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DYNAMIC FUZZY SETS AND NEW DFS MADM TECHNIQUE

ABDELAZEEM M. ABDELWAHAB

ABSTRACT. Dynamics fuzzy sets outperform fuzzy sets for dealing with unclear situa-
tions. There are many applications for fuzzy similarity metrics, including cluster anal-
ysis, problem classification, and even medical diagnosis. Lean entropy measurements
are essential to determine the weights of the criteria in a situation involving multi-criteria
decision-making. In this paper, we introduce and suggest alternative similarity measures
for Dynamics fuzzy collections. We developed some new entropy metrics for using recom-
mended similarity assessments. Dynamics fuzzy collections. Finally, in a Dynamics fuzzy
environment, a novel multi-attribute decision-making method is developed that solves a
significant limitation of the famous decision-making methodology, namely, the technique
for order preference by similarity to the ideal solution.

1. INTRODUCTION

The fuzzy set is a novel notion that Zadeh [1] invented. According to him, it is a class of
objects that have a continuum of membership grades. Fuzzy set theory forms the basis of
formal decision-making analysis when human decision-making involves uncertainty vari-
ables. When uncertainty variables are present in human decision-making, fuzzy set theory
offers the framework for formal decision-making analysis. For risks without a suitable
quantitative probability model, a fuzzy logic system can help with modeling cause-and-
effect relationships, estimating risk exposure, and equally ranking the principal hazards
while accounting for expert opinions and accessible data. Meanwhile, generalized fuzzy
numbers were defined by Chen and Hsieh [2]. Recently, a large number of research have
been conducted on the topic, including those that rank and compare generalized fuzzy
numbers [3]. Fuzzy risk analysis was introduced by Chen [4]. Chen [5] also proposed a
new method for estimating the similarity between two fuzzy numbers [6]. The study ana-
lyzes risk in chicken farming using the method that has been described. Chutia and Gogoi
[7] offer a concept where they address risk assessments in poultry creation using a new
similarity on generalized fuzzy numbers.

Delgada et al. [8] sought to address fuzzy numbers in decision-making problems by de-
veloping canonical representations presented the value and ambiguity parameters. Dubois
and Prade [9] extended the conventional algebraic operations on real numbers to fuzzy
numbers by employing a fuzzy logic approach. Hsieh and Chen [10] investigated triangle
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fuzzy numbers and user similarity and applied their findings to collaborative filtering rec-
ommendations. The concept of construction project analysis was introduced using fuzzy
set theory, and a technique for linguistic risk assessment was presented by Kangari and
Riggs [11]. In 2017, Khorshidi and Nikfalazar published an enhanced method for comput-
ing the similarity between generalized trapezoidal fuzzy numbers [12]. Lee [13] presented
a novel method for integrating disparate fuzzy concepts into the greatest possible group
consensus. Patra and Mondal [14] published a novel method of establishing the similar-
ity between the geometrical distance, area, and height of generalized trapezoidal fuzzy
numbers.

Schmucke [15] presents a novel method for organizing triangular fuzzy numbers using
the eNagl point of a triangle. Xu and associates. Additional similarity measures are given
in Chutia and Gogoi [16], Khorshidi and Nikfalazar [17, 18]. Jun et al. employed both
interval-valued fuzzy sets and fuzzy sets. In 2018, the novel concept of the cubic set was
presented. We don’t think computing cubic numbers takes a long time because we execute
the computations using a variety of tools, including MATLAB. It is a mix of two fuzzy
numbers, therefore using it manually will take longer. Our results, however, are superior.
We focus on representing ambiguity and uncertainty more accurately since mathematicians
are always searching for ways to improve fuzzy numbers. In this range of cubic numbers,
one has a greater choice. Crisp sets, also known as classical sets, are used to represent
collections of items where each object is identified as a member of a particular set by
a membership degree. Generalized trapezoidal cubic numbers (GTCNs) are a hybrid of
generalized trapezoidal fuzzy numbers and generalized trapezoidal interval-valued fuzzy
numbers. Next, an element’s membership degree is represented by a binary number in the
range of 0 to 1, where a membership degree of 0 denotes a non-member and a membership
degree of 1 denotes a member.

2. BASIC DEFINITIONS

Definition 2.1. Peng et al. [19] A function SM : PFS(V )× PFS(V ) → [0, 1] is called
a PF similarity measure if ∀N1, N2 and N3 ∈ PFS(V ), we have:

(1) SM(N1, N2) = SM(N2, N1);
(2) SM(N1, N2) = 1 iff N1 = N2;
(3) SM(N1, (N1)

c) = 0 iff N1 is a crisp set;
(4) If N1 ⊆ N2 ⊆ N3, then SM(N1, N2) ≥ SM(N1, N3) and SM(N2, N3) ≥

SM(N1, N3).

Definition 2.2. Peng et al. [19] A function EN : PFS(V ) → [0, 1] is referred to as a PF
entropy measure if ∀N1 and N2 ∈ PFS(V ), we have:

(1) EN(N1) = 0 iff N1 is a crisp set;
(2) EN(N1) = 1 iff µN1(nk) = ϑN1(nk)∀nk ∈ V ;
(3) EN(N1) = EN((N1)

c);
(4) EN(N1) ≤ EN(N2) if µN1

(nk) ≤ µN2
(nk) ≤ ϑN2

(nk) ≤ ϑN1
(nk) or µN1

(nk) ≥
µN2

(nk) ≥ ϑN2
(nk) ≥ ϑN1

(nk)∀nk ∈ V .

