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DIRICHLET PROBLEM WITH ROUGH BOUNDARY VALUES

ALEXANDER G. RAMM

ABSTRACT. Let D be a connected bounded domain in Rn, n ≥ 2, S be its boundary,
which is closed and smooth. Consider the Dirichlet problem

∆u = 0 in D, u|S = f,

where f ∈ L1(S) or f ∈ H−ℓ, where H−ℓ is the dual space to the Sobolev space
Hℓ := Hℓ(S), ℓ ≥ 0 is arbitrary.

The aim of this paper is to prove that the above problem has a solution for an arbitrary
f ∈ L1(S) and this solution is unique and to prove similar result for rough (distributional)
boundary values. These results are new. The method of its proof, based on the potential
theory, is also new. Definition of the L1(S)-boundary value and a distributional boundary
value of a harmonic in D function is given. For f ∈ L1(S) the difficulty comes from
the fact that the product of an L1(S) function times the kernel of the potential on S is not
absolutely integrable.

We prove that an arbitrary f ∈ H−ℓ, ℓ > 0, can be the boundary value of a harmonic
function in D.

1. INTRODUCTION

LetD be a connected bounded domain in Rn, n ≥ 2, S be its boundary, which is closed,
connected and smooth.

The aim of this paper is to prove that an arbitrary f ∈ L1(S) can be the boundary value
of a harmonic in D function. The boundary function f ∈ L1(S) determines uniquely the
harmonic function in D.

Moreover, we prove that an arbitrary f ∈ H−ℓ can be the boundary value of a harmonic
function in D. The H−ℓ is the dual space to the Sobolev space Hℓ := Hℓ(S), ℓ ≥ 0 is
arbitrary. Therefore, the boundary value f of a harmonic function in D can be very rough,
a distribution in the sense that it belongs to H−ℓ, ℓ ≥ 0 is an arbitrary positive number.

The results of this work extends the earlier author’s result [9].
There is a large literature on the Dirichlet problem for the equation ∆u = 0 in D

going back to 1828, see references. There are three basic directions of research: non-
smooth domains, non-smooth coefficients and non-smooth boundary values. This paper
deals with smooth domains, simplest elliptic operator, the Laplacean, and the boundary
values in L1(S) or in H−ℓ, ℓ ≥ 0. In the published papers and books the boundary values
of harmonic functions were assumed to be smoother than L1(S). In [2] the boundary
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conditions in L1(S) are not considered at all. In [4] and in [5] the boundary values are
in Lp(S), p > 1. We deal with smooth domains. In this case the integral equation of the
potential theory is of Fredholm type in L1(S) and the corresponding integral operator A
is compact in L1(S). However, the product of an L1(S) function and the kernel of the
operator of the double layer potential on S is not absolutely integrable. This brings the
question:

How does one define the integral of such a product?
We give a definition of such a product in the style of distribution theory, [7], [8]. This

opens a new direction in the theory of singular integral equations on the space L1(S) and
on the spaces H−ℓ, ℓ ≥ 0. The author plans to work on this topic in the future.

All the functions in this paper are real-valued. This is not a restriction, because the
Laplace equation has real-valued coefficients.

We first consider the case h ∈ L1(S) in Section 2. Our arguments in this work are
based on a limiting procedure. To our knowledge, in this paper the L1(S)-boundary values
of harmonic functions in D ⊂ Rn, n > 2, are considered for the first time. In Section 3
the same problem is studied using single layer potentials. In Section 4 of this paper we
consider h ∈ H−ℓ, ℓ ≥ 0.

2. DOUBLE LAYER POTENTIALS

The problem we study is a classical one:

∆u = 0 in D, u|S = f ∈ L1(S). (2.1)

This problem was studied in many papers and books for a long time for f ∈ Hµ(S),
the space of Hoelder-continuous functions [1], and for f ∈ Lp(S), p > 1, [4], [5]. The
notation Hℓ := Hℓ(S) will be used in Section 4 for the Sobolev spaces.

One of the methods to solve problem (2.1) is based on the potential theory. Let us look
for the solution in the form of the double-layer potential

u(x) =

∫
S

∂g(x, s)

∂N
h(s)ds, N := Ns. (2.2)

Here g = 1
(n−2)σnrn−2 , r := rxy = |x− y|, x, y ∈ Rn, A(t, s) := ∂g(t,s)

∂N , N = Ns is the
unit normal to S at the point s, N is directed out of D, h = h(s) is the unknown function.
We could assume S to be C1,a− smooth, a ∈ (0, 1], but this is not important for this work.

