC, there exists an A ∈ FRSOS(X) with xr,t,s ∈ A such that f(A) ⊆
NRSCl(C). Hence f(A)qB. Since f(A) ⊆ NRSCl(C) ⊆ NRCl(C). But on the other
hand, since each nrso set is NRS-q-nbd of each of its NP xr,t,s ∈ NRSCl(f−1(B))
and A is an NRS-q-nbd of xr,t,s. By Definition 4.2, Aqf−1(B). By Lemma 4.3(1),
f(A)qf(f−1(B)), and hence by theorem 2.2(iv), f(A)qB which is a contradiction. This
completes the proof of the theorem. □

Theorem 4.5. Let f : X → Y be an NRO and NWRSC mapping. Then f(NRSCl(A) ⊆
NRCl(f(A)), for each nro set A in X .

Proof. Let A be an nro (it is nos) set in X and let f(A) = B. Since f is NRO, we see
that B is an nro (it is also nos) set in Y . Hence by Theorem 2.2(iii), A ⊆ f−1(f(A)) =
f−1(B). Since f is NWRSC, we have from Theorem 4.4, NRSCl(f−1(B)) ⊆ f−1(NRCl(B).
Thus NRSCl(A) ⊆ f−1(NRCl(B), i.e., f(NRSCl(A)) ⊆ NRCl(B) = NRCl(f(A))
and this proves the result. □

Theorem 4.6. A function f : X → Y is NWRSC iff for each nos B in Y , (xr,t,s)qf
−1(B)

implies (xr,t,s)qf
−1(NRSInt(NRSCl(B)) for each NP xr,t,s in X .

Proof. Let f is NWRSC. Let xr,t,s be NP in X and B be any nro (nos) set in Y
such that (xr,t,s)qf

−1(B). Then f(xr,t,s)qB. Since f is NWRSC by Theorem 4.1,
there exists an nrso set A in X such that (xr,t,s)qA and f(A) ⊆ NRSCl(B). By
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Theorem 2.2(ii) and (iii) we have A ⊆ f−1(NRSCl(B)). Since A ∈ NRSOS(X),
A ⊆ f−1(NRSInt(NRSC(B)). So (xr,t,s)qf

−1(NRSInt(NRSCl(B)).
Converesely, let the condition given in the statement hold. Let xr,t,s be an neutrosophic

point in X and B be an NR-open-q-nbd of f(xr,t,s) such that (xr,t,s)qf
−1(B). By hy-

pothesis, (xr,t,s)qf
−1(NRSInt(NRSCl(B)). Put A = f−1(NRSInt(NRSCl(B)).

Hence A ∈ NRSOS(X). (xr,t,s)qA implies that A is an NRS-open-q-nbd of xr,t,s. Also
f(f−1(NRSInt(NRSCl(B)))) ⊆ f(f−1(NRSCl(B))), i.e., f(A) ⊆ NRSCl(B).
Thus f is NWRSC and this completes the proof. □

Theorem 4.7. If f : X → Y is NWRSC then for each NP xr,t,s in X and each NR-θ-
nbd B of f(xr,t,s), f−1(B) is an NRS-q-nbd of xr,t,s.

Proof. Let f : X → Y is NWRSC function and xr,t,s be an NP in X . Let NRSCl(B)
be an NR-θ-nbd of f(xr,t,s). So there is an NR-open-q-nbd C of f(xr,t,s) such that
NRCl(C)qBc, i.e., NRCl(C) ⊆ B. Since C is an NR-open-q-nbd of f(xr,t,s), by
Theorem 4.1, there is an NRS-open-q-nbd A of xr,t,s such that f(A) ⊆ NRSCl(C) and
thus f(A) ⊆ NRSCl(C) ⊆ NRCl(C) ⊆ B. So A ⊆ f−1(B). Hence f−1(B) is an
NRS-q-nbd of xr,t,s and this completes the proof. □

Theorem 4.8. If f : X → Y is a function such that for each NP xr,t,s in X and
each NRS-θ-nbd B of f(xr,t,s) in Y , f−1(B) is NRS-q-nbd of xr,t,s in X , then f is
NWRSC.