3. DYNAMIC FUZZY SETS

Particular the potential for change in the membership function of a particular fuzzy set
when dealing with time variables, Wang et al. [20] provided an expanded description of
fuzzy sets, which they dubbed ”dynamic fuzzy sets”.
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Definition 3.1. Let X be a universe of elements, and T ⊂ R+ be a discrete set of time,
where, R+ = [0,∞). Then the dynamics fuzzy sets (DFS) A on X is defined and charac-
terized by the following membership function A : X × T → [0,∞).

Let

A(t) =

n∑
j=1

(
m∑
i=1

(
Axi

tj

))
,

B(t) =
m∑
j=1

(
n∑

i=1

(
Bxi
tj

))
Are two DFS on X . The following equations provide some fundamental functions and
characteristics of Union, Intersection, Complementation, and Equality.

(1) A(t) = B(t) ⇔ Axi
tj = Bxi

tj ∀xi ∈ X, tj ∈ T ,
(2) A(t) ⊆ B(t) ⇔ Axi

tj ≤ Bxi
tj ∀xi ∈ X, tj ∈ T ,

(3) A(t) = Atj
xi∀xi ∈ X, tj ∈ T ,

(4) A(t) ∩ B(t) = min(Axi
tj ,B

xi
tj )∀xi ∈ X, tj ∈ T

(5) A(t) ∪ B(t) = max(Axi
tj ,B

xi
tj )∀xi ∈ X, tj ∈ T

Example 3.2. Example 1 Assuming X to be a universal in relation to the time interval
T1 = {t|t = 4k, k = 0, 1, . . . , 100}, T2 = {t|t = 3k, k = 0, 1, . . . , 100}.

(a) (b)

FIGURE 1. a)Example of DFS. A train moves along a straight road such
that its position is described by the graph,
b)Example of DFS. A particle moving through an electric field from one
plate to another has the shape shown.

Then, DFSs A,B defined by

A(T1)(x) =

{
1
2 t = 4k, k = 1, . . . , 50
1
9 t = 4k + 2, k = 51, . . . , 100
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B(T2)(x) =


2
7 t = 3k, k = 1, . . . , 40
3
8 t = 3k + 1, k = 41, . . . , 80
1
11 t = 3k + 2, k = 81, . . . , 100

Example 3.3. Example 2 Let X = {x1, x2, x3, x4} be an elemental universe, and T =
{t1, t2, t3, t4} exist a distinct period of time, where , R+ = [0,∞). Then the dynamics
fuzzy sets (DFS) A on X is identified and typified by

TABLE 1. Dynamics fuzzy set (DFS)

x1 x2 x3 x4
t1 0.3 0.6 0.1 0.5
t2 0.4 0.3 0.2 0.6
t3 0.9 0.1 0.1 0.6
t4 0.8 0.2 0.3 0.4

A(t) =

n∑
j=1

(Ax1
tj +Ax2

tj +Ax3
tj +Ax4

tj )

= (Ax1
t1 +Ax1

t2 +Ax1
t3 +Ax1

t4 ) + (Ax2
t1 +Ax2

t2 +Ax2
t3 +Ax2

t4 )

+ (Ax3
t1 +Ax3

t2 +Ax3
t3 +Ax3

t4 ) + (Ax4
t1 +Ax4

t2 +Ax4
t3 +Ax4

t4 )

= (0.3 + 0.4 + 0.9 + 0.8) + (0.6 + 0.3 + 0.1 + 0.2) + (0.1 + 0.2 + 0.1 + 0.3)

+ (0.5 + 0.6 + 0.6 + 0.4) = 6.4

FIGURE 2. Dynamics fuzzy set (DFS)

Definition 3.4. Let A and B be two DFSs that are defined on the discourse universe X =
{x1, x2, x3, . . . , xn} and the instants in time T = {t1, t2, t3, . . . , tm}. The following
yields A and B’s correlation coefficient:

K(A,B) = C(A,B)√
T (A)T (B)

Where
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C(A,B) =

 m∑
j=1

(
n∑

i=1

Axi
tj

) m∑
j=1

(
n∑

i=1

Bxi
tj

)
Given two DFSs, A and B, the correlation

T (A) =

 m∑
j=1

(
n∑

i=1

(Axi
tj )

2

)
T (B) =

 m∑
j=1

(
n∑

i=1

(Bxi
tj )

2

)
The temporal fuzzy sets energies of A and B, respectively, are represented by the infor-

mation.

Example 3.5. Example 3 Assume thatX = {x1, x2, x3} in relation to the designated time
T = {t1, t2, t3}. Specifics of a DFS A (T ) and DFS B (T ) explained in Table 2

TABLE 2. DFS A (T ) and DFS B (T )

DFS A (T ) DFS B (T )
t1 t2 t3 t1 t2 t3

x1 0.2 0.1 0.3 x1 0.1 0.4 0.3
x2 0.6 0.1 0.6 x1 0.4 0.6 0.3
x3 0.7 0.8 0.5 x1 0.8 0.7 0.5
x4 0.6 0.2 0.8 x1 0.9 0.2 0.5
x5 0.4 0.1 0.3 x1 0.4 0.1 0.1
x6 1 0.4 0.6 x1 0.3 0.1 0.9

Then K(A,B) = 13.2967 the correlation coefficient between DFS A (T ) and
DFS B (T ).

