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ABSENCE OF POSITIVE EIGENVALUES OF THE LAPLACIAN IN DOMAINS
WITH INFINITE BOUNDARIES

ALEXANDER G. RAMM

ABSTRACT. For a wide class of infinite boundaries and the zero boundary condition, a
simple proof is given for the absence of the positive eigenvalues of the Laplacian. The
objective of this work is to prove Theorem 1 in which such conditions are formulated.

1. INTRODUCTION

Let S2 be a unit sphere in R? and © be a connected open set on S2. The boundary of {2
denote L. This set defines a cone K in R3. Let R > 0 be an arbitrary large number, Br
be a ball centered at the origin and of radius R and B}, be the complement to Bp, in R3.
Let D be a domain with a sufficiently smooth (for example, C2-smooth) boundary S. This
boundary coincides with the boundary of the cone K in Bj.

We prove that the Dirichlet Laplacian in D does not have positive eigenvalues. Our
proof is easily generalised to the case of the domains in the space R", n > 3.

In the monograph [4]],p.333, the absence of positive eigenvalues of the Dirichlet Lapla-
cian is proved for a larger class of domains with infinite boundaries than in this paper, but
the proof in [4] is much harder and longer than we offer here. Our proof of Theorem 1 in
this paper is exceptionally short and easy to follow.

Consider the problem

(A+E)u=0 z€D,ulses=0 k*>0. (1.1)

Let us assume
u € L*(D). (1.2)

Theorem 1. Under our assumptions about D, the only solution to problem (L.1)-(1.2) is
u = 0.
Proof of Theorem 1 is given in Section 2.

In the remarkable papers [[1]], [2]] the general methods are developed for spectral analysis
of the Laplace and Schrédinger operators. Originally these methods were suggested in [3]],
see also [4] .
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2. PROOF OF THEOREM 1

Let v; be the set of all normalized eigenfunctions in €2 of the Dirichlet operator A*, the
angular part of the Laplacian in the spherical coordinates:

(A" + vy =0, ;[ =0, (2.1)
* 1 0 (win pOi 9 (_1 9Y;
where v; > 0, A* 1= 5 (sinf 77 ) + a—d)(sinea—(;).
Multiply equation (I.T)) by +; and integrate over €2 to get
) v, 4+ 1 N
uf + w4 (B = 2y =0, = /Qm/deQ, (2.2)
. du
where u' 1= Gt.
The solution to this equation is:
(k) Nagy(r)
wy 1= () = + o) =, 23)

where J,;)(kr) is the Bessel function regular at » = 0 and N, ;) (kr) is the Bessel function
linearly independent from .J,;)(k7), and
) 1
a(j) == (v; + 1)1/2-

If u € L?(D), then ru;(r) € L*(R, 00). Therefore, ¢1(j) = c2(j) = 0, because of the
known asymptotic of the Bessel functions as r — oo.

Consequently, u = 0 in D N BY,. Since u solves elliptic equation with constant coeffi-
cients, it satisfies the unique continuation property. So, if u = 0in D N B’,, then u = 0 in
D. Theorem 1 is proved. O

Remark 1. It follows from our proof of Theorem 1 that an arbitrary sufficiently smooth
perturbation of the boundary inside B cannot produce a positive eigenvalue of the Dirich-
let Laplacian.

3. CONCLUSION

For a wide class of infinite boundaries and the zero boundary condition, a simple proof
is given for the absence of the positive eigenvalues of the Laplacian. This result is of in-
terest practically and theoretically. Possible developments can include similar results with
other boundary conditions. To our knowledge, there are no recent results of this scope.
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