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SOME RESULTS ON MULTIDIMENSIONAL FIXED POINT THEOREMS IN
PARTIALLY ORDERED GENERALIZED INTUITIONISTIC FUZZY METRIC

SPACES

M. JEYARAMAN∗, M. PANDISELVI AND D. POOVARAGAVAN

ABSTRACT. In this paper, using the idea of a coincidence point for nonlinear mappings in
any number of variables, we study a fuzzy contractivity condition to ensure the existence
of coincidence points in the framework of generalized intuitionistic fuzzy metric spaces.
Recently, many authors have conducted in-depth research on coupling, triple and quadru-
ple fixed point theorems in the context of partially ordered complete metric spaces with
different contractive conditions. In partially ordered generalized intuitionistic fuzzy metric
spaces, we demonstrate several theorems regarding multidimensional co-incidence points
and common fixed points for ϕ -compatible systems.

1. INTRODUCTION

The fuzzy set was released in 1965 by the pioneer scientist Zadeh [18] as a class of
objects with a continuum of grades of membership. After Zadeh’s paper [18], many scien-
tists employed the notion of fuzzy sets in many subjects of sciences such as fuzzy metric
space, fuzzy topology, fuzzy decisions, fuzzy set theory etc. One of the most hot topics in
mathematics is fuzzy metric spaces, which is introduced by George and Veeramani [4]. In
2004, Park [9] released the notion of intuitionistic fuzzy metric spaces as a generalization
of fuzzy metric spaces in sense of George and Veeramani [4]. While, Sun and Yang [12]
extended the definition of fuzzy metric space to the notion of a generalized fuzzy metric
space. Abbas et al. [1] introduced a new concept, called A - metric spaces.

Moreover Abbas et al. [1] studied the properties of A-metric spaces and investigated
many interesting fixed point theorems. While, Gupta and Kanwar [13] extended the no-
tion of A - metric spaces to the notion of V-fuzzy metric spaces. Moreover, Gupta and
Kanwar [13] employed the notion of partially ordered V-fuzzy metric spaces to invisti-
gate some coupled fixed point theorems in sense of Bhaskar and Lakshmikantham [17].
Very recently, Gupta et al. [14] studied some coupled fixed point theorem for mappings
satisfying CLRΩ−prperty on the notion of V-fuzzy metric spaces. In 2016, Jeyaraman
at el. [5] brought the notion of generalized intuitionistic fuzzy metric spaces and stated
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their properties. In 2014, Roldan, Martinez-Moreno et al. [6, 7] studied some multidimen-
sional coincidence point results in partially ordered fuzzy metric spaces for compatible
mappings. For some work in fuzzy metric space, we refer the reader to [2, 3, 6, 10, 11, 15].
We study and establish a few standard fixed point theorems for ϕ-compatible in extended
intuitionistic fuzzy metric spaces in this paper. Additionally, we demonstrate some findings
about multidimensional coincidenceand established fixed point theorems for ϕ-compatible
in partially ordered generalized intuitionistic fuzzy metric spaces.

2. PRELIMINARIES

In order to state and prove our results, we will use the following notions. These notions
can be found in [7]. Consider a partition {A,B} of ∧p = 1, 2, . . . , p; that is, A ∪B = ∧p

and A ∩B = ∅ such that A and B are non-empty sets. Define
ΩA,B = {σ : ∧p → ∧p : σ(A) ⊆ A and σ(B) ⊆ B} and
Ω

′

A,B = {σ : ∧p → ∧p : σ(A) ⊆ B and σ(B) ⊆ A}.

Let (X,⪯) be a partially ordered set, a, b ∈ X and i ∈ ∧p. In the present paper, we will
use the following notation:

a ⪯i b ⇔
{

a ⪯ b if i ∈ A
a ⪰ b if i ∈ B.

Let a1, a2, . . . , an ∈ [0, 1]. In the rest of this paper, we use the following notations:
∗ni=1ai = a1 ∗ a2 ∗ · · · ∗ an and ⋄ni=1ai = a1 ⋄ a2 ⋄ · · · ⋄ an.

Definition 2.1 [5]
Let X be a nonempty set and V,W be fuzzy sets on Xn × (0, ∞).
For all a1, a2, a3, . . . , an, l ∈ X and t, s > 0, assume the following conditions hold:

(i) V (a1, a2, a3, . . . , an, t) +W (a1, a2, a3, . . . , an, t) ≤ 1,
(ii) V (a, a, a, . . . , a, b, t) > 0 for all a, b ∈ X with a ̸= b,

(iii) V (a1, a1, a1, ..., a1, a2, t) ≥ V (a1, a2, a3, . . . , an, t),
for all a1, a2, a3, . . . , an ∈ X with a2 ̸= a3 ̸= . . . ̸= an,

(iv) V (a1, a2, a3, . . . , an, t) = 1 if and only if a1 = a2 = a3 = · · · = an,
(v) V (a1, a2, a3, ..., an, t) = V (p(a1, a2, a3, ..., an), t) where p is a permutation func-

tion,
(vi) V (a1, a2, a3, ..., an, t+ s) ≥ V (a1, a2, a3, ..., an−1, l, t) ∗ V (l, l, l, ..., an, s),

(vii) V (a1, a2, a3, ..., an, .) : (0,∞) → [0, 1] is continuous,
(viii) V is a non-decreasing function on R+,

lim
t→∞

V (a1, a2, a3, ..., an, t) = 1 and

lim
t→0

V (a1, a2, a3, ..., an, t) = 0

for all a1, a2, a3, . . . , an ∈ X , t > 0,
(ix) W (a, a, a, . . . , a, b, t) < 1 for all a, b ∈ X with a ̸= b,
(x) W (a1, a1, a1, ..., a1, a2, t) ≤ W (a1, a2, a3, . . . , an, t) for all a1, a2, a3, . . . , an ∈ X

with a2 ̸= a3 ̸= . . . ̸= an,
(xi) W (a1, a2, a3, . . . , an, t) = 0 if and only if a1 = a2 = a3 = · · · = an,

(xii) W (a1, a2, a3, ..., an, t) = W (p(a1, a2, a3, ..., an), t) where p is a permutation func-
tion,

(xiii) W (a1, a2, a3, ..., an, t+ s) ≥
W (a1, a2, a3, ..., an−1, l, t) ⋄W (l, l, l, ..., an, s),

(xiv) W (a1, a2, a3, ..., an, .) : (0,∞) → [0, 1] is continuous,



188 M. JEYARAMAN, M. PANDISELVI AND D. POOVARAGAVAN

(xv) W is a non-increasing function on R+,
lim
t→∞

W (a1, a2, a3, ..., an, t) = 0 and lim
t→0

V (a1, a2, a3, ..., an, t) = 1

for all a1, a2, a3, . . . , an ∈ X , t > 0.