Definition 3.6. Over a DFS A, we define the following two operators: f and g.

f (A (T )) =
{
(x,
{(
x,

max

t ∈ T
Axi

tj

)}
: x ∈ X

}
g (A (T )) =

{
(x,

{(
x,

min

t ∈ T
Axi

tj

)}
: x ∈ X

}
h (A (T )) =

{
(x,
{(
x,

max

t ∈ X
Axi

tj

)}
: x ∈ X

}
g (A (T )) =

{
(x,

{(
x,

min

t ∈ T
Axi

tj

)}
: x ∈ X

}
l (A(T )) =

{
(x,

{(
x,

min

t ∈ X
Axi

tj

)}
: x ∈ X

}
Theorem 3.1. f (A (T )) and g (A (T )) are DFSs

Proof
Assume that max

t∈T Axi
tj = Axi

t1 ≤ 1, for some t1∈ T , then f (A (T )) is DFSs, Addition-
ally, in the same manner g (A (T )) are DFS.
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Theorem 3.2. For every DFS A (T ),
(1) f (f (A (T ))) = f (A (T )) ;
(2) g (g (A (T ))) = g (A (T )) ;
(3) f (g (A (T ))) = g (A (T )) ;
(4) g (f (A (T ))) = f (A (T )) .

Proof Clear.

Theorem 3.3. For each and every DFS A (T ),
(1) f (f (A (T ))) = f (f(A (T ))) ;
(2) g (g (A (T ))) = g (g (A (T ))) .

Proof

(1)

h (f (A (T ))) =
{
(x,
{(
x,

max

t ∈ X

max

t ∈ T
Axi

tj

)}
: (xi, tj) ∈ X × T

}
=
{
(x,
{(
x,

max

t ∈ T
max

t ∈ X
Axi

tj

)}
: (xi, tj) ∈ X × T

}
= f (f(A (T ))) ;

(2) By the same fashion.

Proposition 3.4. Let A (T1) and B (T2) be two DFSs. Then:

(1) T (A) = T
(
A
)
;

(2) C (A,A)= T (A) ;
(3) C (A,B) = C (B,A) .

Proof
(1)

T (A) =

 m∑
j=1,

(
n∑

i=1

(
Axi

tj

)2) =

 m∑
j=1,

(
n∑

i=1

(
Atj

xi

)2)= T
(
A
)
;

(2)

C (A,A) =

 m∑
j=1,

(
n∑

i=1

(
Axi

tj

)) m∑
j=1,

(
n∑

i=1

(
Axi

tj

)) =

 m∑
j=1,

(
n∑

i=1

(
Axi

tj

)2) = T (A) ;

(3)

C (A,B) =

 m∑
j=1,

(
n∑

i=1

(
Axi

tj

)) m∑
j=1,

(
n∑

i=1

(
Bxi

tj

))
=

 m∑
j=1,

(
n∑

i=1

(
Bxi

tj

)) m∑
j=1,

(
n∑

i=1

(
Axi

tj

)) = C (B,A) .

Theorem 3.5. Let A and B be two DFSs. Then,
(1) K(A,B) = 1 if and only if A and B are identical
(2) K(A,B)= k (B, A)
(3) 0 ≤ K (A,B) ≤ 1.
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Proof

(1) Assume that A and B are two DFSs based on the discourse universeX = {x1, x2, x3, . . . . . . ., xn}
and the momentous times T = {t1, t2, t3, . . . . . . ., tm}.
The following yields A and B correlation coefficient:

K(A,B) = C (A,B)√
T (A) T (B)

if A = B, then
√
T (A) T (B) =

√
T (A)

2
= T (A) . Then from Proposi-

tion 3.4
(2) C (A,A)= T (A), then

K(A,B) = T (A)

T (A)
= 1

2 From Proposition 3.4 (3) C (A,B) = C (B,A) . Then

K (A,B) = C (B,A)√
T (A) T (B)

= K(B,A)

(3) Well demonstrate that. K (A,B) < 1 so that it is clear 0 < K (A,B) , so assume
that  m∑

j=1,

(
n∑

i=1

(
Axi

tj

)2) = ρ1 m∑
j=1,

(
n∑

i=1

((
Bxi

tj

)2)) = ρ2

Then

T (A) T (B) =

 m∑
j=1,

(
n∑

i=1

(
Axi

tj

)2)×

 m∑
j=1,

(
n∑

i=1

((
Bxi

tj

)2))
√
T (A) T (B) =

 m∑
j=1

(
n∑

i=1

(
Axi

tj

)2)
+

m∑
j=1

(
n∑

i=1

(
Bxi

tj

)2) m∑
j=1

(
n∑

i=1

(
Axi

tj

)2)
+

m∑
j=1

(
n∑

i=1

(
Bxi

tj

)2)
1
2

Then√
T (A) T (B) = [(ρ1 + ρ2)× (ρ1 + ρ2)]

1
2 = (ρ1 + ρ2)

1
2 × (ρ1 + ρ2)

1
2 ,

C (A,B) =

 m∑
j=1,

(
n∑

i=1

(
Axi

tj

))×

 m∑
j=1,

(
n∑

i=1

(
Bxi

tj

)) ,

Then

C (A,B) = (ρ1 × ρ2)
1
2

Then
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K2 (A,B) ≤ ρ1 × ρ2
(ρ1 + ρ2) × (ρ1 + ρ2)

But

K2 (A,B)− 1 ≤ ρ1 × ρ2
(ρ1 + ρ2) × (ρ1 + ρ2)

− 1

=
[ρ1 × ρ2]− [(ρ1 + ρ2) × (ρ1 + ρ2)]

(ρ1 + ρ2) × (ρ1 + ρ2)
≤ 0

Hence K2 (A,B)− 1 ≤ 0, then K (A,B) ≤ 1.