In our case the operator

Ah =

∫
S

A(t, s)h(s)ds (2.3)

is well defined as an operator in L1(S) and is compact in this space, see Lemma 1 below
and papers [3], [11] about the compactness test in L1(S). Our arguments are essentially
the same for n ≥ 2. Therefore, without loss of generality, we assume below that n = 3,
g(x, y) = 1

4π|x−y| , A(t, s) =
∂g(t,s)
∂N = O( 1

|t−s| ) for smooth S, see [10], Chapter 11.
If one looks for the solution to equation (2.1) of the form (2.2) and f ∈ C1(S), then the

integral equation for h is:

Bh := −h(t)
2

+

∫
S

A(t, s)h(s)ds = f a.e. (2.4)

where a.e. is almost everywhere with respect to the Lebesgue measure on S. Equation
(2.4) holds everywhere with respect to the Lebesgue measure on S if f ∈ Hµ(S). See, for
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example, [6], [10], where the derivation of equation (2.4) under the assumption f ∈ Hµ(S)
is given.

It is well known that the set C1(S) is dense in L1(S) in the norm of L1(S). Equation
(2.4) holds almost everywhere with respect to the Lebesgue’s measure on S if f ∈ L1(S).

Let us recall the compactness criterion for sets in L1(S):
Proposition 1. For a bounded set M ⊂ L1(S) to be compact in L1(S), it is necessary

and sufficient that for an arbitrary small ϵ > 0 there exists a δ > 0 such that if |σ| ≤ δ
then for any h ∈M one has ∥h(s+ σ)− h(s)∥ < ϵ, where s+ σ ∈ S.

Here and below the norm is the L1(S) norm, ∥h∥ =
∫
S
|h(s)|ds.

Proofs of Proposition 1 can be found in [3], [11].
Lemma 1. The operator A is compact in L1(S). The null-space of the operator B =

− I
2 +A is trivial. Here I is the identity operator.
Proof. Let us prove that A is bounded in L1(S). One has

∥Af∥ =

∫
S

dt
∣∣∣ ∫

S

A(t, s)f(s)ds
∣∣∣ ≤ ∫

S

|f(s)|ds sup
s∈S

∫
S

c

|t− s|
dt ≤ c∥f∥. (2.5)

By c we denote various constants independent of s, t.
Since S is assumed smooth, estimate | ∂g∂N | ≤ c

|t−s| holds for s, t ∈ S, and the estimate

sup
s∈S

∫
S

dt

|t− s|
≤ c. (2.6)

is proved easily since the dimension of the boundary S is greater than the order of the
singularity of the function we integrate. This implies estimate (2.5). So, A is bounded in
L1(S).

Let us prove that A is compact in L1(S).
Denote (Af)(t) := p(t). By Proposition 1, it is sufficient to check that

∥p(t+ q)− p(t)∥ ≤ ϵ, if ∥q∥ ≤ δ,

and δ > 0 is sufficiently small.
This can be checked using the following estimate:

∥p(t+ q)− p(t)∥ ≤ sup
s∈S

∫
S

∣∣∣∂[g(t+ q, s)− g(t, s)]

∂N

∣∣∣dt∥f∥ := J∥f∥,

where J , as we prove below, is arbitrarily small provided that δ is sufficiently small.
Since the set M := {f} is bounded, we have ∥f∥ ≤ c.
Let S = S1 ∪ S2, where S1 := {|t − s| > ϵ}, S2 = S \ S1. Then J ≤ J1 + J2 + J3,

where

J1 = sup
s∈S

∫
S1

∣∣∣∂[g(t+ q, s)− g(t, s)]

∂N

∣∣∣dt, J2 = sup
s∈S

∫
S2

∣∣∣∂g(t+ q, s)

∂N

∣∣∣dt, J3 = sup
s∈S

∫
S2

∣∣∣∂g(t, s)
∂N

∣∣∣dt.
Choose an arbitrary small η > 0. If ϵ is sufficiently small, then J2 < η and J3 < η. For
a fixed ϵ > 0, one can choose sufficiently small δ > 0 such that J1 < η. This is possible
because J1 is continuous with respect to q. Therefore, J < 3η. Since η > 0 is an arbitrary
small number, A is compact by Proposition 1. Therefore, the operator B is Fredholm.

Let us prove that its null-space is trivial.
If this is done, then, by the Fredholm alternative, the operator B−1 exists, is bounded

and is defined on all of L1(S). It maps L1(S) onto L1(S).
If f ∈ L1(S) and Bf = 0, that is, Af = f

2 , then it follows from the equation Af = f
2

that f is smoother than L1(S), because the operator A is improving smoothness. For this
reason we had assumed that S is smooth.
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If f is continuous and Bf = 0, then u(x) = 0 in D by the maximum principle, so
f = 0. Thus, the null-space of B is trivial. Therefore, the Fredholm-type operator B is
boundedly invertible. Lemma 1 is proved. 2

Let f ∈ L1(S), fn ∈ Hµ(S) and limn→∞ ∥fn−f∥ = 0. Then limn→∞ ∥hn−h∥ = 0,
where Bhn = fn, Bh = f . The solution u of problem (2.1) is given by formula (2.2),
where h = B−1f . Therefore, if un solves problem (2.1) with fn in place of f , then

∥un − u∥L1(D) → 0 as n→ ∞. (2.7)

Let us prove relation (2.7). One has

∥un − u∥L1(D) ≤ ∥hn − h∥ sup
s∈S

∫
D

|∂g(x, s)
∂N

|dx ≤ c∥hn − h∥ → 0, n→ ∞, (2.8)

where the integral is a bounded function of s since the dimension of the domain of integra-
tion is greater than the order of singularity of the function we integrate, see [10], Chapter
11.

