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A SPATIAL NONLINEAR MATHEMATICAL MODEL OF MALARIA
TRANSMISSION DYNAMICS USING VECTOR CONTROL STRATEGIES
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ABSTRACT. Malaria is one of the serious life-threatening diseases with negative effects
on both the social and economic aspects of human life. Researching into its curtailment
or eradication is necessary for elevating human health and social-economic status. In this
regard, this study focuses on the spatial non-linear mathematical model to investigate how
vector control strategies are correlated with the dynamics of malaria transmission. The
study employs a non-linear partial differential equations (NPDE) mathematical model to
investigate malaria transmission. The model system incorporates human (host), mosquito
(vector), and invasive alien plant populations. Some applicable epidemiological mathe-
matical analyses were carried out on the model system, such as critical points, stability,
the basic reproduction number, local asymptotic stability (LAS), bifurcation, global as-
ymptotic stability (GAS), wave speed, and numerical analyses using relevant data were
extensively analysed. Using the sharp threshold conditions imposed on the basic repro-
duction number, we were able to show that the model exhibited the backward bifurcation
phenomenon and the DFE was shown to be globally asymptotic stable (GAS) under certain
conditions. It was found that the invasive alien plants have significant effects on malaria
transmission. This study suggests that mosquito repellent plants should be planted around
the human environment to replace the invasive plants so as to reduce mosquito shelters and
feeding opportunities for mosquitoes.

1. INTRODUCTION

Malaria is a life-threatening illness that affects millions of people all over the world
(WHO, 2021), despite that there are new scientific research innovations for curtailing and
preventing the vector, such as insecticide spray and insecticide-treated bed nets (Raghaven-
dra et al. 2011; Ranson et al. 2011). For instance, in so many parts of African countries,
the disease remains endemic and severe, and even though the mortality rates have drasti-
cally reduced in 2013, it was estimated that about 855,000 people died of malaria (Cjl et
al., 2014). However, with the application of insecticide-treated bed nets control measures,
there is a drastic decline in malaria transmission (WHO, 2022). In 2017, it was estimated
that only 435,000 deaths occurred, as against 855,000 in 2013.
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Malaria infection begins when an infected female Anopheles mosquito bites a suscep-
tible human. As a result, the parasites in the form of sporozoites enter or are injected
into the bloodstream and then transferred from the susceptible individuals into exposed
individuals. Malaria infection has an incubation period of 7 to 30 days after an infective
female Anopheles mosquito bites a susceptible human and its symptoms include diarrhea,
fever, chills, and vomiting to mention a few, and can also occur for years if not treated on
time. Recently, the World Malaria Report (WMR) reported 241 million cases of malaria
in 2020, which is higher than the previous year’s (2019) figure of 227 million cases of
malaria. However, in 2020, the estimated number of malaria deaths stood at 627,000 - an
increase of 69,000 deaths over the previous year (2019) was recorded. It is worth noting
that about two-thirds of these deaths (47,000) were due to disruptions during the COVID-
19 pandemic, while the remaining one-third of deaths (22,000) reflects a recent change
in WHO’s methodology for calculating malaria mortality (regardless of COVID-19 dis-
ruptions)(WHO, 2022). Even though African countries accounted for almost half of the
disease burden and more than half of the malaria deaths worldwide, Nigeria has the high-
est share of the disease burden (31.9%) followed by the Democratic Republic of Congo
(13.2%), the United Republic of Tanzania (4.1%) and Mozambique (3.8%)(WHO, 2022).

Malaria infections are normally prevented by the following four scientific ways, which
include insecticide-treated bed nets (ITNS), indoor residual spraying, and intermittent-
preventive treatment, while artemisinin-based combination therapy (ACT) is used for the
treatment of uncomplicated malaria (Mack and Smith 2011). Vaccination has proved over
time as a preventive measure for malaria disease. In October 2021, the World Health Or-
ganisation (WHO) recommended broad use of the RTS, S/AS01 malaria vaccine among
children living in regions with moderate to high plasmodium falciparum malaria trans-
mission. The vaccine has been shown to significantly reduce malaria, and deadly severe
malaria, among young children (WHO, 2021). This was as a result of the malaria report
in 2020 that the African Region had 95% of malaria cases and 96% of malaria deaths.
Children under 5 years accounted for about 80% of all malaria deaths in the region.

Environmental management became paramount over decades to obtain a sound and
environmentally friendly ecosystem. The environmental protection agency (EPA) pro-
gramme was highly successful as a result of environmental measures for the control of
both falciparum and vivax plasmodium as parts of mosquito larvae in the early 1900s. The
work was based on Watson in Malaysia, which showed the necessity of environmental
modification by selective clearing of forests that harbour mosquitoes (Nkya et al. 2014).
The world health organisation (WHO) uses dichlorodiphenyltrichloroethane (DDT) as one
of the major control mechanisms for eradicating malaria in 1956-1967, and it was not ex-
pensive to purchase and use, and highly recommended insecticides as the residual house
spraying which was highly effective and promised an end to malaria. The campaign for
DDT failed due to its environmental persistence and effects led to its being banned by the
government of the USA in 1972. Stone et al. (2018) presented another promised method
of eradicating malaria due to changes in vegetation structure and composition, or as a re-
sult of deforestation (Villa et al. 2011; Zhu et al. 2015; Hien et al. 2016; Shackleton
et al. 2017). In Africa, invasive alien plants are now one of the major problems, and in
other African regions, where they have negative effects on health, water and other natural
resources, and also pasture production. The invasive alien plants are capable of affecting
human resources in two ways. First of all, both male and female mosquitoes need sugar
and honeydew for their survival and also obtained from floral sources. And secondly, the
invasive plants serve as breeding and resting sites for adult mosquitoes, thus enhancing
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malaria vector multiplication (Kroeger et al. 2013; Muturi et al. 2015; Davis et al. 2016;
Gardner et al. 2017; Muller et al. 2017; Stone et al. 2018).

Mathematical models have become significant tools for understanding the transmission
of malaria infections and also offer control measures that will enable health professionals
to overcome the disease (Diabate et al., 2022; Koutou et al., 2023). However, Artzy et al.
(2010) formulated a mathematical model for the transmission intensity and drug resistance
in malaria population dynamics and underscore that climate change and drug resistance
can interact and need not be considered as alternative explanations for trends in disease
incidence in this region. Julius et al. (2014) extended the work of Tumwine et al. (2017)
model in which they divided the infected human population into individuals infected with
drug-sensitive and resistance. Their findings were that the basic reproduction number was
obtained in terms of the demographic and epidemiological parameters. It is noted from
this threshold parameter that the effectiveness of treatment for the sensitive parasite plays
a crucial role in the spread of the disease and the emergence of drug resistance against the
most common and affordable anti-malarial poses a key obstacle to malaria control.

A mathematical model for the in-host dynamics of malaria and the effects of treatment
was proposed by Zadoki et al. (2017). It was found that the infection rate of merozoites,
the rate of sexual reproduction in gametocytes, and the burst size of both hepatocytes and
erythrocytes are more sensitive parameters for the onset of the disease. It was also reported
that a treatment strategy using highly effective drugs against such parameters can reduce
malaria transmission. Resmawan (2017) provides numerical simulations to show the effec-
tiveness of vaccines and anti-malaria drugs in humans to suppress the rate of transmission
of disease. It was assumed that humans in the susceptible class could move into the recov-
ering class due to vaccination. The simulation results showed that the increase in vaccine
effectiveness and anti-malaria drugs in humans can reduce the reproduction numbers so
that within a certain time the disease will vanish from the population. Titus et al. (2018)
modelled and studied the in-host plasmodium falciparum malaria subject to malaria vac-
cines was formulated and analysed. An efficacious pre-erythrocytic vaccine was shown to
greatly reduce the severity of clinical malaria. Based on the normalized forward sensitivity
index technique, the average number of merozoites released per bursting blood schizont
was shown to be the most sensitive parameter in the model. More so, Takoutsing et al.
(2019) investigated the malaria dynamics model of a within-host and with periodic anti-
malaria treatment. They found that eradication is possible under periodic regimens. A
Spatio-temporal model, using Diffusion-Reaction equations to describe how the drug du-
ration and efficiency can affect the parasite dispersal was also derived. In this work, we
propose a spatial non-linear mathematical model on the impact of vector control strategies
on the dynamics of malaria transmission. This work would result in helping policy-makers
to make decisions on how to reduce or eliminate invasive alien plants in the human envi-
ronment without compromising environmental sustainability and global warming disasters
to human lives.

The organisation of this paper is as follows. The model is formulated in Section 2. The
analyses of the formulated model and its numerical simulations are carried out in Section
3 and Section 4 respectively. The wave equation analyses and its numerical experiments
are carried out in Section 5. Discussion and conclusion are presented in Section 6 and 7
respectively.
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2. MODEL FORMULATION

In this section, we shall formulate mathematical model based on the biological paper
presented by stone et al. (2018) as follows.

2.1. Assumptions of the model equations. For proper understanding and formulation of
system of equations in this study, we present the following assumptions:

(H1) Invasive alien plants close to human population is capable of providing shelter for
a high density of the mosquito population.

(H2) Mosquitoes migrate from vegetation/invasive alien plants to human environment
due to their proximity to human habitat (Stone et al. 2018).