Definition 3.7. Allow S : DFSs (X, T ) × DFSs (X, T ) → [0, 1] be a function,
and let A (T ) , B (T ) and C (T ) be DFSs in the universal X = {x1, x2, x3, . . . , xn}
Regarding the time set T = {t1, t2, t3, . . . . . . . . . , tm}. Then S(A,B) is defined as the
degree of similarity between DFSs A and B. Satisfies the ensuing claims

(1) 0 ≤ S(A,B) ≤1;
(2) S (A,B) = 1 if A= B;
(3) S (A,B) = S(B,A)
(4) If A ⊆B ⊆C. Then S (A, C) ≤ S (A,B) , S (A, C) ≤ S (B,C) .

The degrees of similarity between A and B that now satisfy requirements 1 through 4 are
as follows,

C (A,A) =

 m∑
j=1,

(
n∑

i=1

(
Axi

tj

))×

 m∑
j=1,

(
n∑

i=1

(
Axi

tj

))
SA(i, j) =

(∑m
j=1,

(∑n
i=1

(
Axi

tj

)))
,

SB(i, j) =
(∑m

j=1,

(∑n
i=1

(
Bxi

tj

)))
,

ψA(i, j) =

(∑m
j=1,

(∑n
i=1

(
Axi

tj

)))
+ 1−

(∑m
j=1,

(∑n
i=1

(
Bxi

tj

)))
2

,

Where i = 1, 2, 3, . . . .., n, j = 1, 2, 3, . . . . . . ,m . Then

S1 (A,B) = 1− 1

2mn

∣∣∣∣∣∣
 m∑

j=1,

(
n∑

i=1

(
Axi

tj

))−

 m∑
j=1,

(
n∑

i=1

(
Bxi

tj

))∣∣∣∣∣∣
S2 (A,B) = 1− 1

2mn

∣∣∣∣∣∣
 m∑

j=1,

(
n∑

i=1

((
Axi

tj

)2))−

 m∑
j=1,

(
n∑

i=1

((
Bxi

tj

)2))∣∣∣∣∣∣
S0 (A,B) = 1− 1√

2mn

∣∣∣∣∣∣∣
√√√√√
 m∑

j=1,

(
n∑

i=1

(
Axi

tj

))−

 m∑
j=1,

(
n∑

i=1

(
Bxi

tj

))
∣∣∣∣∣∣∣
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S3 (A,B) = 1− 1
y√2mn

√√√√√√√
∣∣∣∣∣∣∣∣

(∑m
j=1,

(∑n
i=1

(
A

xi
tj

)))
+
(
1−

(∑m
j=1,

(∑n
i=1

(
B

xi
tj

))))
2

−
(∑m

j=1,

(∑n
i=1

(
B

xi
tj

)))
+
(
1−

(∑m
j=1,

(∑n
i=1

(
A

xi
tj

))))
2

∣∣∣∣∣∣∣∣, 1 ≤

y < +∞,
A comparison of the similarity metrics S0 (A,B) , S1 (A,B) , S2 (A,B) , S3 (A,B) ,

we give the following example.

Example 3.8. Example 4 Assume that A (T ) and B (T ) is DFSs specified on
X = {x1, x2, x3, x4, x5, x6} in relation to the designated time T = {t1, t2, t3, t4, t5, t6} . The
specifics of a DFS A (T ) explained in Table (4), Table (5) explained DFS B(T ) and
Table (6) provided an explanation of a comparison of similarity metrics
S0 (A,B) , S1 (A,B) , S2 (A,B) , S3 (A,B) , DFS A (T ) and DFS B (T ).

TABLE 3. DFS A (T )

t1 t2 t3 t4 t5 t6
x1 0.1 0.2 0.3 0.1 0.3 0.4
x2 0.3 0.3 0.6 0.2 0.2 0.1
x3 0.2 0.4 0.2 0.1 0.3 0.4
x4 0.4 0.5 0.3 0.1 0.2 0.5
x5 0.5 0.1 0.1 0.1 0.3 0.1
x6 0.1 0.2 0.2 0.5 0.2 0.1

TABLE 4. DFS B (T )

t1 t2 t3 t4 t5 t6
x1 0.3 0.1 0.1 0.4 0.1 0.3
x2 0.2 0.2 0.2 0.4 0.3 0.5
x3 0.1 0.3 0.3 0.3 0.2 0.5
x4 0.2 0.4 0.2 0.5 0.4 0.6
x5 0.5 0.5 0.1 0.2 0.1 0.3
x6 0.1 03 0.4 0.2 0.1 0.2
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TABLE 5. A comparison of the similarity metrics
S0 (A,B) , S1 (A,B) , S2 (A,B) , S3 (A,B)

t1 t2 t3 t4 t5 t6
x1 S0 (A,B) = 0.95 S0 (A,B) = 0.46 S0 (A,B) = 1 S0 (A,B) = 1. S0 (A,B) = 0.95 S0 (A,B) = 1.