Proof. Let xr,t,s be an NP in X and B be any NR-open-q-nbd of f(xr,t,s). We note that
B is an NRS-open-q-nbd of f(xr,t,s). So NRSCl(B) is an NRS-θ-nbd of f(xr,t,s).
By hypothesis, f−1(NRSCl(B)) is an NRS-q-nbd of xr,t,s. So there exists an nrso set
A in X such that xr,t,sqA ⊆ f−1(NRSCl(B)), i.e., f(A) ⊆ NRSCl(B). Hence f is
NWRSC and this completes the proof. □

Theorem 4.9. If f : X → Y is NWRSC, then

(i) f(NRSC(A) ⊆ NRSθCl(f(A)) for each Ns A in X ,
(ii) f(NRSCl(f−1(NRSCl(NRSInt(B))))) ⊆ NRSθCl(B) for each Ns B in Y .

Proof. (i) Let xr,t,s ∈ NRSCl(A) and S be an NR-closed-q-nbd of f(xr,t,s). Then there
exists an NR-open-q-nbd V of f(xr,t,s) such that V ⊆ S. Since f is NWRSC, by
Theorem 4.1 there exists an NRS-open-q-nbd U of xr,t,s such that f(U) ⊆ NRSCl(V ).
Since xr,t,s ∈ NRSCl(A), by Definition 4.2, xr,t,s is an NRS-cluster point of A. Hence
UqA and also f(U)qf(A). Since f(U) ⊆ NRSCl(V ), NRSCl(V )qf(A). Again since,
S is nrc (it is ncs), we have NRSCl(V ) ⊆ NRCl(V ) ⊆ S. Therefore Sqf(A). By Def-
inition 4.3, f(xr,t,s) ∈ NRSθCl(f(A)), i.e., xr,t,s ∈ f−1(NRSθCl(f(A)). Therefore,
NRSCl(A) ⊆ f−1(NRSθCl(f(A))); which implies f(NRSCl(A)) ⊆ NRSθCl(f(A)),
proving(i).

(ii) Let B be an Ns in Y and xr,t,s be an NP in X such that xr,t,s ∈ NRSCl(f−1(NRSCl(NRSInt(B)))).
Let V be any NR-open-q-nbd of f(xr,t,s). By Theorem 4.1, there exists NRS-open-q-
nbd U of xr,t,s such that f(U) ⊆ NRSCl(V ). Since NRSCl(f−1(NRSInt(B))) ⊆
NRSCl(f−1(B)), we have xr,t,s ∈ NRSCl(f−1(NRSCl(NRSInt(B)))). By Def-
inition 4.3, Uqf−1(B), i.e.,f(U)qB. Thus NRSCl(V )qB, which implies f(xr,t,s) ∈
NRSθCl(B). So f(NRSCl(f−1(NRSCl(NRSInt(B))))) ⊆ NRSθCl(B), prov-
ing(ii). □
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5. NEUTROSOPHIC WEAKLY REGULAR SEMI CONTINUOUS FUNCTIONS AND
NEUTROSOPHIC RETRACTS

Definition 5.1. Let X be a nts and A ⊆ X . Then the subspace (crisp) A of X is called
a neutrosophic retract (for short, N -retract) of X if there exists a neutrosophic continuous
function r : X → A such that r(a) = a for all a ∈ A. In this case r is called a neutrosophic
retraction. A is called an NO-retract (NRO-retract, NRSC-retract ) of X if r is N -open
function (NRO-function, NRSC-function). Similarly A is called NWRSC-retract of X
if r is NWRSC.

Theorem 5.1. If A is an NRO-retract, NRSC-retract of the nts X then for every nts Y ,
any NWRSC function g : A → Y can be extended to an NWRSC function of X into Y .