(H3) We also assume that recovered humans lost immunity and become susceptible.
(H4) There is a spatial movement of vectors from the invasive alien plants sites at the

borders of the community.
(H5) We consider that susceptible, exposed and infected vectors have the same coeffi-

cients of diffusion, D and of advection, K, because the disease has no effect on
vector movement (Vanessa and Norberto 2019);

(H6) We assumed that the distance measures from where the invasive plants are to hu-
man habitat can be covered by the vectors especially Anopheles mosquitoes.

(H7) We describe the spatial spread of the disease by the diffusion and advection of the
vectors only, disregarding the large-scale spatial movements of the human popula-
tion. These insects usually feed on hosts at night, so humans need to sleep in their
houses in villages in order to become infected. Hence, we do not assume local
dissemination by human movements.

(H8) To make the population constant over time, we assumed that the recruitment rate
is the same as those that died naturally and due to infection (Vanessa and Norberto
2019).

2.2. Model variables and parameters. The variables and the parameters of our formu-
lated model are given in Table 1 below.

2.3. Descriptions of the model equations. In order to provide a quick understanding of
our proposed model, we will briefly describe each compartment of our proposed model as
follows. The susceptible human recruitment rate is denoted by µh, which is the same as
the natural death rate of all the compartments. The population is increased by the recov-
ered persons that lost immunity and the disease induced death rate, while the population
is decreased by those that had contact with the infected mosquitoes and became exposed
and those that died naturally. The exposed human population/compartment is made up of
those that had contact with infected mosquitoes and is decreased by those that became in-
fected after some few days of exposure to mosquito bites and those that died naturally. The
infected human compartment is formed by exposed individuals that have malaria parasites
in their blood stream beyond the disease incubation period. The population is decreased
by recovered individuals, those that died due to infection and those that died natural death.
The recovered human compartment is formed by those that recovered from the disease
and is decreased by those that lost immunity and those that died naturally. The inva-
sive alien plants population is logistically modelled. The population is increased by the
plant’s growth rate and is decreased by the plant’s reduction/control rate, h. The suscep-
tible mosquito compartment flight behaviour is described by the PDE, D ∂2Sm

∂x2 − K ∂Sm

∂x
where the D and K represent the diffusion and advection movement of the mosquitoes
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TABLE 1. Description of model variables and parameters

Variable/Parameter Interpretation

Sh(t) Susceptible human population at time t
Eh(t) Exposed human population at time t
Ih(t) Infected human population at time t
Rh(t) Recovered human population at time t
Sm(t) Susceptible mosquito population at time t
Em(t) Exposed mosquito population at time t
Im(t) Infected mosquito population at time t
P (t) Plant population at time t
b Number of bite per mosquito/vector
D The coefficient of diffusion
K The coefficient of advection
qh Rate at which exposed human population

become infected
vh Recovered rate of infected individual
αh Recovery rate of human
h Control rate of invasive alien plants
θm recruitment rate of mosquitoes from

the density of invasive plants into the
general susceptible mosquito

µh Recruitment rate of susceptible human and
natural death rate of humans

δh Disease induced death rate
g Growth rate of invasive alien plants
Kp Plant carrying capacity
µm Recruitment rate of susceptible mosquitoes

and natural death rate of mosquitoes
λh(t) Force of infection for humans
λm(t) Force of infection for vectors
βhv probability of malaria transmission from

infectious humans to susceptible mosquitoes
βmh probability of malaria transmission from

infected vectors to susceptible humans
ϵ Availability of bed-nets
γ Efficacy of bed-nets

respectively. The susceptible mosquito is formed by the birth rate of µm and those that mi-
grated from the invasive plants with the rate, θm. The population is decreased by those that
had contact with the infected humans and those that died naturally. The exposed mosquito
compartment flight behaviour is described by the PDE, D ∂2Em

∂x2 − K ∂Em

∂x where the D
and K represent the diffusion and advection movement of the mosquitoes. The exposed
mosquito is formed by the vector force of infection, λm and is decreased by those that de-
veloped infection by the rate, qm and those that died naturally, µm. The infected mosquito
compartment flight behaviour is described by the PDE, D ∂2Im

∂x2 − k ∂Im
∂x where the D and

K represent the diffusion and advection movement of the mosquitoes respectively. The
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FIGURE 1. Schematic diagram of the model (1) with given values of λh

and λm

.

infected mosquito’s compartment is formed by the exposed mosquitoes that developed in-
fection at the rate qm and is decreased by those that died naturally, µm.

2.4. Model equations. Keeping track of the above assumptions, variables, parameter de-
scriptions, and schematic diagram, the formulated model equations are given by

∂S̄h

∂t
= µhN̄h + δhĪh + αhR̄h − λhS̄h − µhS̄h

∂Ēh

∂t
= λhS̄h − (qh + µh)Ēh

∂Īh
∂t

= qhĒh − (δh + µh + vh)Īh

∂R̄h

∂t
= vhĪh − (µh + αh)R̄h

∂P̄

∂t
= g(1− P̄

KP
)P̄ − hP̄

∂S̄m

∂t
= D

∂2S̄m

∂x2
−K

∂S̄m

∂x
+ µmV̄ + θmP − λmS̄m − µmS̄m

∂Ēm

∂t
= D

∂2Ēm

∂x2
−K

∂Ēm

∂x
+ λmN̄m − (qm + µm)Ēm

∂Īm
∂t

= D
∂2Īm
∂x2

−K
∂Īm
∂x

+ qmĒm − µmĪm

(2.1)
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Where,

λh = (1− ϵγ)βhm
bĪm
N̄h

, λm = (1− ϵγ)βmh
bĪh
N̄h

, 0 < ϵ < 1, 0 < γ < 1 (2.2)

with the initial and boundary conditions:

S̄h(0, x) > 0, Ēh(0, x) ≥ 0, Īh(0, x) ≥ 0, R̄h(0, x) ≥ 0

P̄ (0, x) ≥ 0, S̄m(0, x) > 0, Ēm(0, x) ≥ 0, Īm(0, x) ≥ 0,

¯Smx(t, 0) = 0, S̄m(t, 1) = 1, ¯Emx(t, 1) = 0,

Ēm(t, 0) = 0, ¯Imx(t, 0) = 0, Ēm(t, 0) = 0.

where D and K are the coefficients of diffusion and advection of the mosquitoes respec-
tively.
The total human population is N̄h = S̄h + Ēh + Īh + R̄h, and the total population is given
by N̄m = S̄m + Ēm + Īm

We will normalize model (2.1) using the following changed variables with the following
scaling parameters:
Sh = S̄h

N̄h
, Eh = Ēh

N̄h
, Ih = Īh

N̄h
, Rh = R̄h

N̄h
, P = P̄

P∗ , Sm = S̄m

N̄m
, Em = Ēm

N̄m
and

Im =
¯Im

N̄m
.

Substituting the re-scaled variables, together with their respective changes in derivatives,
into model (2.1), after several algebraic calculations, yields the following normalized sys-
tem:

∂Sh

∂t
= µh(1− Sh) + δhIh + αhRh − k1ShIm

∂Eh

∂t
= k1ShIm − (qh + µh)Eh

∂Ih
∂t

= qhEh − (δh + µh + vh)Ih

∂Rh

∂t
= vhIh − (µh + αh)Rh

∂P

∂t
= g(1− P )P − hP

∂Sm

∂t
= D

∂2Sm

∂x2
−K

∂Sm

∂x
+ µm(1− Sm) + θmcP − k2IhSm

∂Em

∂t
= D

∂2Em

∂x2
−K

∂Em

∂x
+ k2IhSm − (qm + µm)Em

∂Im
∂t

= D
∂2Im
∂x2

−K
∂Im
∂x

+ qmEm − µmIm

(2.3)

where

k1 = (1− ϵγ)βhmb
N̄m

N̄h
, k2 = (1− ϵγ)βmhb, c =

kp
N̄m

, 0 < ϵ < 1, 0 < γ < 1.
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with the initial and boundary conditions:
Sh(0, x) > 0,Eh(0, x) ≥ 0, Ih(0, x) ≥ 0, Rh(0, x) ≥ 0

P (0, x) ≥ 0,Sm(0, x) > 0, Em(0, x) ≥ 0, Im(0, x) ≥ 0,

Smx(t, 0) = 0,Sm(t, 1) = 1, Emx(t, 1) = 0,

Em(t, 0) = 0,Imx(t, 0) = 0, Em(t, 0) = 0.