Then the triple (X, V, W,∗, ⋄) is said to be a generalized intuitionistic fuzzy metric space
(shortly GIFMS) and the pair (V,W ) is called a generalized intuitionistic fuzzy metric
spaces.
Example 2.2[5]
Let (X,A) be an A - metric space. For all a1, a2, a3, . . . , an ∈ X and every t > 0. Define
the fuzzy sets V,W on Xn × (0,∞) by
V (a1, a2, a3, . . . , an, t) =

t
t+A(a1,a2,a3,...,an)

, and

W (a1, a2, a3, . . . , an, t) = A(a1,a2,a3,...,an)
t+A(a1,a2,a3,...,an)

. Also, define ∗ and ⋄ via a ∗ b = ab and
a ⋄ b = min{a + b, 1}. Then (X,V,W, ∗, ⋄) is a generalized intuitionistic fuzzy metric
spaces.
Definition 2.3[16]
Consider the two self mappings R and S on a partially ordered set (Xp,⪯). We say that
R is S− isotone map, if for any A1, A2 ∈ Xp, S(A1) ⪯ S(A2) ⇒ R(A1) ⪯ R(A2).
Definition 2.4[8]
Consider the two mappings F : Xp → X and g : X → X on a partially ordered set
(X,⪯). We say that F has the mixed g-monotone property if it satisfies the following
property:
For all a1, a2, . . . , ap, b, c ∈ X and for every i,
g(b) ⪯ g(c) ⇒ F (a1, . . . , ai−1, b, ai+1, . . . , ap) ⪯i F (a1, . . . , ai−1, c, ai+1, . . . , ap).
Definition 2.5
Let (X,V,W, ∗, ⋄) be a GIFMS. The two self mappings R and S on X are said to self-
mappings if and only if

lim
p→∞

V (R(S(xp)), . . . , R(S(xp)), S(R(xp)), t) = 1

and
lim
p→∞

W (R(S(xp)), . . . , R(S(xp)), S(R(xp)), t) = 0

for all t > 0, whenever {xp} ∈ X such that lim
p→∞

R(xp) = lim
p→∞

S(xp) = x for some

x ∈ X .
Definition 2.6
Let (X,V,W, ∗, ⋄) be a GIFMS and (X,⪯) be a partially ordered set. Let ϕ = (σ1, σ2, . . . , σp)
be an p−tuple mappings from {1, 2, . . . , p} to itself. The mappings F : Xp → X and
g : X → X are said to be ϕ− compatible if {ar1}, {ar2}, . . . , {arp} are monotonic se-
quences in X with

lim
r→∞

F (arσi(1), arσi(2), . . . , arσi(p)) = lim
r→∞

gari ∈ X

then

lim
r→∞

V

 gF (arσi(1), arσi(2), . . . , arσi(p)), . . . ,
gF (arσi(1), arσi(2), . . . , arσi(p)),
F (garσi(1), garσi(2), . . . , garσi(p)), t

 = 1

and

lim
r→∞

W

 gF (arσi(1), arσi(2), . . . , arσi(p)), . . . ,
gF (arσi(1), arσi(2), . . . , arσi(p)),
F (garσi(1), garσi(2), . . . , garσi(p)), t

 = 0

for all t > 0 and i ∈ {1, 2, . . . , p}.
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3. MAIN RESULTS

In this section, we set inaugurate main results and make use of these results to acquire
the multidimensional results in partially ordered GIFMS.
Lemma 3.1

Let (X,V,W, ∗, ⋄) be a GIFMS and {vp} a sequence in (X,V,W, ∗, ⋄). Assume there
exists a function ϕ ∈ Φw be such that

(3.1.1) ϕ(t) > 0 , for all t > 0,
(3.2.2) V (vp, . . . , vp, vp+1, ϕ(t)) ≥ V (vp−1, . . . , vp−1, vp, t) and

W (vp, . . . , vp, vp+1, ϕ(t)) ≤ W (vp−1, . . . , vp−1, vp, t) for every p ∈ N .

Then {vp} is Cauchy.

Proof. Let (X,V,W, ∗, ⋄) be a GIFMS. We have,

lim
t→∞

V (v1, v2, v3, . . . , vn, t) = 1, lim
t→∞

W (v1, v2, v3, . . . , vn, t) = 0.

So, for ε > 0, there exist t0 > 0 such that
V (v0, v0, . . . , v0, v1, t0) > 1− ε and W (v0, v0, . . . , v0, v1, t0) < ε.

Since ϕ ∈ Φw, there exists a real number t1 with t1 ≥ t0 such that lim
p→∞

ϕp(t1) = 0.

Therefore, for t > 0, there is p0 ∈ N such that lim
p→∞

ϕp(t1) ≤ t for all p ≥ p0.

Condition (3.1.1) implies that ϕp(t) > 0 for all p ∈ N and t > 0.
By induction and condition (3.1.2), we have

V (vp, vp, . . . , vp, vp+1, ϕ
p(t)) ≥ V (v0, v0, . . . , v0, v1, t) and

W (vp, vp, . . . , vp, vp+1, ϕ
p(t)) ≤ W (v0, v0, . . . , v0, v1, t) for all p ∈ N and t > 0.

Since V and W are non-decreasing and non-increasing, we have

V (vp, vp, . . . , vp, vp+1, t) ≥ V (vp, vp, . . . , vp, vp+1, ϕ
p(t1))

≥ V (v0, v0, . . . , v0, v1, t1)

≥ V (v0, v0, . . . , v0, v1, t0)

> 1− ε and

W (vp, vp, . . . , vp, vp+1, t) ≤ W (vp, vp, . . . , vp, vp+1, ϕ
p(t1))

≤ W (v0, v0, . . . , v0, v1, t1)

≤ W (v0, v0, . . . , v0, v1, t0)

< ε

that is, as p → ∞, we have
V (vp, vp, . . . , vp, vp+1, t) → 1 and W (vp, vp, . . . , vp, vp+1, t) → 0 for any ε > 0 and
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t > 0. For q ∈ N and t > 0 we have

V (vp, . . . , vp, vp+q, t) ≥ V

(
vp, . . . , vp, vp+1,

t

q

)
∗ V

(
vp+1, . . . , vp+1, vp+2,

t

q

)
∗ · · · ∗ V

(
vp+q−1, . . . , vp+q−1, vp+q,

t

q

)
and

W (vp, . . . , vp, vp+q, t) ≤ W

(
vp, . . . , vp, vp+1,

t

q

)
⋄W

(
vp+1, . . . , vp+1, vp+2,

t

q

)
⋄ · · · ⋄W

(
vp+q−1, . . . , vp+q−1, vp+q,

t

q

)
.

Letting p → ∞, we get
V (vp, vp, . . . , vp, vp+q, t) ≥ 1 ∗ 1 ∗ · · · ∗ 1 = 1 and
W (vp, vp, . . . , vp, vp+q, t) ≤ 0 ⋄ 0 ⋄ · · · ⋄ 0 = 0.
Hence the sequence {vp} is a Cauchy sequence.
Theorem 3.2

Let (X,V,W, ∗, ⋄) be a complete GIFMS, (X,⪯) be a partially ordered set. Assume R
and S be two mappings on a set X be such that

(3.2.1) R(X) ⊆ S(X).
(3.2.2) R is a S-isotone mapping.
(3.2.3) If there exists a function ϕ ∈ Φw, such that

V (R(x), . . . , R(x), R(y), ϕ(t) ≥ V (S(x), . . . , S(x), S(y), t) and
W (R(x), . . . , R(x), R(y), ϕ(t) ≤ W (S(x), . . . , S(x), S(y), t) for all x, y ∈ X ,
t > 0 and S(x) ⪯ S(y).