S1 (A,B) = 0.998 S1 (A,B) = 0.98 S1 (A,B) = 0.72 S1 (A,B) = 1. S1 (A,B) = 0.8 S1 (A,B) = 1.
S2 (A,B) = 1.00 S2 (A,B) = 1.0 S2 (A,B) = 0.92 S2 (A,B) = 1. S2 (A,B) = 0.80 S2 (A,B) = 1.
S3 (A,B) = 0.91 S3 (A,B) = 0.93 S3 (A,B) = 0.82 S3 (A,B) = 1. S3 (A,B) = 0.16 S3 (A,B) = 1.

x2 S0 (A,B) = 1. S0 (A,B) = 0.75 S0 (A,B) = 1 S0 (A,B) = 0.82 S0 (A,B) = 0.92 S0 (A,B) = 1
S1 (A,B) = 0.94 S1 (A,B) = 0.19 S1 (A,B) = 0.30 S1 (A,B) = 0.80 S1 (A,B) = 0.91 S1 (A,B) = 0.96
S2 (A,B) = 1. S2 (A,B) = 1. S2 (A,B) = 0.86 S2 (A,B) = 0.80 S2 (A,B) = 1. S2 (A,B) = 1.
S3 (A,B) = 0.94 S3 (A,B) = 0.33 S3 (A,B) = 0.95 S3 (A,B) = 0.96 S3 (A,B) = 0.958 S3 (A,B) = 0.91

x3 S0 (A,B) = 1. S0 (A,B) = 1 S0 (A,B) = 1 S0 (A,B) = 0.64 S0 (A,B) = 0.92 S0 (A,B) = 1
S1 (A,B) = 1. S1 (A,B) = 0.75 S1 (A,B) = 0.58 S1 (A,B) = 0.68 S1 (A,B) = 0.96 S1 (A,B) = 0.90
S2 (A,B) = 1. S2 (A,B) = 0.30 S2 (A,B) = 0.98 S2 (A,B) = 0.68 S2 (A,B) = 1. S2 (A,B) = 0.90
S3 (A,B) = 1. S3 (A,B) = 0.69 S3 (A,B) = 0.9823 S3 (A,B) = 0.68 S3 (A,B) = 0.9941 S3 (A,B) = 0.95

x4 S0 (A,B) = 0.6 S0 (A,B) = 0.29 S0 (A,B) = 1 S0 (A,B) = 0.92 S0 (A,B) = 0.3 S0 (A,B) = 1
S1 (A,B) = 0.91 S1 (A,B) = 0.95 S1 (A,B) = 0.96 S1 (A,B) = 0.91 S1 (A,B) = 0.980 S1 (A,B) = 0.96
S2 (A,B) = 0.91 S2 (A,B) = 1. S2 (A,B) = 0.95 S2 (A,B) = 0.991 S2 (A,B) = 1. S2 (A,B) = 0.9886
S3 (A,B) = 0.99 S3 (A,B) = 0.75 S3 (A,B) = 0.91 S3 (A,B) = 0.99 S3 (A,B) = 0.9175 S3 (A,B) = 0.9841

x5 S0 (A,B) = 0.98 S0 (A,B) = 0.45 S0 (A,B) = 1 S0 (A,B) = 1 S0 (A,B) = 1. S0 (A,B) = 1
S1 (A,B) = 0.29 S1 (A,B) = 0.68 S1 (A,B) = 0.44 S1 (A,B) = 0.94 S1 (A,B) = 1. S1 (A,B) = 0.96
S2 (A,B) = 0.31 S2 (A,B) = 1. S2 (A,B) = 0.92 S2 (A,B) = 0.92 S2 (A,B) = 1. S2 (A,B) = 1.
S3 (A,B) = 0.899 S3 (A,B) = 0.44 S3 (A,B) = 0.94 S3 (A,B) = 0.82 S3 (A,B) = 1. S3 (A,B) = 0.91

x6 S0 (A,B) = 1 S0 (A,B) = 0.45 S0 (A,B) = 1 S0 (A,B) = 1 S0 (A,B) = 0.93 S0 (A,B) = 0.93
S1 (A,B) = 0.94 S1 (A,B) = 0.68 S1 (A,B) = 0.94 S1 (A,B) = 0.98 S1 (A,B) = 0.98 S1 (A,B) = 0.98
S2 (A,B) = 0.94 S2 (A,B) = 1. S2 (A,B) = 0.92 S2 (A,B) = 0.96 S2 (A,B) = 1. S2 (A,B) = 1.
S3 (A,B) = 0.46 S3 (A,B) = 0.44 S3 (A,B) = 0.98 S3 (A,B) = 0.93 S3 (A,B) = 0.96 S3 (A,B) = 0.96

4. NOVEL MEASUREMENTS OF SIMILARITY FOR DYNAMICS FUZZY SETS (DFS)

The fuzzy set (DFS) for measures of dynamics is extended in the following formulation.

Definition 4.1. If A(t) is DFS, t ∈ T . Define

G (A(t)) =
1−

(∑n
j=1,

(∑m
i=1

(
Axi

tj

)))
1 + α

(∑n
j=1,

(∑m
i=1

(
Axi

tj

))) , α > 0

Then a generator DFS (GDFS) A is given by

Aα(T ) =


 n∑

j=1,

(
m∑
i=1

(
Axi

tj

)) ,
1−

(∑n
j=1,

(∑m
i=1

(
Axi

tj

)))
1 + α

(∑n
j=1,

(∑m
i=1

(
Axi

tj

)))


The hesitation degree of a GDFS A is

πAα(x, t) = 1−

 n∑
j=1,

(
m∑
i=1

(
Axi

tj

))−
1−

(∑n
j=1,

(∑m
i=1

(
Axi

tj

)))
1 + α

(∑n
j=1,

(∑m
i=1

(
Axi

tj

)))
Example 4.2. Example 5 Assume that A (T ) is DFS defined on X = {x1, x2, x3} in
relation to the designated time T = {t1, t2, t3}. The specifics of aGDFS A (T ) outlined
in Table (6), when If α = 1, and Table (7) explained the hesitation degree of a DFS A.