Now, from the normalization and re-scaling carried out, we can now uncouple the system
to become

∂eh
∂t

= λh(1− eh − ih − rh)− (qh + µh)eh

∂ih
∂t

= qheh − (δh + vh + µh)ih

∂rh
∂t

= vhih − (µh + αh)rh

∂P

∂t
= g(1− P )P − hP

∂em
∂t

= D
∂2em
∂x2

−K
∂em
∂x

+ λm(1− em − im)− (qm + µm)em

∂im
∂t

= D
∂2im
∂x2

−K
∂im
∂x

+ qmem − µmim

(2.4)

3. MODEL ANALYSIS

We first considered and studied the dynamics of the homogeneous model. The spatial
homogeneous model corresponding to system (2.3) is given by

dSh

dt
= µh(1− Sh) + δhIh + αhRh − k1ImSh

dEh

dt
= k1ImSh − (qh + µh)Eh

dIh
dt

= qhEh − (δh + µh + vh)Ih

dRh

dt
= vhIh − (µh + αh)Rh

dP

dt
= g(1− P )P − hP

dSm

dt
= µm(1− Sm) + θmcP − k2IhSm

dEm

dt
= k2IhSm − (qm + µm)Em

dIm
dt

= qmEm − µmIm

(3.1)

3.1. Basic properties of the spatial homogeneous equations. Let Nh(t) = Sh(t) +
Eh(t) + Ih(t) + Rh(t) be the total population of human at time, t. Also, let Nm(t) =
Sm(t) + Em(t) + Im(t) be the total population of mosquitoes at time, t. Let P be the
plants population at time, t. The feasible region of the model (3.1) is given by
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Ω = {(Sh+Eh+Ih+Rh, P, Sm+Em+Im) ∈ ℜ8
+ : Sh+Eh+Ih+Rh = 1;P = g

h ;Sm+
Em + Im = 1, Sh > 0, Eh ≥ 0, Ih ≥ 0, Rh ≥ 0;P > 0;Sm > 0, Em ≥ 0, Im ≥ 0}

3.2. Disease free equilibrium (DFE) analysis. In this section, we shall carry-out a qual-
itative analysis of the model equations as follows.

3.2.1. Case I: When there are invasive plants in human environment. Disease free-equilibrium
(DFE) corresponding to the presence of invasive alien plants is given by

E1 = (S∗
h, E

∗
h, I

∗
h, R

∗
h, P

∗, S∗
m, E∗

m, I∗m)

= (1, 0, 0, 0,
(g − h)

g
,
µmg + θmc(g − h)

µmg
, 0, 0)

(3.2)

for g − h > 0 (which denotes the higher growth rate of plants than control rate).
Even when g = h, there is still a DFE. In this case, the DFE becomes a DFE without

invasive plants (i.e. the equilibrium E1 becomes E2 = (1, 0, 0, 0, 0, 1, 0, 0).
The biological implication of this equilibrium, E1, is that the DFE state in the presence

of invasive plants and susceptible mosquitoes is possible for malaria to be eradicated from
the local community even when the invasive plants are present in the target community.

3.2.2. Basic Reproduction number (R0). To calculate the effective reproduction number,
we divide system (3.1) into appearance of infection and transfer of infection as matrix
Fi(x) and Vi(x) respectively as follows:

F =


0 0 0 (1− ϵγ)βhmb
0 0 0 0

0
Vhg+Kpθm(g−h)

g(ξm+µm) (1− ϵγ)βhmb 0 0

0 0 0 0

 ,

V =


qh + µh 0 0 0
−qh δh + µh + vh 0 0
0 0 qm + ξm + µm 0
0 0 −qm ξm + µm



V −1 =


1

qh+µh
0 0 0

qh
(qh+µh)(vh+δh+µh)

1
δh+µh+vh

0 0

0 0 1
qm+ξm+µm

0

0 0 qm
(µm+ξm)(qm+µm+ξm)

1
(µm+ξm)


Therefore, the spectral radius of FV −1 gives the effective reproduction number as shown
below.

R01 =

√
k1k2k3qm(qm + µm)

µm(qh + µh)(vh + δh + µh)(qm + µm)(qm + µm)

where k1 = (1− ϵγ)βhmb, k2 = (1− ϵγ)βmhb, k3 = µmg+θmc(g−h)
µg

3.2.3. Case II: When there are no invasive alien plants in human environment. Here, we
recompute the basic reproduction number of system (3.1), where there are no invasive alien
plants. Equilibrium, E2, is used in this case and is given by

E2 = (S+
h , E+

h , I+h , R+
h , P

+, S+
m, E+

m, I+m)

= (1, 0, 0, 0, 0, 1, 0, 0)
(3.3)
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3.2.4. Analysis of basic reproduction number (R0). Following the approach in Van den
Drische and Watmough (2008), the approach used above, we calculated the effective re-
production number of the homogeneous system to be

R02 =

√
k1k2qm(qm + µm)

µm(qh + µh)(vh + δh + µh)(qm + µm)(qm + µm)

where k1 = (1− ϵγ)βhmb, k2 = (1− ϵγ)βmhb.

FIGURE 2. Contour plot of R01 for θm = 0.1

3.3. Local asymptotic stability (LAS) of E1 equilibrium. The local asymptotic stability
(LAS) of the equilibrium, E1 is obtained using Theorem 1.

Theorem 3.1. For R2
01 < 1, E1 is locally asymptotically stable and unstable if otherwise.

Proof. Linearizing the spatial homogeneous model (3.1) with the corresponding equilib-
rium, E1, we obtained the following:

J(E1) =



−µh 0 δh αh 0 0 0 −k1
0 −m1 0 0 0 0 0 k1
0 qh −m2 0 0 0 0 0
0 0 vh −m3 0 0 0 0
0 0 0 0 h− g 0 0 0
0 0 −k2k3 0 θmc −µm 0 0
0 0 k2k3 0 0 0 −m4 0
0 0 0 0 0 0 qm −µm


(3.4)

where m1 = qh + µh,m2 = δh + µh + vh,m3 = αh + µh,m4 = qm + µm
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FIGURE 3. Contour plot of R01 for θm = 0.7

The eigenvalues corresponding to equation (3.4) is given by λ1 = h − g < 0, λ2 =
−µh, λ3 = −(αh + µh), λ4 = −µm

The rest four roots can be obtain from the following polynomial

P (λ) = λ4 +A0λ
3 +A1λ

2 +A2λ+A3 (3.5)

where
A0 = δh + 2µh + qh + vh + 2µm + qm

A1 = δhµh + µ2
h + 2δhµm + 4µhµm + δhqm + 2µhqm + 2qhµm

+ vhqm + qhqm + 2vhµm + δhqh + µhqh + qhvh + µhvh + µ2
m + µmqm

A2 = 2δhµhµm + δhµ
2
m + 2µ2

hµm + 2µhµ
2
m + δhµhqm

+ 2δhqhµm + δhµmqm + δhqhqm + µ2
hqm + µhqhqm + 2µhqhµm

+ 2µhµmqm + qhµ
2
m + qhµmqm + µhvhqm + 2qhvhµm + vhµmqm + qhvhqm

+ 2µhvhµm + vhµ
2
m

A3 = −k1k2k3qm + δhµhµ
2
m + µ2

hµ
2
m + δhµhµmqm

+ δhqhµ
2
m + δhqhµmqm + µ2

hµmqm + µhqhµ
2
m + µhqhµmqm

+ µhvhµmqm + qhvhµ
2
m + qhvhµmqm + µhvhµ

2
m

=
(k0 − k1k2k3qm)[µm(qh + µh)(vh + δh + µh)(qm + µm)]

k1k2k3qhqm + (µ(qh + µh)(vh + δh + µh)(qm + µm))

[
R2

01 − 1
]
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where
k0 = δhµhµ

2
m + µ2

hµ
2
m + δhµhµmqm + δhqhµ

2
m

+ δhqhµmqm + µ2
hµmqm + µhqhµ

2
m + µhqhµmqm

+ µhvhµmqm + qhvhµ
2
m + qhvhµmqm + µhvhµ

2
m

□

Remark 1. Clearly, A0, A1, A2, A3 > 0, provided that R2
01 < 1 and (k0−k1k2k3qm)[µm(qh+µh)(vh+δh+µh)(qm+µm)]

[k1k2k3qm+(µ(qh+µh)(vh+δh+µh)(qm+µm))] <

0. Thus, the DFE corresponding to the continuous presence of invasive plants in human
environment is locally asymptotically stable (LAS).

3.4. Local asymptotic stability (LAS) of E2 equilibrium.

Theorem 3.2. For R2
02 < 1, E2 is locally asymptotically stable and unstable if R2

02 > 1.

Proof. Linearising the model equations (3.1) with the corresponding equilibrium, E2 and
obtained the following:

J(E2) =



−µh 0 δh αh 0 0 0 −k1
0 −m1 0 0 0 0 0 k1
0 qh −m2 0 0 0 0 0
0 0 vh −m3 0 0 0 0
0 0 0 0 g − h 0 0 0
0 0 −k2 0 θmc −µm 0 0
0 0 k2 0 0 0 −m4 0
0 0 0 0 0 0 qm −µm


(3.6)

where m1 = qh + µh,m2 = δh + µh + vh,m3 = αh + µh,m4 = qm + µm. The
eigenvalues corresponding to equation (3.6) is given by x1 = g − h = 0, x2 = −µh, x3 =
−(αh + µh), x4 = −µm