(3.2.4) R and S are continuous and compatible maps.

If there exists x0 ∈ X such that S(x0) ≈ R(x0), then R and S have a coincidence point.

Proof. Let x0 ∈ X be a point such that S(x0) ≈ R(x0).
Since R(X) ⊆ S(X), we choose x1 ∈ X be such that
S (x1) = R(x0).
Proceeding like this way, we construct a sequence {xp} ∈ X be such that
S (xp+1) = R(xp) for p ∈ N ∪ {0}. Without loss of generality and in view of S (x0) ≈
R (x0), we assume that S (x0) ⪯ R (x0).

Assume that S (xp−1) ⪯ S (xp). The property of S-isotone for the mapping R implies
that R (xp−1) ⪯ R (xp). We set S (x0) = v0 ⪯ R (x0) = v1 and
R (xp−1) = vp ⪯ R (xp) = vp+1.

Thus, the sequence {vp} is an increasing sequence.
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From (3.2.3), we get

V (vp, . . . , vp, vp+1, ϕ(t)) = V (R(xp−1), . . . , R(xp−1), R(xp), ϕ(t))

≥ V (S(xp−1), . . . , S(xp−1), S(xp), t)

= V (vp−1, . . . , vp−1, vp, t) and

W (vp, . . . , vp, vp+1, ϕ(t)) = W (R(xp−1), . . . , R(xp−1), R(xp), ϕ(t))

≤ W (S(xp−1), . . . , S(xp−1), S(xp), t)

= W (vp−1, . . . , vp−1, vp, t)

for all p ∈ N ∪ {0} and t > 0. Clearly ϕ (t) > 0 for all t > 0. From Lemma (3.1.), we
conclude that {vp} is a Cauchy sequence.

Since (X,V,W, ∗, ⋄) is a complete GIFMS, there exists a point v ∈ X such that
lim
p→∞

vp = v that is, lim
p→∞

R(xp) = lim
p→∞

S(xp) = v.

Since R and S are compatible, we have

lim
p→∞

V (R(S(xp)), . . . , R(S(xp)), S(R(xp)), t) = 1,

lim
p→∞

W (R(S(xp)), . . . , R(S(xp)), S(R(xp)), t) = 0

for all t > 0.
Since R and S are both continuous mappings,

V (R (v) , R (v) , . . . , R (v) , S (v) , t) = 1 and
W (R (v) , R (v) , . . . , R (v) , S (v) , t) = 0
for all t > 0, which implies that, S (v) = R(v).
Thus v is a coincidence point of R and S in X .
Theorem 3.3

Let (X,⪯) be a partially ordered set, (X,V,W, ∗, ⋄) be a complete GIFMS. Assume
the two self mappings R and S on X satisfying the following conditions:

(3.3.1) R(X) ⊆ S(X).
(3.3.2) R is a S-isotone mapping.
(3.3.3) Assume that there exists a function ϕ ∈ Φw, such that

V (R(x), . . . , R(x), R(y), ϕ(t) ≥ V (S(x), . . . , S(x), S(y), t) and
W (R(x), . . . , R(x), R(y), ϕ(t) ≤ W (S(x), . . . , S(x), S(y), t) for all x, y ∈ X ,
t > 0 and S(x) ⪯ S(y).

(3.3.4) X has the following property,
(a) If {xp} is a non-decreasing sequence such that xp → x then xp ≤ x for all

p ∈ N.
(b) If {xp} is a non-increasing sequence such that xp → x then xp ≥ x for all

p ∈ N.
(3.3.5) S(X) is closed.

If there exists x0 ∈ X such that S (x0) ≈ R (x0), then R and S have a coincidence point.

Proof. Let x0 ∈ X be a point such that S (x0) ≈ R (x0). In view of R(X) ⊆ S(X),
we choose x1 ∈ X such that S (x1) = R(x0).
Proceeding like this way, we construct a sequence {xp} ∈ X such that S (xp+1) = R(xp)
for p ∈ N ∪ {0}. Without loss of generality and in view of S (x0) ≈ R (x0), we may
assume that S (x0) ⪯ R (x0).
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Assume that S (xp−1) ⪯ S (xp). The property of S-isotone for the mapping R implies
that R (xp−1) ⪯ R (xp).

Putting S (x0) = v0 ⪯ R (x0) = v1 and R (xp−1) = vp ⪯ R (xp) = vp+1.
Thus, the sequence {vp} is an increasing sequence. From (3.3.3), we get

V (vp, . . . , vp, vp+1, ϕ(t)) = V (R(xp−1), . . . , R(xp−1), R(xp), ϕ(t))

≥ V (S(xp−1), . . . , S(xp−1), S(xp), t)

= V (vp−1, . . . , vp−1, vp, t) and

W (vp, . . . , vp, vp+1, ϕ(t)) = W (R(xp−1), . . . , R(xp−1), R(xp), ϕ(t))

≤ W (S(xp−1), . . . , S(xp−1), S(xp), t)

= W (vp−1, . . . , vp−1, vp, t)

for all p ∈ N ∪ {0} and t > 0. Clearly ϕ (t) > 0 for all t > 0. Lemma (3.1), guarantee
that {vp} is Cauchy.

Since (X,V,W, ∗, ⋄) is a complete GIFMS and S(X) is closed, there exists v0 ∈ X
such that

lim
p→∞

R(xp) = lim
p→∞

S(xp) = S(v0) = v.

Since (S(xp)) is a non-decreasing sequence, we have S(xp) ≤ S(v0) for all p ∈ N .

In (X,V,W, ∗, ⋄), V is non-decreasing and W is non-increasing with respect to t.
Also, for every t > 0 there exists a real number r with r ≥ t such that ϕ (r) < t. Hence,

V (R(xp), . . . , R(xp), R(v0), t) ≥ V (R(xp), . . . , R(xp), R(v0), ϕ(r))

≥ V (S(xp), . . . , S(xp), S(v0), r)

≥ V (S(xp), . . . , S(xp), S(v0), t) and

W (R(xp), . . . , R(xp), R(v0), t) ≤ W (R(xp), . . . , R(xp), R(v0), ϕ(r))

≤ W (S(xp), . . . , S(xp), S(v0), r)

≤ W (S(xp), . . . , S(xp), S(v0), t)

for all t > 0 and p ∈ N. Taking p → ∞ in above inequality, we get R (xp) → R(v0). The
uniqueness of the limit indicate that R (v0) = S (v0).