Proof. Let Y be an arbitrary nts and g : A → Y be an NWRSC function. By Corollary
3.5, g ◦ r : X → Y is NWRSC and g ◦ r(a) = g(r(a)) = g(a) for all a ∈ A, where
r : X → A is a NRO-retract, NRSC-retraction. Hence g ◦ r is an NWRSC extension
of g to X and this completes the proof. □

Theorem 5.2. If A is an NRO-retract, NRSC-retract of X and B is an NWRSC-
retract of A then B is an NWRSC-retract of X .

Proof. Let r : X → A be an NRO and NRSC mapping such that r(a) = a for all
a ∈ A, Let s : A → B be an NWRSC retraction of A such that s(b) = b for all b ∈ B.
By corollary 3.5, s ◦ r : X → B is NWRSC and s ◦ r(b) = b for all b ∈ B. Hence B is
NWRSC retract of X and this proves the result. □

Definition 5.2. An nts X is said to be NR-quasi Urysohn space if for any two distinct
NP’s xr,t,s and yr,t,s, there exist nro sets U1 and U2 in X such that xr,t,sqU1, yr,t,sqU2

and NCl(U1) ∩NCl(U2) = 0N .

Definition 5.3. An nts X is said to be NRS quasi Hausdorff if distinct neutrosophic points
in X have disjoint NRS-q-nbds, i.e., if xr,t,s and yr,t,s are distinct NP’s in X , then there
exist NRS-q-nbds V1 and V2 such that xr,t,sqV1, yr,t,sqV2 and V1 ∩ V2 = 0N .

Theorem 5.3. If Y is an NR-quasi Urysohn space and f : X → Y is an NWRSC
injection, then X is a NRS quasi Hausdorff space.

Proof. Let xr,t,s and yr,t,s be two distinct NP’s in X . f being injective, f(xr,t,s) and
f(yr,t,s) are distinct NP’s in Y . Since Y is NR quasi Urysohn, there exists nro sets V1

and V2 in Y such that f(xr,t,s)qV1, f(yr,t,sqV2) and NCl(V1) ∩ NCl(V2) = 0N , i.e.,
f−1(NRSInt(NCl(V1))∩f−1(NRSInt(NCl(V2)) = 0N , By Theorem 3.2, xr,t,sqf

−1(V1) ⊆
f−1(NRSInt(NRSCl(V1))) ⊆ f−1(NRSInt(NCl(V1)). Similarly yr,t,sqf

−1(V2) ⊆
f−1(NRSInt(NRSCl(V2))) ⊆ f−1(NRSInt (NCl(V2)). So,f−1(NRSInt(NCl(V1))
and f−1(NInt(NCl(V2)) are disjoint NRS-q-nbds of xr,t,s and yr,t,s, respectively. So
X is NRS quasi Hausdorff and this proves the result. □

6. NEUTROSOPHIC WEAKLY REGULAR SEMI OPEN FUNCTIONS

Definition 6.1. A Neut. function f : (X, τ) → (Y, σ) is said to be:
(i) neutrosophic weakly regular open (for short, NWRO) if f(R) ⊆ NRInt(f(NCl(R)))

for each nos R of X .
(ii) neutrosophic weakly regular semi open (for short, NWRSO) if f(R) ⊆ NRSInt(f(NCl(R)))

for each nos R of X .
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(iii) neutrosophic weakly semi open (for short, NWSO) if f(R) ⊆ NSInt(f(NCl(R)))
for each nos R of X .

Remark. Clearly, every NWRO function is NWRSO and every NWRSO function is
also NWSO.

Theorem 6.1. Let f : (X, τ) → (Y, σ) be a Neut. function. Then the following statements
are equivalent:

(i) f is NWRSO.
(ii) For each NP xr,t,s in X and each nos S of X containing xr,t,s, there exists a nrso

set T containing f(xr,t,s) such that T ⊆ f(NCl(S)).

Proof. (i)→ (ii): Let xr,t,s ∈ X and S be a nos in X containing xr,t,s. Since f is
NWRSO. f(S) ⊆ NRSInt(f(NCl(S))).Let T = NRSInt(f(NCl(S))). Hence
T ⊆ f(NCl(S)), with T containing f(xr,t,s).