The rest four roots can be obtain from the following polynomial

x4 +B0x
3 +B1x

2 +B2x+B3 = 0 (3.7)

where
B0 = δh + 2µh + qh + vh + 2µm + qm

B1 = δhµh + µ2
h + 2δhµm + 4µhµm + δhqm + 2µhqm + 2qhµm

+ vhqm + qhqm + 2vhµm + δhqh + µhqh + qhvh + µhvh + µ2
m + µmqm

B2 = 2δhµhµm + δhµ
2
m + 2µ2

hµm + 2µhµ
2
m + δhµhqm

+ 2δhqhµm + δhµmqm + δhqhqm + µ2
hqm + µhqhqm + 2µhqhµm

+ 2µhµmqm + qhµ
2
m + qhµmqm + µhvhqm + 2qhvhµm + vhµmqm

+ qhvhqm + 2µhvhµm + vhµ
2
m

B3 = −k1k2qm + δhµhµ
2
m + µ2

hµ
2
m + δhµhµmqm + δhqhµ

2
m

+ δhqhµmqm + µ2
hµmqm + µhqhµ

2
m + µhqhµmqm + µhvhµmqm

+ qhvhµ
2
m + qhvhµmqm + µhvhµ

2
m

=
(k0 − k1k2qm)[µm(qh + µh)(vh + δh + µh)(qm + µm)]

k1k2qm + (µ(qh + µh)(vh + δh + µh)(qm + µm))

[
R2

02 − 1
]
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where
k0 = δhµhµ

2
m + µ2

hµ
2
m + δhµhµmqm + δhqhµ

2
m

+ δhqhµmqm + µ2
hµmqm + µhqhµ

2
m + µhqhµmqm

+ µhvhµmqm + qhvhµ
2
m + qhvhµmqm + µhvhµ

2
m

□

3.4.1. Remark 2. Clearly, B0, B1, B2, B3 > 0 provided that R2
02 < 1 and

(k0 − k1k2qhqm)[µm(qh + µh)(vh + δh + µh)(qm + µm)]

[k1k2qm + (µ(qh + µh)(vh + δh + µh)(qm + µm))]
< 0.

Since one of the eigenvalues is zero, further analysis using the Center Manifold Theory
will have to be used in establishing the LAS of E2 in the manifold of interest. However,
since the other eigenvalues are negative, with the associated effective reproduction number
less than unity, we conjecture that E2, at most stable, and an attractor of trajectories in its
neighbourhood. E2 is stable but may not be asymptotically stable since this DFE exists
only when g = h. These results show an important effect of the presence of invasive
alien plants on malaria dynamics: they can lead to the existence of two DFEs. This is an
important contribution to knowledge.

3.5. Disease endemic equilibrium.

Theorem 3.3. System (3.1) has a unique positive equilibrium, E3 = (S∗∗
h , E∗∗

h , I∗∗h , R∗∗
h , P ∗∗, S∗∗

m , E∗∗
m , I∗∗m )

whenever R2
01 > 1.

Proof. We will begin the analysis of the disease model endemic equilibrium by rewritten
system (3.1) in terms of the force of infections as follows:

dSh

dt
= µh(1− Sh) + δhIh + αhRh − λhSh

dEh

dt
= λhSh − (qh + µh)Eh

dIh
dt

= qhEh − (δh + µh + vh)Ih

dRh

dt
= vhIh − (µh + αh)Rh

dP

dt
= g(1− P )P − hP

dSm

dt
= µm(1− Sm) + θmcP − λmSm

dEm

dt
= λhSm − (qm + µm)Em

dIm
dt

= qmEm − µmIm

(3.8)

where
λh = ϕβhm

bIm
Nh

, λm = ϕβmh
bIh
Nh

To obtain this equilibrium, we set the right hand sides of (3.8), and solve for the state
variables. After several calculations, we have that

E3 = (S∗∗
h , E∗∗

h , I∗∗h , R∗∗
h , P ∗∗, S∗∗

m , E∗∗
m , I∗∗m )
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where

S∗∗
h =

µha1a2a3
(a1a2a3 − δhαh − δhµh − αhvh)λ∗∗

h + µha1a2a3

E∗∗
h =

a2a3µhλ
∗∗
h

(a1a2a3 − δhαh − δhµh − αhvh)λ∗∗
h + µha1a2a3

I∗∗h =
µha3qhλ

∗∗
h

(a1a2a3 − δhαh − δhµh − αhvh)λ∗∗
h + µha1a2a3

R∗∗
h =

µhvhqhλ
∗∗
h

(a1a2a3 − δhαh − δhµh − αhvh)λ∗∗
h + µha1a2a3

(3.9)

P ∗∗ =
Kp(g − h)

g
, g > h

S∗∗
m =

µmg + θmc(g − h)

g(µm + λ∗∗
m )

,

E∗∗
m =

λ∗∗
m (µmg + θmc(g − h))

g(µm + λ∗∗
m )(qm + µm)

,

I∗∗m =
λ∗∗
m (µmg + θmc(g − h)

µmg(µm + λ∗∗
m )(qm + µm)

,

N∗∗
h =

µh(a1a2a3 + λ∗∗
h (a2a3 + a3qh + vhqh))

(a1a2a3 − δhαh − δhµh − αhvh)λ∗∗
h + µha1a2a3

with

a1 = qh + µh, a2 = δh + µh + vh, a3 = µh + αh

and
λ∗∗
h = ϕβhm

bI∗∗m
N∗∗

h

, λ∗∗
m = ϕβmh

bI∗∗h
N∗∗

h

(3.10)

for
ϕ = (1− ϵγ)

substituting equations (3.9) in equations (3.10) show that the non-zero equilibrium of the
model can be written in a compact form as:

Z1λ
∗∗2
h + Z2λ

∗∗
h + Z3 = 0 (3.11)

where
Z1 = δh[a

2
3bgϕµ

2
hq

2
hµ

2
mβmh + a2a

2
3bgϕµ

2
hqhµ

2
mβmh + a23bgϕµ

2
hq

2
hµmqmβmh

+ a2a
2
3bgϕµ

2
hqhµmqmβmh + a3bgϕµ

2
hq

2
hvhµ

2
mβmh + a3bgϕµ

2
hq

2
hvhµmqmβmh

+ a1a2a
2
3gµ

2
hµ

3
m + a23gµ

2
hq

2
hµ

3
m + a1a

2
3gµ

2
hqhµ

3
m + a2a

2
3gµ

2
hqhµ

3
m + a1a2a

2
3gµ

2
hµ

2
mqm + a23gµ

2
hq

2
hµ

2
mqm

+ a1a
2
3gµ

2
hqhµ

2
mqm + a2a

2
3gµ

2
hqhµ

2
mqm + 2a3gµ

2
hq

2
hvhµ

3
m + a1a3gµ

2
hqhvhµ

3
m + a2a3gµ

2
hqhvhµ

3
m

+ 2a3gµ
2
hq

2
hvhµ

2
mqm + a1a3gµ

2
hqhvhµ

2
mqm + a2a3gµ

2
hqhvhµ

2
mqm + gµ2

hq
2
hv

2
hµ

3
m + gµ2

hq
2
hv

2
hµ

2
mqm]
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Z2 = a3b
2cgϕ2αhδhµhqhβhmθmqmβmh + a3b

2cgϕ2δhµ
2
hqhβhmθmqmβmh

− a1a2a
2
3b

2cgϕ2µhqhβhmθmqmβmh + a3b
2cgϕ2αhµhqhvhβhmθmqmβmh

− a3b
2chϕ2αhδhµhqhβhmθmqmβmh − a3b

2chϕ2δhµ
2
hqhβhmθmqmβmh + a1a2a

2
3b

2chϕ2µhqhβhmθmqmβmh

− a3b
2chϕ2αhµhqhvhβhmθmqmβmh + a3b

2gϕ2αhδhµhqhβhmµmqmβmh + a3b
2gϕ2δhµ

2
hqhβhmµmqmβmh

− a1a2a
2
3b

2gϕ2µhqhβhmµmqmβmh + a3b
2gϕ2αhµhqhvhβhmµmqmβmh + a1a2a

2
3bgϕµ

2
hqhµ

2
mβmh

+ a1a2a
2
3bgϕµ

2
hqhµmqmβmh + a1a

2
2a

2
3gµ

2
hµ

3
m + a21a2a

2
3gµ

2
hµ

3
m + 2a1a2a

2
3gµ

2
hqhµ

3
m + a1a

2
2a

2
3gµ

2
hµ

2
mqm

+ a21a2a
2
3gµ

2
hµ

2
mqm + 2a1a2a

2
3gµ

2
hqhµ

2
mqm + 2a1a2a3gµ

2
hqhvhµ

3
m + 2a1a2a3gµ

2
hqhvhµ

2
mqm

Z3 = −a1a2a
2
3b

2cgϕ2µ2
hqhβhmθmqmβmh + a1a2a

2
3b

2chϕ2µ2
hqhβhmθmqmβmh

− a1a2a
2
3b

2gϕ2µ2
hqhβhmµmqmβmh + a21a

2
2a

2
3gµ

2
hµ

3
m + a21a

2
2a

2
3gµ

2
hµ

2
mqm

=
a1a2µm(a1a2a

2
3b

2chϕ2µ2
hqhβhmθmqmβmh + a21a

2
2a

2
3gµ

2
hµ

2
mqm − τ)(qm + µm)

a1a2µm(qm + µm) + k1k2k3qm

[
1−R2

01

]
where

τ = a1a2a
2
3b

2cgϕ2µ2
hqhβhmθmqmβmh + a1a2a

2
3b

2gϕ2µ2
hqhβhmµmqmβmh

There are three cases to be considered (depending on the signs of Z1 and Z3, since Z1 is
positive) to study the number of positive roots of f(λ∗∗

h ) = 0.