Hence v0 is a coincidence point of R and S.
Theorem 3.4

In additional of the hypothesis of Theorem 3.2 and Theorem 3.3, suppose that X is a
totally ordered set. Then R and S have a unique coincidence point. Moreover, if S is
weakly compatible with R, then R and S have unique common fixed point.
Proof. Assume that u, v ∈ X are coincidence points of R and S. Let y ∈ X be such that
S(y) is comparable to S(u) and S(v). Starting with y0 = y to construct a sequence S(yp).
The sequence S(yp) and its limit is defined in similar way as in Theorem 3.2 and Theorem
3.3 So we have S (yp+1) = R(yp) and S (y1) = R(y0). Also, we have

lim
t→∞

V (S (y) , S (y) , . . . , S (y) , S (v) , t) = 1

and
lim
t→∞

W (S (y) , S (y) , . . . , S (y) , S (v) , t) = 0,

which imply that for any ε ∈ (0, 1), there exists t1 such that
V (S (y0) , S (y0) , . . . , S (y0) , S (v) , t1) > 1−ε and W (S (y0) , S (y0) , . . . , S (y0) , S (v) , t1) <
ε.
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Referring to the fact that ϕ ∈ Φw, we choose r ≥ t1 be such that lim
p→∞

ϕp (r) = 0. So,

there exists p0 ∈ N such that ϕp (r) < t for all p ≥ p0 and t > 0. Consider,

V (S(yp), . . . , S(yp), S(v), t) ≥ V (S(yp), . . . , S(yp), S(v), ϕ
p(r))

= V (R(yp−1), . . . , R(yp−1), R(v), ϕp(r))

≥ V (S(yp−1), . . . , S(yp−1), S(v), ϕ
p−1(r))

≥ · · · ≥ V (S(y0), . . . , S(y0), S(v), r)

≥ V (S(y0), . . . , S(y0), S(v), t1)

≥ 1− ε and

W (S(yp), . . . , S(yp), S(v), t) ≤ W (S(yp), . . . , S(yp), S(v), ϕ
p(r))

= W (R(yp−1), . . . , R(yp−1), R(v), ϕp(r))

≤ W (S(yp−1), . . . , S(yp−1), S(v), ϕ
p−1(r))

≤ · · · ≤ W (S(y0), . . . , S(y0), S(v), r)

≤ W (S(y0), . . . , S(y0), S(v), t1)

≤ ε

for all p ≥ p0 and t > 0.
Hence,{ lim

p→∞
S(yp)} = S(v). Similarly, we can easily show that { lim

p→∞
S(yp)} =

S(u). The uniqueness of limit guarantee that S (v) = S(u).

Now, let R (v) = S (v) = e. Since R and S are weakly compatible mappings, we have
R (e) = R (S (v)) = S (R (v)) = S(e). So e is a coincidence point.

Hence S (e) = S (v) = e. Thus e is a common fixed point of R and S . Now suppose
that there exists e

′
(̸= e) ∈ X such that R

(
e
′
)
= S

(
e
′
)
= e

′
.

Then e = S (e) = S
(
e
′
)
= e′ which indicate the uniqueness of common fixed point

of R and S.
Example 3.5
Let X = [0, 1] and (X,⪯) be a partially ordered set. Let R and S be two self mappings
on X defined by R (x) = x2

2 + 1
2 and S (x) = x for all x ∈ X .

It is clear that R(X) ⊆ S(X) and R is an S-isotone mapping. Let ϕ (t) = t
2 for all t > 0.

Define V,W on Xp × (0,∞) via
V (x1, x2, x3, . . . , xp, t)=

t
t+A(x1, x2, x3, ..., xp)

and
W (x1, x2, x3, . . . , xp, t)=

A(x1,x2,x3,...,xp)
t+A(x1, x2, x3, ...,xp)

,

where

A(x1, x2, x3, . . . , xp) =

p∑
i=1

∑
i<j

|xi − yj |

for all x1, x2, x3, . . . , xp ∈ X and t > 0.
Let x ∗ y = min{x, y} and x ⋄ y = max{x, y} for all x, y ∈ X . Then (X, V, W, ∗, ♢)

is a complete GIFMS.
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Now,

V (R (x) , R (x) , . . . , R (x) , R (y) , ϕ (t)) =
ϕ(t)

ϕ (t) + |R (x)−R(y)|

=
t

t+ |x2 − y2|
and

W (R (x) , R (x) , . . . , R (x) , R (y) , ϕ (t)) =
|R (x)−R(y)|

ϕ (t) + |R (x)−R(y)|

=

∣∣x2 − y2
∣∣

t+ |x2 − y2|
.

So V (S (x) , S (x) , . . . , S (x) , S (y) , t) = t
t+|x−y| and

W (S (x) , S (x) , . . . , S (x) , S (y) , t) = |x−y|
t+|x−y|

for all x, y ∈ X and t > 0. Hence, we have

V (R (x) , R (x) , . . . , R (x) , R (y) , ϕ (t)) ≥ V (S (x) , S (x) , . . . , S (x) , S (y) , t) and

W (R (x) , R (x) , . . . , R (x) , R (y) , ϕ (t)) ≤ W (S (x) , S (x) , . . . , S (x) , S (y) , t) .

Taking x0 = 0. We have S (x0) = 0 ≤ R(x0).
Now, construct the sequence v0 = S(x0) and xp+1 = S (xp+1) = R(xp) for p ∈ N ∪{0}.
So {vp} = {v0 = 0, v1 = 1

2 , v2 = 5
8 , v3 = 89

128 , . . . } this sequence is non-trivial.
By Theorem 3.4, we get R and S have a unique common fixed point v.
Lemma 3.6

Let (X,V,W, ∗, ⋄) be a GIFMS such that ∗ is a continuous t-norm and ⋄ is a continuous
t-conorm. Define the fuzzy sets

V p,W p : Xp × . . . n− times×Xp × (0,∞) → [0, 1]

such that
V p (A1, A2, . . . , An, t) = ∗pi=1V (a1i, a2i, . . . , ani, t) and
W p (A1, A2, . . . , An, t) = ⋄pi=1W (a1i, a2i, . . . , ani, t)
for all Ai = (ai1, ai2, . . . , aip) ∈ Xp and
for all t > 0, where i ∈ {1, 2, . . . , n}. Then the following properties hold:

(3.6.1) (Xp, V p,W p, ∗, ⋄) is also a GIFMS.
(3.6.2) Let {Ar = (ar1, ar2, . . . , arp)} be a sequence on Xp and a point A = (a1, a2, . . . , ap) ∈

Xp. Then {Ar} → A if and only if {ari} → ai for all i ∈ {1, 2, . . . , p}.
(3.6.3) If (X, V, W, ∗, ⋄) is complete, then

(Xp, V p,W p, ∗, ⋄) is also complete.

Proof. (3.6.1) Suppose that (X, V,W, ∗, ⋄) is a GIFMS. Then, (Xp, V p,W p, ∗, ⋄)
satisfies all properties of the definition of generalized intuitionistic fuzzy metric space.
Hence (Xp, V p,W p, ∗, ⋄) is also a generalized intuitionistic fuzzy metric space.