If ρ = 1, then
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TABLE 6. GDFS A1

t1 t2 t3
x1 (0.4,0.1) (0.2,0.6) (0.3,0.5)
x2 (0.6,0.5) (0.1,0.6) (0.6,0.4)
x3 (0.7,0.2) (0.1,0.5) (0.8,0.5)

TABLE 7. The hesitation degree of a GFS A

x1 x2 x3
t1 0.133 0.34 0.16
t2 0.65 0.76 0.652
t3 0.43 0.65 0.76

Definition 4.3. Assume that A (T ) and B (T ) is DFSs inside the globalX = {x1, x2, x3, . . . . . . . . . , xn}
in relation to the designated time T = {t1, t2, t3, . . . . . . . . . , tm}.
Then, a comparison of the cosine similarity between A (T ) and B (T ) is suggested to be
done as follows:

CT (A (xi, tj) ,B (xi, tj)) =
1

mn

 n∑
i=1

m∑
j=1

(
Axi

tj

)(
Bxi

tj

)
√(

Axi
tj

)2
+

√(
Bxi

tj

)2


Where i = 1,2,3,. . . ..,n, j = 1,2,3,. . . . . . ,m

Theorem 4.1. Assume that A (TT ) and B (T ) is DFSs in X with respect to T .. Then,

(1) CT (A,B) = 1 if A = B;
(2) CT (A,B) = CT (B,A) ,;
(3) −1 ≤ CT (A,B) ≤ 1,;
(4) If n = m = 1, then CT (A,B) = (A,B) .

Proof

(1) Allow A and B be two DFSs which are specified in the discourse universe. X =
{x1, x2, x3, . . . . . . ., xn} and the instants in time T = {t1, t2, t3, . . . . . . ., tm}.
The cosine similarity measure between the following A (T ) and B (T ):

CT (A (xi, tj) ,B (xi, tj)) =
1

mn

 n∑
i=1

m∑
j=1

(
Axi

tj

)(
Bxi

tj

)
√(

Axi
tj

)2
.

√(
Bxi

tj

)2


if A = B, then

CT (A,B) = 1

mn

 n∑
i=1

m∑
j=1

(
Axi

tj

)2
(
Axi

tj

)2
 = 1



DYNAMIC FUZZY SETS AND NEW DFS MADM TECHNIQUE 321

(2)

CT (A (xi, tj) ,B (xi, tj)) =
1

mn

 n∑
i=1

m∑
j=1

(
Axi

tj

)(
Bxi

tj

)
√(

Axi
tj

)2
.

√(
Bxi

tj

)2


CT (A (xi, tj) ,B (xi, tj)) =
1

mn

 n∑
i=1

m∑
j=1

(
Bxi

tj

)(
Axi

tj

)
√(

Bxi
tj

)2
.

√(
Axi

tj

)2


= CT (B,A)
(3) By the same manner in (3) Theorem 3.4.
(4) If n = m = 1, then

CT (A (xi, tj) ,B (xi, tj)) =
1

mn

 n∑
i=1

m∑
j=1

(
Axi

tj

)(
Bxi

tj

)
√(

Axi
tj

)2
.

√(
Bxi

tj

)2


CT (A (xi, tj) ,B (xi, tj)) =

 n∑
i=1

m∑
j=1


(
Axi

tj

)(
Bxi

tj

)
√(

Axi
tj

)2
.

√(
Bxi

tj

)2



= k(A,B)

Definition 4.4. Assume that A(T ) and B(T ) is DFSs in X = {x1, x2, x3, . . . . . . . . . , xn}
regarding the designated time T = {t1, t2, t3, . . . . . . . . . , tm} . Then, the distance mea-
sure is suggested to be as follows:

d (A,B) = cos−1 (CT (A,B))

Theorem 4.2. Assume that A(T ) and B(T ) is DFSs in X regarding the designated time
T . Then,

(1) CT (A,B) = 1, then d (A,B) = 0;
(2) CT (A,B) = CT (B,A), then d (A,B) = d (B,A) ;
(3) If −1 ≤ CT (A,B) ≤ 1, then d (A,B) ≥ 0;
(4) A ⊆B ⊆C, then d (A,C) ≤ d (A,B) + d (B,C) .

Proof
(1), (2), and (3) are simple proof.
(4) Let A(T ), B(T ) and C(T ) be DFSs in the universal X = {x1, x2, x3, . . . , xn} with
respect to the time set T = {t1, t2, t3, . . . . . . . . . , tm} . Then, the distance measure of the
angle is proposed as follows:

d(i,j) (A (xi, tj) ,B (xi, tj)) = cos−1 (CT (A (xi, tj) ,B (xi, tj)))

d(i,j) (A (xi, tj) , C (xi, tj)) = cos−1 (CT (A (xi, tj) , C (xi, tj)))
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d(i,j) (B (xi, tj) , C (xi, tj)) = cos−1 (CT (B (xi, tj) , C (xi, tj)))

Where i = 1, 2, 3, . . . .., n, j = 1, 2, 3, . . . . . . ,m and

CT (A (xi, tj) ,B (xi, tj)) =
1

mn

 n∑
i=1

m∑
j=1

(
Axi

tj

)(
Bxi

tj

)
√(

Axi
tj

)2
.