• Case 1: Suppose δh = 0 then Z1 = 0, Z2 > 0 and the quadratic equation (3.11)
becomes linear in λ∗∗

h = −Z3

Z2
. Hence, there will be a unique positive root if

Z3 < 0. In this case, the system has a unique (stable) endemic equilibrium if and
only if Z3 < 0 which occurs only when R2

01 > 1; hence backward bifurcation is
not possible in this case.

• Case 2: If Z2 < 0 and Z3 = 0 or Z2
2 − 4Z1Z3 = 0, then f(λ∗∗

h ) = 0 has one
positive root which means that the system has a unique endemic equilibrium.

• Case 3:If Z3 > 0 and Z2 < 0 or Z2
2 − 4Z1Z3 > 0, then f(λ∗∗

h ) = 0 has two
positive roots which implies that the system has two equilibria.

We therefore summarized the results in the following lemma.
□

Lemma 1. The number of positive endemic equilibria of model (3.11) is summarized
as follows:

(1) If Z3 < 0 ⇔ R2
01 > 1, the system has a unique endemic equilibrium.

(2) If Z2 < 0 and Z3 = 0 or Z2
2 − 4Z1Z3 = 0, the system has exactly one endemic

equilibrium.
(3) If Z3 > 0 ⇔ R2

01 < 1 and Z2
2 − 4Z1Z3 > 0, the system has exactly two endemic

equilibria.
(4) Otherwise there are no endemic equilibria, i.e. when Z1Z3 > 0 and Z2 > 0,

where g > h.

3.6. Backward bifurcation phenomenon. Backward bifurcation may occur under cer-
tain conditions for R2

01 < 1. The presence of backward bifurcation indicates that the
necessary requirement of R2

01 < 1, is not sufficient for the disease elimination. The Center
Manifold Theory will be used to prove the conditions on existence of backward bifurca-
tion. To investigate the existence of the backward bifurcation of the spatially homogeneous
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of model (3.1), we shall rewrite it in vector form as:
dY

dt
= H(y) (3.12)

where
Y = (y1, y2, y3, y4, y5, y6, y7, y8)

T

and
H = (h1, h2, h3, h4, h5, h6, h7, h8)

T

so that

Sh = y1, Eh = y2, Ih = y3, Rh = y4, P = y5, Sm = y6, Em = y7, Im = y8

.
Thus, it becomes

ẏ1 = h1 = µh(1− y1) + δhy3 + αhy4 − (1− ϵγ)βhmby1y8

ẏ2 = h2 = (1− ϵγ)βhmby1y8 − (qh + µh)y2

ẏ3 = h3 = qhy2 − (δh + µh + vh)y3

ẏ4 = h4 = vhy3 − (µh + αh)y4

ẏ5 = h5 = g(1− y5)y5 − hy5

ẏ6 = h6 = µm(1− y6) + θmcy5 − (1− ϵγ)bxy3y6

ẏ7 = h7 = (1− ϵγ)bxy3y6 − (qm + µm)y7

ẏ8 = h8 = qmy7 − µmy8

(3.13)

Theorem 3.4. For βmh = β∗
mh =

√
k1k2k3qm(qm+µm)

µm(qh+µh)(vh+δh+µh)(qm+µm)(qm+µm) then system
(3.1) exhibits a backward bifurcation phenomenon whenever a, b > 0.

Proof. Choosing βmh as the bifurcation parameter at R2
01 = 1, We have

βmh = β∗
mh =

√
k1k2k3qm(qm + µm)

µm(qh + µh)(vh + δh + µh)(qm + µm)(qm + µm)
(3.14)

J(E1, β
∗
mh) =



−µh 0 0 αh 0 0 0 −k1
0 −m5 0 0 0 0 0 k1
0 qh −m6 0 0 0 0 0
0 0 vh −m7 0 0 0 0
0 0 0 0 h− g 0 0 0
0 0 −k2k3 0 θmc −µm 0 0
0 0 k2k3 0 0 0 −m8 0
0 0 0 0 0 0 qm −µm


(3.15)

where m5 = qh + µh,m6 = δh + µh + vh,m7 = αh + µ,m8 = qm + µm

Thus, the right eigenvector, w = (w1, w2, w3, w4, w5, w6, w7, w8)
T , associated with

the simple zero eigenvalue can be obtained from J(E1, β
∗
hm).w = 0. Thus, we get

w1 =
δhw3 + αhw4 − k1w8

µh
, w2 =

k1w8

qh + µh
,

w3 =
qhw2

δh + vh + µh
, w4 =

vhw3

αh + µh
,

w5 = 0, w6 = −k2k3w3

µh
, w7 = − k2k3w3

qm + µm
, w8 =

qmw7

µm

(3.16)
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More so, the left eigenvector, v = (v1, v2, ..., v8), corresponding to the simple zero eigen-
values is obtained from v.J(E1, β

∗
mh) = 0. Thus,

v1 = 0, v2 =
qhv3

qh + µh
, v3 = v3 > 0, v4 = 0,

v5 = 0, v6 = 0, v7 =
qmv8

qm + µm
, v8 =

k1v2
µm

(3.17)

□

Therefore, the second-order partial derivatives of hi, i = 1, 2, ..., 8 from system (3.13)
are zero at point (E1, β

∗
mh) except the following.

∂2h1

∂y1∂y8
= −(1− ϵγ)β∗

hmb,
∂2h2

∂y1∂y8
= (1− ϵγ)β∗

hmb

∂2h5

∂y5∂y5
= −2g,

∂2h6

∂y3∂y6
= −(1− ϵγ)β∗

mhb

∂2h7

∂y3∂y6
= (1− ϵγ)β∗

mhb

∂2h1

∂y8∂β∗
hm

= −(1− ϵγ)b,
∂2h2

∂y8∂β∗
hm

= (1− ϵγ)b

∂2h6

∂y3∂β∗
mh

= − (1− ϵγ)b(µmg + θmc(g − h))

µmg

∂2h7

∂y3∂β∗
mh

=
(1− ϵγ)b(µmg + θmc(g − h))

µmg

(3.18)

Assuming that

(1) A = Dxh(0, 0) = ( ∂hi

∂xj
, 0, 0) is the linearized matrix of the system around the equi-

librium 0 with σ evaluated at 0. Zero is a simple eigenvalue of A and all other
eigenvalues of A have negative real parts;

(2) Matrix A have a non-negative right eigenvector, w and a left eigenvector, v corre-
sponding to the zero eigenvalue. Let hk be the k − th component of h and

a =

n∑
k,i,j=1

vkwiwj
∂2hk

∂yi∂yj
(0, 0),

b =

n∑
k,i=1

vkwi
∂2hk

∂yi∂σ
(0, 0).

(3.19)

The local dynamics of system (3.13) around 0 are totally determined by a and b. By virtue
of the Center Manifold Theory (Castillo and Song, 2014), we calculated the bifurcation
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parameter to be

a = v1

8∑
i,j=1

wiwj
∂2h1

∂yi∂yj
+ v2

8∑
i,j=1

wiwj
∂2h2

∂yi∂yj

+ v5

8∑
i,j=1

wiwj
∂2h5

∂yi∂yj
+ v6

8∑
i=1

wiwj
∂2h6

∂yi∂yj

+ v7

8∑
i,j=1

wiwj
∂2h7

∂yi∂yj

= (1− ϵγ)β∗
hmbv2 + (1− ϵγ)β∗

mhbv7 > 0.

(3.20)

Also,

b = v1

8∑
i=1

wi
∂2h1

∂yi∂β∗
hm

+ v2

8∑
i=1

wi
∂2h2

∂yi∂β∗
hm

+ v6

8∑
i=1

wi
∂2h6

∂yi∂β∗
mh

+ v7

8∑
i=1

wi
∂2h7

∂yi∂β∗
mh

= (1− ϵγ)bv2 +
(1− ϵγ)b(µmg + θmc(g − h))v7

µmg
> 0.

(3.21)

We therefore conclude that a backward bifurcation occurs since a > 0 and b > 0.

FIGURE 4. Bifurcation diagram of System (3)
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3.7. Global stability of the endemic equilibrium. The global asymptotic stability of the
endemic equilibrium (E3) of the spatial homogeneous model (3.1) will now be investi-
gated. We defined the following set.

Ω = {(Sh, Eh, Ih, Rh, P, Sm, Em, Im)ϵC([0]), R8
+, T0; 0 < Sh < S∗∗

h , Eh(t) ≤ E∗∗
h , Ih(t) ≤

I∗∗h , Rh(t) ≤ R∗∗
h , P (t) ≤ P ∗∗, Sm(t) ≤ S∗∗

m , Em(t) ≤ E∗∗
m , Im(t) ≤ I∗∗m }

since ΩϵC([0]), R8
+), it follows that Ω is positively invariant with respect to the special

case of the spatial homogeneous model (3.1) mention above. The following theorem holds

Theorem 3.5. The endemic equilibrium (E3) of the spatial homogeneous model (3.1) with
δh = 0 is GAS in Ω whenever R01 > 1.