(3.6.2) Suppose {Ar} → A as r → ∞. For ε ∈ (0, 1), there exists n0 ∈ N such that
for all r ≥ n0, we have V p (Ar, Ar, .., Ar, A, t) ≥ 1−ε and W p (Ar, Ar, .., Ar, A, t) ≤ ε
for all t > 0.
Consider,

min
1≤i≤p

V (ari, ari, . . . , ari, ai, t)
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= V (ar1, ar1, . . . , ar1, a1, t)

∗V (ar2, ar2, . . . , ar2, a2, t)

∗ · · · ∗ V (arp, arp, . . . , arp, ap, t)

= ∗pi=1 V (ari, ari, . . . , ari, ai, t)

= V p(Ar, Ar, . . . , Ar, A, t)

≥ 1− ε

and
max
1≤i≤p

W (ari, ari, . . . , ari, ai, t)

= W (ar1, ar1, . . . , ar1, a1, t)

⋄W (ar2, ar2, . . . , ar2, a2, t)

⋄ · · · ⋄W (arp, arp, . . . , arp, ap, t)

= ⋄pi=1 W (ari, ari, . . . , ari, ai, t)

= W p(Ar, Ar, . . . , Ar, A, t)

≤ ε

for all r ≥ n0 and t > 0.
Thus, for all r ≥ n0, V (ari, ari, . . . , ari, ai, t) ≥ 1−ε and W (ari, ari, . . . , ari, ai, t) ≤ ε
for all i ∈ {1, 2, . . . , p}.
Hence, {ari} → {ai} as r → ∞.

Conversely suppose that {ari} → {ai} as r → ∞ for all i ∈ {1, 2, . . . , p} and ∗, ⋄ are
continuous mapping. From the definitions of V p and W p, we get

lim
r→∞

V p (Ar, Ar, . . . , Ar, A, t)

= lim
r→∞

∗pi=1 V (ari, ari, . . . , ari, ai, t)

= ∗pi=1 lim
r→∞

V (ari, ari, . . . , ari, ai, t) = 1

and
lim
r→∞

W p (Ar, Ar, . . . , Ar, A, t)

= lim
r→∞

⋄pi=1 W (ari, ari, . . . , ari, ai, t)

= ⋄pi=1 lim
r→∞

W (ari, ari, . . . , ari, ai, t) = 0.

Hence {Ar} → A as r → ∞.
(3.6.3) Suppose that {Ar} is a Cauchy sequence in (Xp, V p,W p, ∗, ⋄); that is, for

every ε ∈ (0, 1), there exists n0 ∈ N such that
V p (Ar, Ar, . . . , Ar, An, t) ≥ 1− ε and
W p (Ar, Ar, . . . , Ar, An, t) ≤ ε
for all r, n ≥ n0 and t > 0. Thus,

min
1≤i≤p

V (ari, ari, . . . , ari, ani, t)
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= V (ar1, ar1, . . . , ar1, an1, t)

∗V (ar2, ar2, . . . , ar2, an2, t)

∗ · · · ∗ V (arp, arp, . . . , arp, anp, t)

= ∗pi=1 V (ari, ari, . . . , ari, ani, t)

= V p(Ar, Ar, . . . , Ar, An, t)

≥ 1− ε

and
max
1≤i≤p

W (ari, ari, . . . , ari, ani, t)

= W (ar1, ar1, . . . , ar1, an1, t)

⋄W (ar2, ar2, . . . , ar2, an2, t)

⋄ · · · ⋄W (arp, arp, . . . , arp, anp, t)

= ⋄pi=1 W (ari, ari, . . . , ari, ani, t)

= W p(Ar, Ar, . . . , Ar, An, t)

≤ ε

for all r ≥ n0 and t > 0. Hence. we deduce that {ari} is a Cauchy sequence in
(X, V, W, ∗, ⋄) for all i ∈ {1, 2, . . . , p}. Now, let (X, V, W, ∗, ⋄) be a complete
generalized intuitionistic fuzzy metric space,

That is, {ari} → {ai} for every i ∈ {1, 2, . . . , p} and ai ∈ X which implies that se-
quence {Ar} converges to a point A on Xp. Hence (Xp, V p,W p, ∗, ⋄) is also a complete
generalized intuitionistic fuzzy metric space.
Lemma 3.7

Let (X, V, W, ∗, ⋄) be a GIFMS. If the mappings F : Xp → X and g : X → X are
ϕ−compatible mappings on (X, V, W, ∗, ⋄), then R : Xp → Xp and S : Xp → Xp are
also compatible in (Xp, V p,W p, ∗, ⋄), where R and S are defined as

R(A) =

(
F (aσ1(1), aσ1(2)), . . . , aσ1(p), . . . ,

F
(
aσi(1), aσi(2), . . . , aσi(p)

)
, . . . ,

F
(
aσp(1), aσp(2), . . . , aσp(p)

))
and

S (A) = (ga1, ga2, . . . , gap)
for all A = (a1, a2, . . . , ap) ∈ Xp and ai ∈ X , i ∈ {1, 2, . . . , p}.

Proof. Let {ar1} , {ar2} , . . . , {arp} are monotonic sequence in X such that

lim
r→∞

gari = lim
r→∞

F (arσi(1), arσi(2), . . . , arσi(p))

for all ai ∈ X and i ∈ {1, 2, . . . , p}. By Lemma 3.6. lim
r→∞

S(Ar) = { lim
r→∞

R(Ar)},
where Ar = ({ar1} , {ar2} , . . . , {arp}) ∈ Xp. Since F and g are ϕ−compatible and ∗, ⋄
are continuous mapping, we get

lim
r→∞

V p (S (R (Ar)) , , . . . , S (R (Ar)) , R (S (Ar)) , t)
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= lim
r→∞

∗pi=1 V

(
gF

(
arσi(1), arσi(2), . . . , arσi(p)

)
,

. . . , gF
(
arσi(1), arσi(2), . . . , arσi(p)

)
,

F
(
garσi(1), garσi(2), , . . . , garσi(p)

)
, t

)
= ∗pi=1 lim

r→∞
V

(
gF

(
arσi(1), arσi(2), . . . , arσi(p)

)
,

. . . , gF
(
arσi(1), arσi(2), . . . , arσi(p)

)
,

F
(
garσi(1), garσi(2), , . . . , garσi(p)

)
, t

)
= 1

and
lim
r→∞

W p (S (R (Ar)) , , . . . , S (R (Ar)) , R (S (Ar)) , t)

= lim
r→∞

⋄pi=1 W

(
gF

(
arσi(1), arσi(2), . . . , arσi(p)

)
,

. . . , gF
(
arσi(1), arσi(2), . . . , arσi(p)

)
,

F
(
garσi(1), garσi(2), , . . . , garσi(p)

)
, t

)
= ⋄pi=1 lim

r→∞
W

(
gF

(
arσi(1), arσi(2), . . . , arσi(p)

)
,

. . . , gF
(
arσi(1), arσi(2), . . . , arσi(p)

)
,

F
(
garσi(1), garσi(2), , . . . , garσi(p)

)
, t

)
= 0 for all t > 0.