(ii)→ (i): Let S be a nos in X and let yr,t,s ∈ f(S). It following from (ii) T ⊆
f(NCl(S)) for some nrso T in Y containing yr,t,s. Hence we have, yr,t,s ∈ T ⊆
NRSInt(f(NCl(S))). This shows that f(S) ⊆ NRSInt(f(NCl(S))), i.e., f is a
NWRSO functions. □

Theorem 6.2. Let f : (X, τ) → (Y, σ) be a bijective function. Then the following state-
ments are equivalent:

(i) f is NWRSO.
(ii) NRSCl(f(R)) ⊆ f(NCl(R)) for each nos R in X .

(iii) NRSCl(f(NInt(S))) ⊆ f(S) for each ncs S in X .

Proof. (i)→ (iii): Let S be a ncs in X . Then we have f(1−S) = 1−f(S) ⊆ NRSInt(f(NCl(1−
S))) and so 1 − f(S) ⊆ 1 − NRSCl(f(NInt(S))). Hence NRSCl(f(NInt(S))) ≤
f(S).

(iii)→ (ii): Let R be a nos in X . Since NCl(R) is a ncs and R ⊆ NInt(NCl(R)) by
(iii) we have NRSCl(f(R)) ⊆ NRSCl(f(NInt(NCl(R)))) ⊆ f(NCl(R)).

(ii)→ (iii): Similar to (iii)→ (ii).
(iii)→ (i): Clear. □

Definition 6.2. Two non-null Ns’s R and S in a nts X are said to be NRS-separated if
RqNRSCl(S) and SqNRSCl(R) or equivalently if there exist two nrso sets T and U
such that R ⊆ T, S ⊆ U, RqU and SqT .

Definition 6.3. A nts X which can not be expressed as the union of two NRS-separated
sets is said to be a NRS-connected space.

Theorem 6.3. If f : (X, τ) → (Y, σ) is a NWRSO of a space X onto a NRS-connected
space Y , then X is NRS-connected.

Proof. If possible, let X be not NRS-connected. Then there exist NRS-separated sets T
and U in X such that X = T ∪ U . Since T and U are NRS-separated, there exist two
nro sets R and S such that T ⊆ R, U ⊆ S, TqS and UqR. Hence we have f(T ) ⊆ f(R),
f(U) ⊆ f(S), f(T )qf(S) and f(U)qf(R). Since f is NWRSO, we have f(R) ⊆
NRSInt(f(NCl(R))) and f(S) ⊆ NRSInt(f(NCl(S))) and since R and S are nrso
and also nrsc by Theorem 3.2, we have f(NRSCl(R)) = f(R), f(NRSCl(S)) = f(S).
Hence f(R) and f(S) are nrso in Y . Therefore, f(T ) and f(U) are NRS-separated sets
in Y and Y = f(X) = f(T ∪ U) = f(T ) ∪ f(U). Hence this contrary to the fact that Y
is NRS-connected. Thus X is NRS-connected. □
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7. CONCLUSIONS

The basic aim of this paper we introduced the concept of neutrosophic weakly regular
semi continuous, neutrosophic regular semi q-neighbourhood in neutrosophic topologi-
cal spaces. Moreover, we investigate the relationship among neutrosophic weakly regular
semi continuous and other existing continuous functions and some counter examples to
show that these types of mappings are not equivalent. Finally, we introduced Neutrosophic
retracts, neutrosophic regular semi retracts, neutrosophic regular semi quasi Urysohn space
and neutrosophic regular semi Hausdorff spaces. In future, we promote this thought into
neutrosophic soft regular semi continuous mappings, neutrosophic contra regular semi con-
tinuous and neutrosophic contra regular semi irresolute mappings in neutrosophic topolog-
ical spaces. Further, we work may include the extension of this work for Nano Topology
and AntiTopology which got some attention from researchers.
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