Proof. Consider the special case of the spatial homogeneous model with δh = 0 and
R01 > 1. Let E3 = (S∗∗

h , E∗∗
h , I∗∗h , R∗∗

h , P ∗∗, S∗∗
m , E∗∗

m , I∗∗m ) represents the unique en-
demic equilibrium. Considering the non-Linear Lyapunov function of Goh-volterra type.
We obtain

V = Sh − S∗∗
h InSh +Eh −E∗∗

h InEh + d1

qh
(Ih − I∗∗h InIh) +

d1d̄2

vhqh
(Rh −R∗∗

h InRh) +

P − P ∗∗InP + Sm − S∗∗
m InSm + Em − E∗∗

m InEm + d5

qm
(Im − I∗∗m InIm)

where d̄2 = Vh + µh.
We define the following steady state relations obtained from the spatial homogeneous

model (3.1) at the endemic steady state E1.

µh + αhR
∗∗
h = λ∗∗

h S∗∗
h + µhSh

d1E
∗∗
h = λ∗∗

h S∗∗
h

d̄2I
∗∗
h = qhE

∗∗
h

d3R
∗∗
h = VhI

∗∗
h

d4P
∗∗ = g(1− P ∗∗)P ∗∗ − hP ∗∗µmθmP ∗∗ = λ∗∗

mS∗∗
m + µmS∗∗

m

d5E
∗∗
m = λ∗∗

mS∗∗
m

µmI∗∗m = qmE∗∗
m

The Lyapunov derivative of V is given as

V̇ = (1− S∗∗
h

Sh
)(µh(1− Sh) + αhRh − λhSh)

+(1− E∗∗
h

Eh
)(λhSh − d1Eh) +

d1
qh

(1− I∗∗h
Ih

)(qhEh − d̄2Ih)

+
d1
d̄2

vhqh(1−
R∗∗

h

Rh
)(VhIh − d3Rh)

+(1− P ∗∗

P
)(g(1− P ∗∗)P − hP ) + (1− S∗∗

m

Sm
)((1− Sm)µm + θmP − λmSm)

+(1− E∗∗
m

Em
)(λmSm − d5Em) +

d5
qm

((1− I∗∗m
Im

)(qmEm − µmIm)

(3.22)

Using the steady state relations gives the following in Ω and noting that the state variables
of the spatial homogeneous model (3.1) are bounded by the values of their endemic steady
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state in Ω.

V̇ = µhS
∗∗
h [2− S∗∗

h

Sh
− Sh

S∗∗
h

]

+d1E
∗
h ∗ [5− S∗∗

h

Sh
− E∗∗

h Sh

EhS∗∗
h

− I∗∗h Eh

IhE∗∗
h

− R∗∗
h Ih

RhI∗∗h
− Rh

R∗∗
h

]

+d4P
∗∗[2− P ∗∗

P
− P

P ∗∗ + µmS∗∗
m [2− S∗∗

m

Sm
− Sm

S∗
m∗

]

+d5E
∗∗
m [4− S∗∗

m

Sm
− E∗∗

m Sm

EmS∗∗
m

− I∗∗m Em

ImI∗∗m
− Im

I∗∗m
]

(3.23)

Finally, since the arithmetic mean exceeds the geometric mean, the following inequalities
hold.

[2− S∗∗
h

Sh
− Sh

S∗∗
h

] ≤ 0

[5− S∗∗
h

Sh
− E∗∗

h Sh

EhS∗∗
h

− I∗∗h Eh

IhE∗∗
h

− R∗∗
h Ih

RhI∗∗h
− Rh

R∗∗
h

] ≤ 0

[2− P ∗∗

P
− P

P ∗∗ ] ≤ 0

[2− S∗∗
m

Sm
− Sm

S∗∗
m

] ≤ 0

[4− S∗∗
m

Sm
− E∗∗

m Sm

EmS∗∗
m

− I∗∗m Em

ImI∗∗m
− Im

I∗∗m
] ≤ 0

Thus, we have that V̇ ≤ 0 for R01 > 1. Hence, V̇ is a Lyaponov function in Ω whenever
R01 > 1. Therefore, E3 is GAS in Ω whenever R01 > 1. □

4. NUMERICAL SIMULATION

In this section, we present numerical parameters’ values of the formulated model as
shown in Table 2.

5. TRAVELLING WAVE SOLUTION

In this section, we shall assess the spatial spread of malaria disease with spatial disper-
sion of vectors. With this regard, we shall find the travelling wave linking the equilibrium
points and determine the conditions for the existence of the propagation speed of such
wave. In our model, we assumed that the vector population takes both advection move-
ment (K), which increases the wave speed, and dispersal coefficient D, which depends on
the wave propagation speed, v.

Travelling wave solution with respect to our model equation are of the form:
Eh(x, t) = eh(z), Ih(x, t) = ih(z), Rh(x, t) = rh(z), Em(x, t) = em(z), Im(x, t) =
im(z), where z = x − vt and v is the constant wave speed, which we will determine.
Replacing the non-homogeneous spatial system (2.4) in wave equation form, we obtain the
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TABLE 2. Description of the model parameters’ values

Parameter Value Reference

Λh 47.8980/day Kenya National Bureau of Statistics
µh 0.00004643/day Kenya National Bureau of Statistics
βhm 0.24/day (Okuneye and Gumel 2015)
βmh 0.14/day (Okuneye and Gumel 2015)
qh 0.083/day (Okuneye and Gumel 2015)
αh 0.000017/day (Augusto et al. 2015)
vh 0.00265/day (Okuneye and Gumel 2015)
Kp 40000 Assumed
ϵ 0.5 Variable
γ 0.6 Variable
δh 0.0003454/day (Augusto et al. 2015)
b 0.5 Variable
Λm 4700.8980/day (Kroeger et al. 2013)
θm 0.343/day (Okuneye and Gumel 2015)
qm 0.091 (Augusto et al. 2015)
g 1.84 (Okuneye and Gumel 2015
µm 0.1041 (Nwankwo and Okuanghae 2019)
ξm 0.4 Variable
h 0.05 Variable

following system of ordinary differential equations:

e′+ c1
v
(1− eh − ih − rh)im − (qh + µh)

v
eh = 0

i′+ qh
v
eh− (δh + µh + vh)

v
ih = 0

r′+ vh
v
ih − (µh + αh)

v
rh = 0

Dem′′ − (k − v)em′ − c2
v
(1− em − im)ih + (qm + µm)em = 0

Dim′′ − (k − v)im′ − qmem − µmim = 0

(5.1)

where c1 = ϕβhmb, c2 = ϕβmhb and ϕ = 1− ϵγ.
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FIGURE 5. Time versus infected human

This system is equivalent to the following system of first-order differential equations:
deh
dz

= −c1
v
(1− eh − ih − rh)im +

(qh + µh)

v
eh +

δh + vh + µh

v
ih

dih
dz

= −qh
v
eh +

(δh + vh + µh)

v
ih

rh
dz

=
vh
v
ih +

(αh + µh)

v
rh

em
dz

= u1

du1

dz
=

1

D
(k − v)u1 −

c2(1− em − im)

D
ih +

(qm + µm)

D
em

dim
dz

= u2

du2

dz
=

1

D
(k − v)u2 −

qm
D

em +
µm

D
im

(5.2)

where
dim
dt

= i
′′

m(z),
dem
dt

= e
′′

m(z)

There are two equilibrium point of the system above the first is g1 = (0, 0, 0, 0, 0, 0, 0)
Which represents disease free equilibrium and the second, g2 = (Eo

h, I
o
h, R

o
h, E

o
m, Iom, 0, 0)

which is the non-trivial equilibrium that corresponds to infection the condition for the
existence of g2 is R02 > 1 because Eo

h, I
o
h, R

o
h, E

o
m, Iom are non-negative. We want to find

the condition for a solution with a positive wave propagation speed v and with non-negative
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Eo
h, I

o
h, R

o
h, E

o
m, Iom that the following boundary conditions holds.

eh(−∞) = Eh∗∗ and eh(+∞) = 0

ih(−∞) = Ih∗∗ and ih(+∞) = 0

rh(−∞) = Rm∗∗ and rh(+∞) = 0

em(−∞) = Em∗∗ and em(+∞) = 0

im(−∞) = Im∗∗ and im(+∞) = 0

u1(−∞) = 0 and u1(+∞) = 0

u2(−∞) = 0 and u2(+∞) = 0

we searched for solutions in the positive region,such that Eo
h > 0, Ioh > 0, Ro

h > 0, Eo
m >

0, Iom > 0 and the solution cannot oscillate near the origin. The eigenvalue of the Jacobian
matrix must be real and non complex values otherwise Eo

h < 0, Ioh < 0, Ro
h < 0, Eo

m <
0, Iom < 0 for some z. Linearising system (5.2) at point g1 = (0, 0, 0, 0, 0, 0, 0), we get the
Jacobian matrix of the system at g1 given by