Hence R and S are compatible mapping in
(Xp, V p,W p, ∗, ⋄).
Theorem 3.8

Let (X, V, W, ∗, ⋄) be a GIFMS and (X,⪯) be a partially ordered set. Let {A,B} be
any partition of ∧p = {1, 2, . . . , p} and ϕ = (σ1, σ2, . . . , σp) an p-tuple mappings from
∧p into itself verifying that σi ∈ ΩA,B if i ∈ A and σi ∈ Ω

′

A,B if i ∈ B. Let F : Xp → X
and g : X → X be two mappings such that

(3.8.1) F (Xp) ⊆ g(X).
(3.8.2) F has the mixed g-monotone property on X .
(3.8.3) Assume that there exists a function ϕ ∈ Φw such that

V

(
F (y1, y2, . . . , yp) , . . . , F (y1, y2, . . . , yp) ,

F (z1, z2, . . . , zp), ϕ (t)

)
≥ γ

(
∗pi=1V (gyi, gyi, . . . , gyi, gzi, t)

)
and
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W

(
F (y1, y2, . . . , yp), . . . , F (y1, y2, . . . , yp),

F (z1, z2, . . . , zp), ϕ(t)

)
≤ γ

(
⋄pi=1W (gyi, gyi, . . . , gyi, gzi, t)

)
for all t > 0, y1, y2, . . . , yp, z1, z2, . . . , zp in X and gyi⪯igzi for all i ∈ {1, 2, . . . , p},
where γ : [0, 1] → [0, 1] be such that ∗pi=1γ(u) ≥ u and ⋄pi=1γ(u) ≤ u for all
u ∈ [0, 1]. Suppose that

γ

(
∗pi=1V

(
gyσj(i), gyσj(i), . . . , gyσj(i), gzσj(i), t

))
≥ γ

(
∗pi=1V (gyi, gyi, . . . , gyi, gzi, t)

)
and

γ

(
⋄pi=1W

(
gyσj(i), gyσj(i), . . . , gyσj(i), gzσj(i), t

))
≤ γ

(
⋄pi=1W (gyi, gyi, . . . , gyi, gzi, t)

)
for i, j ∈ {1, 2, . . . , p},
y1, y2, . . . , yp, z1, z2, . . . , zp ∈ X and
gyi⪯igzi.

(3.8.4) F and g are continuous and ϕ−compatible.

If there exists y01, y02, . . . , y0p ∈ X satisfying
gy0i⪯iF

(
y0σi(1), y0σi(2), . . . , y0σi(p)

)
for

i ∈ {1, 2, . . . , p}, then F and g have an ϕ−coincidence point.
Proof: Let (X, V, W, ∗, ⋄) be a GIFMS such that ∗, ⋄ are continuous t-norm,

continuous t-conorm and (X,⪯) be a partially ordered set. By Lemma (3.6.), we get
(Xp, V p,W p, ∗, ⋄) is also a generalized intuitionistic fuzzy metric space. Define map-
pings R : Xp → Xp and S : Xp → Xp as

R (Y ) =

(
F
(
yσ1(1), yσ1(2), . . . , yσ1(p)

)
, . . . ,

F
(
yσi(1), yσi(2), . . . , yσi(p)

)
, . . . ,

F
(
yσp(1), yσp(2), . . . , yσp(p)

))
and S (Y ) = (gy1, gy2, . . . , gyp) (3.8.5)

for all Y ∈ Xp and yi ∈ X for i ∈ {1, 2, . . . , p}.
Since F (Xp) ⊆ g(X) which implies that R(Xp) ⊆ S(Xp).
Suppose gy0i⪯iF

(
y0σi(1), y0σi(2), . . . , y0σi(p)

)
,

then there exists Y0 ∈ Xp such that S (Y0)⪯pR (Y0) .
Now to prove that R is a S− isotone. Let Y,Z ∈ Xp be such that S (Y )⪯pS (Z) which
implies that gyj ⪯ gzj when j ∈ A and gyj ⪰ gzj when j ∈ B. So, we have
σi ∈ ΩA,B = {σ : ∧p → ∧p : σ(A) ⊆ A and σ(B) ⊆ B} when i ∈ A and
σi ∈ Ω

′

A,B = {σ : ∧p → ∧p : σ(A) ⊆ B and σ(B) ⊆ A} when i ∈ B.
Thus, gyσi(j) ⪯ gzσi(j) when j ∈ A and gyσi(j) ⪰ gzσi(j) when j ∈ B, for fixed i ∈

A. Since F is mixed g-monotone, when j ∈ A and fixed i ∈ A, we have
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F
(
yσi(1), . . . , yσi(j−1), yσi(j), yσi(j+1), . . . , yσi(p)

)
⪯ F (yσi(1), . . . , yσi(j−1), zσi(j), yσi(j+1), . . . , yσi(p)).

Similarly, when j ∈ B and fixed i ∈ A the above inequality hold. Hence for fixed i ∈ A
and for all j the above inequality also hold. Thus we get,
F
(
yσi(1), yσi(2), . . . , yσi(p)

)
⪯

F
(
uσi(1), uσi(2), . . . , uσi(p)

)
for i ∈ A and

F
(
yσi(1), yσi(2), . . . , yσi(p)

)
⪰

F
(
uσi(1), uσi(2), . . . , uσi(p)

)
for i ∈ B

Thus, R(Y )⪯pR(Z) for Y,Z ∈ Xp. Hence R is an S− isotone mapping.
Now, Y, Z ∈ Xp we have S (Y )⪯pS (Z). From Partially ordered set (X,⪯), we get

(yσ(1), yσ(2), . . . , yσ(p)) and (uσ(1), uσ(2), . . . , uσ(p)) are comparable.
In the view of these points and using (3.8.5) , then for all t > 0, we have
V p (R (Y ) , R (Y ) , . . . , R (Y ) , R (Z) , ϕ (t))

= ∗pi=1V (F
(
yσi(1), yσi(2), . . . , yσi(p)

)
,

. . . F
(
yσi(1), yσi(2), . . . , yσi(p)

)
,

F
(
zσi(1), zσi(2), . . . , zσi(p)

)
, ϕ (t))

≥ ∗pi=1γ
(
∗pj=1V

(
gyσi(j), . . . , gyσi(j), gzσi(j), t

))
≥ ∗pi=1γ

(
∗pj=1V (gyj , gyj , . . . , gyj , gzj , t)

)
≥ ∗pi=1γ (V

p (S (Y ) , S (Y ) , . . . , S (Y ) , S (Z) , t))

≥ V p (S (Y ) , S (Y ) , . . . , S (Y ) , S (Z) , t)

and
W p (R (Y ) , R (Y ) , . . . , R (Y ) , R (Z) , ϕ (t))

= ⋄pi=1W (F
(
yσi(1), yσi(2), . . . , yσi(p)

)
,

. . . F
(
yσi(1), yσi(2), . . . , yσi(p)

)
,

F
(
zσi(1), zσi(2), . . . , zσi(p)

)
, ϕ (t))

≤ ⋄pi=1γ
(
⋄pj=1W

(
gyσi(j), . . . , gyσi(j), gzσi(j), t

))
≤ ⋄pi=1γ

(
⋄pj=1W (gyj , gyj , . . . , gyj , gzj , t)

)
≤ ⋄pi=1γ (W

p (S (Y ) , S (Y ) , . . . , S (Y ) , S (Z) , t))

≤ W p (S (Y ) , S (Y ) , . . . , S (Y ) , S (Z) , t) .