√(
Bxi

tj

)2


CT (B (xi, tj) , C (xi, tj)) =
1

mn

 n∑
i=1

m∑
j=1

(
Bxi

tj

)(
Cxi

tj

)
√(

Bxi
tj

)2
.

√(
Cxi

tj

)2


CT (A (xi, tj) , C (xi, tj)) =
1

mn

 n∑
i=1

m∑
j=1

(
Axi

tj

)(
Cxi

tj

)
√(

Axi
tj

)2
.

√(
Cxi

tj

)2


If A (xi, tj)⊆ B (xi, tj) ⊆ C (xi, tj) , for each i = 1, 2, 3, . . . .., n, j = 1, 2, 3, . . . . . . ,m
then

d(i,j) (A (xi, tj) ,B (xi, tj))+d(i,j) (B (xi, tj) , C (xi, tj)) ≥ d(i,j) (A (xi, tj) , C (xi, tj)) .

Definition 4.5. Allow A , B be two DFSs defined on X = {x1, x2, x3, . . . . . . ., xn and
T = {t1, t2, t3, . . . . . . ., tm}. Assume that k(A,B) is correlation coefficient of A and B
. Then, a comparison of weight similarity between DFSs A(T ) and B(T ) is suggested to
be done as follows:

ρT (A (xi, tj) ,B (xi, tj)) =

 n∑
i=1

m∑
j=1

K(A (xi, tj) ,B (xi, tj))

 n∑
i=1

m∑
j=1

(
Axi

tj

)(
Cxi

tj

)
√(

Axi
tj

)2
.

√(
Cxi

tj

)2



and possess the ensuing qualities

(1) ρT (A,B) = 1 then A = B;
(2) ρT (A,B) = ρT (B,A);
(3) −1 ≤ ρT (A,B) ≤ 1.

Remark. ρT (A (xi, tj) ,B (xi, tj)) = CT (A (xi, tj) ,B (xi, tj)) if,
n∑

i=1

m∑
j=1

k(A (xi, tj) ,B (xi, tj)) =
1

mn

A comparative analysis of similarity metrics CT (A,B) , ρT (A,B) . We offer the subse-
quent illustration.

Example 4.6. Example 6 Assume that A(T ) and B(T ) is TCIFSs defined on X =
{x1, x2, x3, x4, x5, x6} with time set T = {t1, t2, t3, t4, t5, t6}, The specifics of anDFS A(T )
explained in Table (8) Table (9), explained DFS B(T ), and Table (10,11) described a
comparison of the measurements of similarity between CT (A,B) , ρT (A,B).



DYNAMIC FUZZY SETS AND NEW DFS MADM TECHNIQUE 323

TABLE 8. DFS A (T )

t1 t2 t3 t4 t5 t6
x1 0.33 0.32 0.12 0.24 0.54 0.23
x2 0.11 0.22 0.32 0.32 0.31 0.43
x3 0.31 0.36 0.37 0.75 0.34 0.49
x4 0.32 0.43 0.11 0.43 0.44 0.53
x5 0.43 0.33 0.43 0.41 0.49 0.58
x6 0.43 0.42 0.32 0.97 0.32 0.41

TABLE 9. DFS B (T )

t1 t2 t3 t4 t5 t6
x1 0.71 0.76 0.54 0.53 0.43 0.42
x2 0.41 0.42 0.43 0.54 0.22 0.54
x3 0.56 0.42 0.76 0.51 0.63 0.54
x4 0.22 0.23 0.76 0.65 0.43 0.62
x5 0.32 0.72 0.63 0.63 0.65 0.87
x6 0.63 0.63 0.63 0.87 0.76 0.63

5. A NEW DFS MADM TECHNIQUE

We first discuss the shortcomings of the traditional DFS TOPSIS approach in this sec-
tion. Next, we provide a new MADM technique in the DFS circumstances that is akin to
TOPSIS.

5.1. The DFS TOPSIS method’s flaws. The order preference by similarity to ideal solu-
tion (TOPSIS) approach, first published by Hwang and Yoon (1981) and later extended to
the fuzzy environment by Chen (2000), is one of the most well-liked and effective methods
for handling MADM issues.

TABLE 10. Then the similarity measures CT (A,B) and
ρT (A,B),t1 → t3

t1 t2 t3
x1 CT (A,B) = .7652 CT (A,B) = .5487 CT (A,B) = .0013

ρT (A,B) = .6543 ρT (A,B) = .4321 ρT (A,B) = .2700
x2 CT (A,B) = .0243 CT (A,B) = .9871 CT (A,B) = .1044

ρT (A,B) = .5431 ρT (A,B) = .4321 ρT (A,B) = .9321
x3 CT (A,B) = .02707 CT (A,B) = .0021 CT (A,B) = .0004

ρT (A,B) = .3541 ρT (A,B) = .096 ρT (A,B) = .6478
x4 CT (A,B) = .5432 CT (A,B) = .8721 CT (A,B) = .0108

ρT (A,B) = .4321 ρT (A,B) = .4231 ρT (A,B) = .1363
x5 CT (A,B) = .4325 CT (A,B) = .0075 CT (A,B) = .0024

ρT (A,B) = .4113 ρT (A,B) = .542 ρT (A,B) = .6148
x6 CT (A,B) = .4327 CT (A,B) = .8741 CT (A,B) = .0044

ρT (A,B) = .4321 ρT (A,B) = .0033 ρT (A,B) = .1124
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TABLE 11. Then the similarity measures CT (A,B) and
ρT (A,B),t4 → t6