Dg1 =



qh+µh

v 0 0 0 0 − c1
v 0

− qh
v

δh+vh+µh

v 0 0 0 0 0
0 − vh

v
αh+µh

v 0 0 0 0
0 0 0 0 1 0 0
0 − c2

D 0 qm+µm

D
k−v
D 0 0

0 0 0 0 0 0 1
0 0 0 − qm

D 0 µm

D
k−v
D


, (5.3)
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The corresponding eigenvalues of the wave equations are the roots of the polynomial

m(Ψ) = Ψ7 + b0Ψ
6 + b1Ψ

5 + b2Ψ
4 + b3Ψ

3 + b4Ψ
2 + b5Ψ+ b6 (5.4)

where
b0 = P1 + P2 + P3 + P5 + P6

b1 = −(µm

D − P1P2 − P3P2 − P5P2 − P6P2 − P1P3 + P4 − P1P5 − P3P5 − P1P6 −
P3P6 − P5P6)

b2 = −(P3µm

D − P1µm

D − P2µm

D − P5µm

D + P1P2P3 − P4P3 + P1P5P3 + P2P5P3 +
P1P6P3 +P2P6P3 +P5P6P3 −P1P4 −P2P4 +P1P2P5 +P1P2P6 −P4P6 +P1P5P6 +
P2P5P6)

b3 = −(−P4µm

D + P1P2µm

D + P1P3µm

D + P2P3µm

D + P1P5µm

D + P2P5µm

D + P3P5µm

D +
P1P2P4+P1P3P4+P2P3P4+P1P6P4+P2P6P4+P3P6P4−P1P2P3P5−P1P2P3P6−
P1P2P5P6 − P1P3P5P6 − P2P3P5P6)

b4 = −(P1P4µm

D +P2P4µm

D +P3P4µm

D −P1P2P3µm

D −P1P2P5µm

D −P1P3P5µm

D −P2P3P5µm

D −
P1P2P3P4 − P1P2P6P4 − P1P3P6P4 − P2P3P6P4 + P1P2P3P5P6)

b5 = −( c1c2qhqmD2v2 + P1P2P3P5µm

D − P1P2P4µm

D − P1P3P4µm

D − P2P3P4µm

D +P1P2P3P4P6)

b6 = c1c2P3qhqm
D2v2 − P1P2P3P4µm

D
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and P1 = qh+µh

v , P2 = δh+vh+µh

v , P3 = αh+µh

v , P4 = qm+µm

D , P5 = P6 = k−v
D

Also, considering the assertions and that limΨ −→ −∞ = +∞, the polynomial p(Ψ)
always has a negative real roots.

Therefore, for R2
02 = 1, we obtain that vmin = 0, and then non-wave speed exists for

R2
02 < 1, the existence of 3 real roots depends on the value of v.
However, the minimal speed at the double root of the polynomial is p(vmin) = p′(vmin) =

0 Secondly, we consider the advection movement(i.e k ̸= 0, k) appear adding the value of
v,from the expression of the polynomial coefficients b0, b1, b2, b3, b4 and b5. Hence, ad-
vection increases the wave speed when it is in the same direction as the wave front and
decreases it when it is in the opposite direction.

Remark 3. The wave speed, v will be determine by estimating the fly speed of the mosquito
per day which we term as diffusion (the D value). Therefore, for R2

02 = 1, we obtain that
vmin = 0, and then, non-wave speed exists. For R02 > 1, the existence of two real roots
depends on the value of v. For v < vmin, the roots are complex. For v = vmin, we
have a double negative real root and for v > vmin two negative real roots.When we con-
sider the advection movement (k ̸= 0), from the expression of the polynomial coefficients
b0, b1, b2, b3, b4 and b5, we can observe that k appears adding the value of v. Hence, ad-
vection increases the wave speed when it is in the same direction of the wave front and
decreases it when it is in the opposite direction.

5.1. Numerical simulation of the wave equations. In this section, we present the numer-
ical solution of the wave equations as shown in Table 3 below.
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TABLE 3. Different velocity values with their respective roots of a poly-
nomial D = 0.125 and k = 0

v Ψ1 Ψ2 Ψ3 Ψ4 Ψ5 Ψ6 Ψ7

0.1 −2.7385 −1.15031 0.0779698 1.79358 3.48606 4.44862 8.50242
0.3 −2.73749 −1.18434 0.0665686 0.905346 1.56908− 0.943076i 1.56908 + 0.943076 3.28506
0.6 −2.76433 −1.1591 0.0538016 0.0456375 0.91639− 0.797039i 0.91639 + 0.797039i 2.31718
0.9 −2.78444 −1.12096 0.0447799 0.302723 0.640594− 0.697239i 0.640594 + 0.697239i 2.10111

6. DISCUSSION

In Figure 5, we varied the biting or contact rate parameter, b, from 0.2/day to 0.9/day.
This parameter indicates the contact rate between mosquitoes and the human population.
The result shows that, at the lowest biting rate (i.e. b = 0.2/day), the infected human
populations declined, while at the highest biting rate (i.e. b = 0.9/day), the infected hu-
man populations increased spontaneously and later declined. The long run decrease of the
infected human population at different biting rate is due to those that recovered from the
disease, died due to infection, and the natural death rate of the population. It is interesting
to note from this result that if the contact rate between human populations and mosquito
populations can be eliminated, there will be no malaria. However, this may sound impos-
sible in an area that has vegetation with mosquitoes harbouring in them.

In Figure 6, we varied plant growth parameters, gm2/day, from 0.1m2/day to 0.9m2/day.
We observed from the plot that the increase in the plant population leads to a more infected
human population. This is so because, when there is more vegetation that attracts mosquito
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into human environment, there will be more availability of mosquitoes in such an environ-
ment, and thereby leading to high human and mosquito contact as previously shown in
Figure 5. This result may intuitively contradict the issue of ecological maintenance and
protection, since the human environment may become inhabitable when all invasive plants
are destroyed. From a scientific viewpoint, invasive plants that attract mosquito such as
flowers, water lilies, Water hyacinths, Water lettuce, Taro, and Papyrus can be replaced
with vegetation that serves as mosquitoes repellents such as Bee Balm, Rosemary, Catnip,
Floss Flower, Garlic, Lavender, Lemon Balm, Lemongrass and Marigold to mention a few
to maintain ecosystem balance.

To augment our claims in Figure 6, we varied the invasive plants’ growth rate param-
eter, gm2/day, from 0.1m2/day to 0.9m2/day in Figure 7. It was found that the higher
the invasive plants’ growth rate, the higher the availability of mosquitoes in the human
environment. The issue of malaria burdens is more in the African region as they have the
highest percentage of malaria burdens worldwide. African countries are characterized by
huge mosquitoes and attracting vegetation. This is one of the key parameters that accel-
erate the malaria burden. The use of mosquito nets and insecticide spray may not have
a great impact on malaria control in African countries, since people will not continue to
sleep or stay inside mosquito nets from 6:00 pm to 6:00 am the following day. In this case,
the issue of vegetation control is very paramount, if malaria burdens should be drastically
reduced in African countries.

Figure 8 shows plots of the different transmission rates of malaria parasites from mosquitoes
to humans, βmh with their respective basic reproduction number, R01. The infected hu-
man populations increased whenever more malaria parasites are injected into human blood,
while the infected humans showed a decrease in population as a result of the reduction of
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malaria parasites injected into human blood. However, the result also informed us that
the basic reproduction number increased due to the increased transmission rate of malaria
parasites from mosquitoes to humans. However, in Figure 9, we showed the impact of the
contact rate parameter, b of mosquitoes in human populations on the disease’s basic repro-
duction number, R01. This result is very crucial since it can predict and inform a decision
on what rate of biting or contact rate between human and mosquito populations the disease
will die down. In this figure, we can see that the higher the biting or contact rate, b of
the mosquitoes, the higher the disease’s basic reproduction number, R01. It is also very
important to note from this result that from b = 0.3/day to 0.9/day, the disease remained
endemic as their respective basic reproduction number, R01, continues to be greater than
one. However, at b = 0.03, the value of the disease’s basic reproduction number becomes
0.2065, which is less than one. It is important to seek this value of b so that the disease can
be eliminated from the human population.

In Figure 10, we showed the impact of invasive plant or vegetation reduction due to
deforestation and their natural death rate on susceptible mosquitoes’ availability. To do
this, the parameter, h, which indicates the reduction of invasive plant parameters varied
from 0.01m2/day to 0.09m2/day. The plots show that the higher the number of invasive
plants reduction rate, the lower the availability of susceptible mosquitoes and vice versa.
Figure 11 follows the same pattern as Figure 10. However, we used higher invasive plants
reduction rate parameter, h (i.e. 0.1m2/day to 0.9m2/day) than the previous figure. A
similar interpretation is also applied to this figure. In Figure 12, we also varied the invasive
plants or vegetation reduction rate, h from 0.1m2/day to 0.8m2/day to see how it impacts
the invasive plants’ population. The low invasive plants’ reduction rate shows a higher
invasive plants population and vice versa. This figure shown here to prove our claimed
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results in Figures 10 and 11. Figure 13 shows the plots of the infected human population,
Ih versus the basic reproduction number, R01. This plot shows evidence of the bifurcation
phenomenon of the system of equations (3.1). Looking at the plot critically, it is observed
that the curve equilibrium was reversed at the value R01 = 1. In Figure 14, we plotted
the biting or contact rate parameter, b against basic reproduction number, R01, the disease
burden increases (at b = 0.3/day) unabatedly. This is to say that human and mosquito
population contact rates have a high impact on disease prevalence. This result shows that
the reduction of mosquitoes and human contact rates with the aid of plants reduction and
the use of bed nets is pivotal to maintaining control over the disease spread.

Figure 15 is a plot of the transmission rate of malaria parasites from mosquitoes to the
human population versus the disease’s basic reproduction number, R01. In this plot, we
used the following parameters: values g = 0.002m2/day, Kp = 400m2/day, ξ = 0.99/day,
γ = 0.99/day in addition to the parameter values in Table 2. It can be observed that
the disease transmission did not continue indefinitely as the disease’s basic reproduction
number remained less than one all through. This happened as a result of two major controls
used here, which include: a reduction in invasive plants’ growth rate, and an increase in
bed net and its efficacy.