Hence, condition (3.8.3) of Theorem (3.8) implies the condition (3.2.3) of Theorem
(3.2.) with respect to (Xp, V p,W p, ∗, ⋄).

Also, since F, g are continuous and ϕ−compatible, then by (3.8.5) we get R and S
are continuous. Also, by Lemma (3.7), we deduce that R and S are compatible. Hence
condition (3.2.4) of Theorem (3.2) hold with respect to (Xp, V p,W p, ∗, ⋄).

Hence all the conditions of Theorem (3.2) hold w.r.t. (Xp, V p,W p, ∗, ⋄). Therefore,
R and S have a coincidence point. From (3.8.5), we deduce the coincidence point will be
the ϕ−coincidence point of F and g.
Example 3.9

Let X = {0, 1
2 , 1,

3
2 , 2}. Consider X has the following partial order :

x, y ∈ X,x ⪯ y ⇔ x = y or (x, y) = (0, 1). Consider the function,
F : Xp → X and g : X → X defined by,

F (x1, x2, . . . , xp) =

{
0 if x1, . . . , xp ∈ {0, 1

2 , 1}
1 if otherwise.
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and g(x) =

 0 if x = 0
1
2 if x ∈ { 1

2 , 1}
1 if x ∈ { 3

2 , 2}
Then we can easily get condition, F (Xp) ⊆ g(X).

If y, z ∈ X verify gy ⪯ gz then either y, z ∈ {0, 1
2 , 1} or y, z ∈ { 3

2 , 2}. Then F has
the mixed g-monotone property on X . Let ϕ(t) = t

2 for all t > 0. Define V,W on
Xp × (0,∞) by
V (x1, x2, . . . , xp, t) =

t
t+A(x1,x2,...,xp)

and W (x1, x2, . . . , xp, t) =
A(x1,x2,...,xp)

t+A(x1,x2,...,xp)

where A(x1, x2, . . . , xp) =
∑p

i=1

∑
i<j |xi − yj | for all x1, x2, x3, . . . , xp ∈ X and

t > 0. Let x∗y = min{x, y} and x⋄y = max{x, y} for all x, y ∈ X . Then (X,V,W, ∗, ⋄)
is complete GIFMS, also (Xp, V p,W p, ∗, ⋄) is complete GIFMS.
If y1, y2, . . . , yp, z1, z2, . . . , zp ∈ Xverify gyi ⪯i gzi for all i, then
F (y1, y2, . . . , yp) = F (z1, z2, . . . , zp). Suppose, that p is even and let A be the set of odd
numbers in ∧p and B be the set of even numbers in ∧p. Consider σi = (i, i + 1, . . . , p −
1, p, 1, 2, . . . , i− 1) for all i.
Then σi ∈ ΩA,B if i is odd σi ∈ Ω

′

A,B if i is even. Let ϕ = (σ1.σ2, . . . , σp) then condition
(3.8.3) of Theorem (3.8) holds whatever γ(for instance taking γ(a) = a for all a ∈ [0, 1])
with respect to (Xp, V p,W p, ∗, ⋄).
Also F and g are continuous and ϕ− compatible. Take y0i = 0 if i is odd and y0i = 1 if i
is even. Then gy0i ⪯i F (y0σi(1), y0σi(2), . . . , y0σi(p)) for all i.
Hence all the conditions of Theorem.3.8 are satisfied. Therefore F and g have ϕ-coincidence
point.
Theorem 3.10

Let (X, V, W, ∗, ⋄) be a GIFMS and (X,⪯) be a partially ordered set. Let {A,B} be
any partition of ∧p = {1, 2, . . . , p} and ϕ = (σ1, σ2, . . . , σp) an p-tuple mappings from
∧p into itself verifying that σi ∈ ΩA,B if i ∈ A and σi ∈ Ω

′

A,B if i ∈ B. Let F : Xp → X
and g : X → X be two mappings such that

(1) (3.10.1) F (Xp) ⊆ g(X).
(2) (3.10.2) F has the mixed g-monotone property on X .
(3) (3.10.3) Assume that there exists a function ϕ ∈ Φw such that

V

(
F (y1, y2, . . . , yp) , . . . , F (y1, y2, . . . , yp) ,

F (z1, z2, . . . , zp), ϕ (t)

)
≥ γ

(
∗pi=1V (gyi, gyi, . . . , gyi, gzi, t)

)
and

W

(
F (y1, y2, . . . , yp), . . . , F (y1, y2, . . . , yp),

F (z1, z2, . . . , zp), ϕ(t)

)
≤ γ

(
⋄pi=1W (gyi, gyi, . . . , gyi, gzi, t)

)
for all t > 0, y1, y2, . . . , yp, z1, z2, . . . , zp in X and gyi⪯igzi for all i ∈

{1, 2, . . . , p}, where γ : [0, 1] → [0, 1] be such that ∗pi=1γ(u) ≥ u and ⋄pi=1γ(u) ≤
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u for all u ∈ [0, 1]. Suppose that

γ

(
∗pi=1V

(
gyσj(i), gyσj(i), . . . , gyσj(i), gzσj(i), t

))
≥ γ

(
∗pi=1V (gyi, gyi, . . . , gyi, gzi, t)

)
and

γ

(
⋄pi=1W

(
gyσj(i), gyσj(i), . . . , gyσj(i), gzσj(i), t

))
≤ γ

(
⋄pi=1W (gyi, gyi, . . . , gyi, gzi, t)

)
for i, j ∈ {1, 2, . . . , p},

y1, y2, . . . , yp, z1, z2, . . . , zp ∈ X and gyi⪯igzi.

(4) (3.10.4) X has the following properties:
(a) If {xp} is a non-decreasing sequence such that xp → x, then xp ≤ x for all

p ∈ N.
(b) If {xp} is a non-increasing sequence such that xp → x, then xp ≥ x for all

p ∈ N.
(5) (3.10.5) g(X) is closed.

If there exists y01, y02, . . . , y0p ∈ X satisfying
gy0i⪯iF

(
y0σi(1), y0σi(2), . . . , y0σi(p)

)
for

i ∈ {1, 2, . . . , p}, then F and g have ϕ−coincidence point.
Proof. Let (X, V, W, ∗, ⋄) be a GIFMS and (X,⪯) be a partially ordered set. By

Lemma (3.6), we get (Xp, V p,W p, ∗, ⋄) is also a generalized intuitionistic fuzzy metric
space. Define the mappings R : Xp → Xp and S : Xp → Xp by

R (Y ) =

(
F
(
yσ1(1), yσ1(2), . . . , yσ1(p)

)
, . . . ,

F
(
yσi(1), yσi(2), . . . , yσi(p)

)
, . . . ,

F
(
yσp(1), yσp(2), . . . , yσp(p)

))
and S (Y ) = (gy1, gy2, . . . , gyp) (3.10.6)

for all Y ∈ Xp and yi ∈ X for i ∈ {1, 2, . . . , p}.
Since F (Xp) ⊆ g(X), we have R(Xp) ⊆ S(Xp).
Suppose gy0i⪯iF