t4 t5 t6
x1 CT (A,B) = .0116 CT (A,B) = −.016 CT (A,B) = −1.006

ρT (A,B) = .1321 ρT (A,B) = .007 ρT (A,B) = −1.000
x2 CT (A,B) = .6521 CT (A,B) = −.003 CT (A,B) = .0042

ρT (A,B) = .4681 ρT (A,B) = −.0500 ρT (A,B) = −.1356
x3 CT (A,B) = .81 CT (A,B) = −.014 CT (A,B) = −.021

ρT (A,B) = .231 ρT (A,B) = −.7200 ρT (A,B) = −.9821
x4 CT (A,B) = .0051 CT (A,B) = −.011 CT (A,B) = −.0102

ρT (A,B) = .9997 ρT (A,B) = −.729 ρT (A,B) = −.971
x5 CT (A,B) = .0008 CT (A,B) = −.342 CT (A,B) = −.062

ρT (A,B) = −.4198 ρT (A,B) = −1.00 ρT (A,B) = −.6153
x6 CT (A,B) = −.0008 CT (A,B) = −.003 CT (A,B) = −.033

ρT (A,B) = −.6519 ρT (A,B) = −.528 ρT (A,B) = .0316

The foundation of the TOPSIS technique is the idea that the option that is closest to the
PIS and farthest from the NIS should be selected. The DFSs for the PIS and NIS are:

PIS = max
(
Axi

tj , B
xi
tj

)
, NIS = min

(
Axi

tj , B
xi
tj

)
.

If we utilize the similarity metric in TOPSIS instead of the distance measure, the chosen
option should have the highest similarity to PIS and the lowest similarity to NIS. However,
as the following examples show, there is not even the slightest similarity between NIS and
the TOPSIS-selected option.

Example 5.1. Consider a DFS M1 and M2

M1 =

0.21 0.76 0.43
0.45 0.87 0.67
0.12 0.67 0.53


M2 =

0.41 1.16 0.42
0.15 1.17 0.67
0.62 0.67 0.41


Then the PIS M+ and NIS M− are given below:

M+ =

0.41 1.16 0.43
0.45 1.17 0.67
0.62 0.67 0.53


M− =

0.21 0.76 0.42
0.15 0.87 0.67
0.12 0.67 0.41


The similarity of each alternative withM+ i.e., SG1 (Mj , M

+) andM− i.e., S1 (Mj , M
−)

along with their closeness coefficient δj =
S1(Mj , M

+)
S1(Mj , M+)+S1(Mj , M−) , j = 1, 2 are shown

in Table 12 and Fig 3. Also, the final ranking of alternatives is shown in the same Table 12.

S1 (A,B) = 1− 1

2mn

∣∣∣∣∣∣
 m∑

j=1,

(
n∑

i=1

(
Axi

tj

))−

 m∑
j=1,

(
n∑

i=1

(
Bxi

tj

))∣∣∣∣∣∣
= 1− 1√

18
(|4.71− 6.11|) = 0.5427,
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By the fashion

TABLE 12. Computed values regarding Example 7

S1 (Mj , M
+) S1 (Mj , M

−) δj Ranking
M1 0.5427 0.8986 0.3765 2
M2 0.8.986 0.67001 0.5728 1

From Table 12, it is clear that the best alternative M2 due to the DFS TOPSIS method.
Table 12 makes it evident that the optimal choice M2, as a result of the DFS TOPSIS

FIGURE 3. it is clear that the best alternative M2 due to the DFS TOP-
SIS method.

approach.

6. CONCLUSIONS AND FUTURE DIRECTIONS

The following sums up the main contributions made in this paper:
(1) We determine how to set a new fuzzy similarity measure standard.
(2) In a scenario including multiple criteria for decision-making, fuzzy entropy mea-

surements are essential for determining the weights of the criterion.
(3) Using suggested similarity metrics, we created a few new entropy measures for

Dynamics fuzzy collections.
(4) A new multi-attribute decision-making technique called ”A Dynamics fuzzy envi-

ronment” is designed to address a major shortcoming of the well-known decision-
making approach.

In the future, to make decisions using Pythagorean fuzzy sets, we will apply more sophis-
ticated theories.

7. CONCLUSIONS

A membership function of a fuzzy set that is subjectively provided by a specific amount
of knowledge may vary with time in a real-world application. As a result, knowledge-based
dynamic fuzzy sets—a expanded concept of fuzzy sets—were presented in this study. The
idea is a combination of knowledge-based fuzzy sets, as presented and debated by Intan
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and Mukaidono, and dynamic fuzzy sets, as suggested by Wang [20]. One application
of two-dimensional fuzzy multisets that deals with time and knowledge variables is the
idea of knowledge-based dynamic fuzzy sets. Using aggregation functions, three types of
summary fuzzy sets are proposed and discussed: knowledge-based summary fuzzy sets,
time-based summary fuzzy sets, and general summary fuzzy sets. There are definitions for
a few fundamental operations, including complementation, union, intersection, equality,
and containment. Their characteristics are checked and validated.
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