7. CONCLUSION

In this work, we developed a novel spatial non-linear mathematical model on the impact
of vector control strategies on the dynamics of malaria transmission in invasive alien plants-
dominated ecosystems. Three major vector control strategies are employed in this paper,
which include: the control of invasive alien plants (Stone et al. 2018) and insecticide-
treated bed-net and insecticide spray.
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The most notable vector control strategy in this work is the control of invasive alien
plants that serve as mosquitoes attractor and are thereby capable of increasing mosquitoes
populations tremendously in the human environment. However, at the moment, there are
too many mosquitoes in human habitats, the contact rate between mosquitoes and humans
increases, as well as the increase of the transmission rate of malaria parasite infection from
an infected female Anopheles mosquito to human.

The use of insecticide-treated bed-net becomes insignificant once mosquitoes are read-
ily available in the human environment at all times because people only get into their
insecticide-treated bed-nets at late hours. Also, the use of insecticide spray becomes a
waste of resources since they are enough mosquitos’ populations. The reason is that in-
secticide spray kills mosquitoes within an applicable area for some specific hours after
application and concentration later become ineffective to kill further influx of mosquitoes.
The continuous influx of mosquitoes into such environment may render insecticide appli-
cation useless and effortless.

In this work, we go beyond considering just human (host) population and mosquito
(vector) population as many mathematical models of malaria authors normally consider the
disease model with the existing model compartment and with just introduction of the new
parameter(s) into some compartments of their model equations. However, in this paper, we
critically considered the issue of invasive alien plants or vegetation that serve as shelters
for mosquitoes’ propagation and reproduction at a faster rate. Due to this surveillance,
we included invasive alien plants as a compartment between human compartments and
mosquito compartment and showed how these invasive alien plants interact with vector
populations.
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The model system was analyzed for many possible equilibria. Three equilibria were
obtained from system (3.1), namely, two disease-free equilibria and one disease endemic
equilibrium. The two disease-free equilibria, E1 and E2, are respectively the cases where
there are invasive alien plants in the human environment. The E1 equilibrium shows the
presence of mosquitoes from the invasive alien plants and those that are already in the hu-
man environment. In this equilibrium, none of the mosquitoes are infected with the malaria
parasite and there is no malaria. Also, the equilibrium, E2 without invasive alien plants has
fewer mosquitoes in the human environment due to the absence of invasive alien plants.
The third equilibrium, E3, shows the interaction between the infected mosquitoes and hu-
man populations. Malaria disease is observed and remains in as much as both the infected
and susceptible human populations continue to live together with mosquitoes present in
their environment. The three equilibria, E1, E2 and E3 were also analysed for their stabil-
ity behaviour. It was found that their stability depends on the basic reproduction number
of the disease: R01 for E1 and E3 and R02 for E2. The E1 and E2 equilibria are lo-
cally asymptotically stable provided R2

01 and R2
02 are less than one respectively while the

global stability of E3 must satisfy the value of R2
01 to be greater than one. To avoid talk-

ing too much about the mathematics of these equilibria, we simply thoroughly explain the
terminology. Those with mathematics bias can check for the equilibria and the basic repro-
duction number equations for easy understanding. However, on a general note, the basic
reproduction number is the number of infections one infected person can cause during the
time of his/her infectiousness. Once the basic reproduction number value is greater than
one, it means that the disease will thrive.

The major contribution of this basic reproduction number is to inform us about what pa-
rameter value we need to reduce that will make R0(R01, R02) less than one. Looking at the



236 CHARITY JUMAI ALHASSAN, AND KENNETH OJOTOGBA ACHEMA

FIGURE 15. Time versus basic reproduction number

basic reproduction number equations critically, you will find out that not all the parameters
in the equations lead to host and vector interaction. The major parameters here are biting
rate, transmission from mosquitoes to humans, and the invasive alien plants’ growth rate.
Decreasing these parameter values leads to R2

01 being less than one. Most importantly, de-
creasing plant growth rate leads to a decrease in plant populations, while decreasing plant
population leads to a decrease in mosquito availability in the human environment. Also,
decreasing mosquito availability in the human environment will lead to a decrease in biting
rate while a decrease in biting rate leads to a decrease in malaria transmission rate.

The equilibrium, E3 was also analyzed for possible bifurcation phenomenon. We found
that system (3.1), exhibits a backward bifurcation phenomenon at E3 equilibrium. The
result shows the possibility of some urban cities in African countries without or with a few
invasive alien plants are free from malaria, while villages or rural areas with dense invasive
alien plants are malaria-endemic regions.

Moreover, we present a traveling wave equations (5.1) to determine the behaviour of the
mosquitoes population from the invasive alien plants to human environments and how they
return to the invasive alien plants during the day. We obtained the polynomial equation
(5.4) through Jacobian methods of linearization.

In carrying out the numerical simulation of system (3.1), we can provide answers to
questions raised by (Stone et al. 2018) in review work on how the control of aliens invasive
plants reduce malaria transmission. Our numerical simulation was designed to provide
comprehensive answers to those salient questions posed in their work.

The first question is: do invasive alien plants have a positive influence on the rate of
malaria transmission? We saw from some plots in this work that invasive alien plants have
a positive influence on the rate of malaria transmission. How? Paying close attention
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to some of our graphs where we varied the plants’ growth rate and plotted the infected
human population over time, we found that people get infected more with an increase in
invasive alien plants growth rate, r. Also, considering the invasive alien plants’ destruction
rate, h, we found that the susceptible mosquito population decreases as the parameter,
h increases. Mosquitoes become more alarming when the invasive alien plants produce
nectar that mosquitoes feed on in the daytime. However, we do not capture explicitly, the
invasive alien plants’ nectar production in our model. Intuitively, invasive alien plants’
nectar serves as an attraction to mosquitoes and also serves as a shelter for them.

Another notable question that was also raised is how do mosquitoes’ interactions with
invasive alien plants cause differences in malaria transmission? This question is somehow
similar to the first question we just responded to previously. However, in this question, we
are expected to provide solutions to some issues raised in our responses to the first ques-
tion. In this case, our aim will be on how to manage these so-called invasive alien plants
since they contribute greatly to malaria transmission. We have responded previously that
the increase of mosquito availability in the human environment increases both the biting
rate and the transmission rate parameters. This sounded more of a theory but we were able
to verify this from our numerical simulation. We therefore take a step further to investi-
gate the impact of these parameters (b, βmh, r and h) on the disease’s basic reproduction
number. We used the baseline values parameter in Table 2 and we found that the basic
reproduction number was above 200. By assigning relatively smaller values to bite rate, b
and the transmission rate parameter, βmh, we obtained the basic reproduction value for a
number less than one.

The question now is how do we optimally manage these invasive alien plants with-
out jeopardizing their usefulness to both aquatic and terrestrial ecosystems? The authors,
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(Stone et al. 2018) have suggested many methods, which include: manual, mechanical,
chemical, and biological methods, of these said plants’ removal. The use of a manual
method such as uprooting and clearing the environment with the use of cutlass and hoes
seems to be an effective method since some needed plants will be preserved. However, in
an area with the aggressive growth of these plant species, the manual method may seem
too slow to embark on. The mechanical method of control involves the use of tractors,
bulldozers, and excavators, to mention a few for clearing and uprooting such plants with-
out considering some species of other plants that may be needed. This method also has an
issue with landscape change as this can lead to soil erosion.

The use of pathogens, insects, and mites as a biological method to suppress plants’
vigours, slow plant infestation, and reduce seed production will bring about agricultural
farms to be less productive as this method may also result to crop loss and economic crisis
as many crops will be disturbed as well. The use of the chemical method is quick and
cheap to embark on but it has a lot of environmental hazard impacts. The issue of malaria
would have been a thing of the past now if DDT (dichlorodiphenyltrichloroethane) was
sustained for a long time. Its effects on environmental pollution and risks have led to its
application stoppage by chemical use law enforcement agencies. The aquatic environment
will get polluted by chemical concentrations and an attempt for a human to consume such
aquatic species will result in chemical bio-accumulation and bio-magnification. Recently,
Achema et al. (2021) found that the use of chemicals/pesticides in an aquatic environment
is detrimental to the survival of aquatic biological species and also has negative effects on
human health.

On the whole, weighing the merits and demerits of each of the methods, we may still
not have a sound ecological setting. In this paper, our most important management of these
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invasive alien plants (Prosopis juliflora, Parthenium hysterophorus, Senna didymobotrya,
and Tecoma to mention a few) recommendations is to use both manual and mechanical
methods to destroy them where needed and replace them by planting mosquitoes repellents
plants such as Bee balm, Rosemary, Catnip, Floss flower, Garlic, Lavender, Lemon balm,
Lemongrass, and Marigold.

We also carried out a traveling wave solution simulation. Equation (5.4) was simulated
and it was found to be unstable at every given value of the wave velocity. However, we
noticed changes in the system equilibrium at higher wave velocity values (v = 0.7m/s and
v = 0.9m/s) with both real and imaginary eigenvalues. This is to show that the system
will remain unstable as far as there are invasive alien plants in the human environment (see
Table 3).
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