(
y0σi(1), y0σi(2), . . . , y0σi(p)

)
. Then there exists Y0 ∈ Xp such that

S (Y0)⪯pR (Y0) .
Now to prove that R is a S− isotone, we let Y, Z ∈ Xp be such that S (Y )⪯pS (Z) which
implies that gyj ⪯ gzj when j ∈ A and gyj ⪰ gzj when j ∈ B.Thus
σi ∈ ΩA,B = {σ : ∧p → ∧p : σ(A) ⊆ A and σ(B) ⊆ B} when i ∈ A and
σi ∈ Ω

′

A,B = {σ : ∧p → ∧p : σ(A) ⊆ B and σ(B) ⊆ A} when i ∈ B. Thus, we have
gyσi(j) ⪯ gzσi(j) when j ∈ A and gyσi(j) ⪰ gzσi(j) when j ∈ B, for fixed i ∈ A. Since
F is mixed g-monotone, when j ∈ A and fixed i ∈ A, we have
F
(
yσi(1), . . . , yσi(j−1), yσi(j), yσi(j+1), . . . , yσi(p)

)
⪯ F (yσi(1), . . . , yσi(j−1), zσi(j), yσi(j+1), . . . , yσi(p)).
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Similarly, when j ∈ B and fixed i ∈ A the above inequality hold. Hence for fixed i ∈ A
and for all j the above inequality also hold. Thus we get,
F
(
yσi(1), yσi(2), . . . , yσi(p)

)
⪯

F
(
uσi(1), uσi(2), . . . , uσi(p)

)
for i ∈ A and

F
(
yσi(1), yσi(2), . . . , yσi(p)

)
⪰

F
(
uσi(1), uσi(2), . . . , uσi(p)

)
for i ∈ B.

Thus, R(Y )⪯pR(Z) for Y,Z ∈ Xp. Hence R is a S− isotone mapping.
For Y,Z ∈ Xp, we have S (Y )⪯pS (Z). From partially ordered se (X,⪯), we deduce

that
(yσ(1), yσ(2), . . . , yσ(p)) and (uσ(1), uσ(2), . . . , uσ(p)) are comparable.
In the view of these points and using (3.10.6), we hace for all t > 0,
V p (R (Y ) , R (Y ) , . . . , R (Y ) , R (Z) , ϕ (t))

= ∗pi=1V (F
(
yσi(1), yσi(2), . . . , yσi(p)

)
,

. . . F
(
yσi(1), yσi(2), . . . , yσi(p)

)
,

F
(
zσi(1), zσi(2), . . . , zσi(p)

)
, ϕ (t))

≥ ∗pi=1γ
(
∗pj=1V

(
gyσi(j), gyσi(j), . . . , gyσi(j), gzσi(j), t

))
≥ ∗pi=1γ

(
∗pj=1V (gyj , gyj , . . . , gyj , gzj , t)

)
≥ ∗pi=1γ (V

p (S (Y ) , S (Y ) , . . . , S (Y ) , S (Z) , t))

≥ V p (S (Y ) , S (Y ) , . . . , S (Y ) , S (Z) , t)

and
W p (R (Y ) , R (Y ) , . . . , R (Y ) , R (Z) , ϕ (t))

= ⋄pi=1W (F
(
yσi(1), yσi(2), . . . , yσi(p)

)
,

. . . F
(
yσi(1), yσi(2), . . . , yσi(p)

)
,

F
(
zσi(1), zσi(2), . . . , zσi(p)

)
, ϕ (t))

≤ ⋄pi=1γ
(
⋄pj=1W

(
gyσi(j), gyσi(j), . . . , gyσi(j), gzσi(j), t

))
≤ ⋄pi=1γ

(
⋄pj=1W (gyj , gyj , . . . , gyj , gzj , t)

)
≤ ⋄pi=1γ (W

p (S (Y ) , S (Y ) , . . . , S (Y ) , S (Z) , t))

≤ W p (S (Y ) , S (Y ) , . . . , S (Y ) , S (Z) , t) .

Hence, condition (3.10.3) of Theorem (3.10.)implies the condition (3.3.3) of Theorem
(3.3) with respect to (Xp, V p,W p, ∗, ⋄).

Let {Yr} ∈ Xp be a non-decreasing sequence such that Yr → Y as r → ∞ for some
Y ∈ Xp. Lemma (3.6) implies that yri → yi as r → ∞ for all i ∈ {1, 2, . . . , p}. Since
Yr⪯pYr+1 for all r ∈ N ∪ {0}, then {yri} is non-decreasing sequence when i ∈ A and
{yri} is non-increasing sequence when i ∈ B for all r ∈ N ∪ {0}. Condition (3.10.4)
of Theorem (3.10) implies that yri ⪯ yi when i ∈ A and yri ⪰ yi when i ∈ B for all
r ∈ N ∪{0}. So, we have Yr≼pY for all r ∈ N ∪{0}. Similarly, by assuming {Yr} ∈ Xp

as a non-increasing sequence, we get that Yr⪰pY for all r ∈ N ∪ {0}.
Hence all the conditions of Theorem (3.3) hold with respect to (Xp, V p,W p, ∗, ⋄).

Therefore, R and S have a coincidence point. Condition (3.10.6) implies that this coinci-
dence point is a ϕ−coincidence point of F and g.
Example 3.11 Let X = {0} ∪ [ 14 , 4]. Consider X has the following partial order :
x, y ∈ X,x ⪯ y ⇔ x = y or (x, y) = (0, 1). Consider the function,
F : Xp → X and g : X → X defined by,
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F (x1, x2, . . . , xp) =

{
0 if x1, . . . , xp ∈ {0} ∪ [ 14 , 2]
1 if otherwise.

and g(x) =


0 if x = 0
3
2 if 1

4 ≤ x < 3
2

4− x if 3
2 ≤ x < 11

4
5
4 if 11

4 ≤ x ≤ 4.

Let ϕ(t) = t
2 for all t > 0. Define V,W on Xp × (0,∞) by

V (x1, x2, . . . , xp, t) =
t

t+A(x1,x2,...,xp)

and W (x1, x2, . . . , xp, t) =
A(x1,x2,...,xp)

t+A(x1,x2,...,xp)

where A(x1, x2, . . . , xp) =
∑p

i=1

∑
i<j |xi − yj | for all x1, x2, x3, . . . , xp ∈ X and

t > 0. Let x∗y = min{x, y} and x⋄y = max{x, y} for all x, y ∈ X . Then (X,V,W, ∗, ⋄)
is complete GIFMS, also (Xp, V p,W p, ∗, ⋄) is complete GIFMS. Hence all the conditions
of Theorem 3.10 are satisfied, F and g have atleast one ϕ-coincidence point.

4. CONCLUSION

In this article, we proved some results on multidimensional coincidence point and fixed
point theorems for ϕ - compatible in partially ordered generalized intuitionistic fuzzy met-
ric spaces. We have presented some suitable examples that support our main results. There
is a scope for extending and generalizing various fixed point theorems in the setting of
neutrosophic metric space and bipolar metric space. Also, these results can be applied to a
non-linear integral equation to obtain the existence and uniqueness solution.
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