Let us formulate our results.
Theorem 1. Problem (2.1) with f ∈ L1(S) has a solution u ∈ C∞(D) ∩ L1(D̄).

This solution is unique. It can be obtained as u(x) = limn→∞ un(x), un(x) is given by
formula (2.2) with hn = B−1fn in place of h and fn ∈ Hµ(S), limn→∞ ∥fn − f∥ = 0
is an arbitrary sequence of functions belonging to Hµ(S) and converging in L1(S) to f .

3. SINGLE LAYER POTENTIALS

Let us look for the solution to problem (2.1) of the form u(x) = Qxϕ :=
∫
S
g(x, s)ϕ(s)ds.

The boundary value of u as x→ t ∈ S for smooth ϕ is Qϕ :=
∫
S
g(t, s)ϕ(s)ds. The oper-

ator Q : Hℓ → Hℓ+1 is an isomorhism, see [10], p.163. Therefore, equation Qϕ = f
is uniquely solvable in Hℓ−1, ϕ ∈ Hℓ−1, for any f ∈ Hℓ. We have ϕ = Q−1f ,
u = QxQ

−1f .
The case when f is rough, when it belongs to H−ℓ, ℓ > 0, is treated in Section 4.

4. ROUGH BOUNDARY VALUES

In this section the technique we develop differs from the one in Section 1. If f ∈
H−ℓ := H−ℓ(S), ℓ > 0, S ∈ C∞, we first should define the meaning of the boundary
condition (2.1) for f ∈ H−ℓ. We look for u of the form

u(x) =

∫
S

g(x, s)ϕ(s)ds := Qxϕ, (4.1)

where the integral is understood as a distribution ϕ ∈ H−ℓ acting on a infinitely smooth
function g(x, s), x ̸∈ S. Let t ∈ S and x = t + δNt, where Nt is the unit normal to
S, pointing into D, at the point t. The direction of N is chosen here so that the point
t+ δNt ∈ D. If δ → 0, then the boundary values are the interior boundary values.

We define the boundary value of u as

lim
δ→0

((ϕ, g(t+ δNt, s)), ψ) = lim
δ→0

(ϕ,

∫
S

g(t+ δNt, s)ψ(t)dt) = (ϕ,Qψ), (4.2)

where ψ ∈ Hℓ is arbitrary, (ϕ, f) is the value of ϕ on the test function f ,

Qψ :=

∫
S

g(t, s)ψ(t)dt, (4.3)

and (limδ→0(ϕ, g(t+δNt, s)), ψ) := (Qϕ,ψ) is the value of the distributionQϕ ∈ H−ℓ+1

on an element ψ ∈ Hℓ−1, ℓ ≥ 0. The operator Q is an isomorphism of Hℓ onto Hℓ+1,
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see [10], p. 163, for any ℓ ∈ (−∞,∞) if S is smooth, S ∈ C∞. We define the boundary
value Qϕ by the relation (4.2), that is,

(Qϕ,ψ) = (ϕ,Qψ), (4.4)

where the expressions (Qϕ,ψ) and (ϕ,Qψ) denote, respectively, the values of the distri-
bution Qϕ ∈ H−ℓ+1 on the element ψ ∈ Hℓ−1 and the values of the distribution ϕ ∈ H−ℓ

on the element Qψ ∈ H−ℓ+1, ℓ ≥ 0.
The problem (2.1) can be written as an equation for ϕ:

(ϕ,Qψ) = (f, ψ), ∀ψ ∈ Hℓ, ℓ > 0, (4.5)

where f ∈ H−ℓ is given, ℓ ≥ 0. The set Hℓ+1 is dense in the set Hℓ.
Lemma 2. In equation (4.5) the ϕ is uniquely defined by f .
Proof. Suppose the contrary: ϕ1 and ϕ2 satisfy equation (4.5), and let ϕ := ϕ1 − ϕ2.

Then
(ϕ,Qψ) = 0 ∀ψ ∈ Hℓ. (4.6)

When ψ runs through all of Hℓ, then Qψ runs through all of Hℓ+1. Since Hℓ+1 is dense
in Hℓ, equation (4.6) implies ϕ = 0. Consequently, ϕ1 = ϕ2.
Lemma 2 is proved. 2

Since Q is an isomorphism of Hℓ onto Hℓ+1, it follows that the unique solution ϕ to
equation (4.5) exists for every f ∈ H−ℓ, and f = Qϕ. If f ∈ H−ℓ, then ϕ = Q−1f ∈
H−ℓ−1. Equation (4.5) can be writen as

(ϕ,Qψ) = (f,Q−1Qψ) = (Q−1f,Qψ) ∀ψ ∈ Hℓ. (4.7)

Recall that (Qϕ,ψ) = (ϕ,Qψ), because (ϕ, ψ) =
∫
S
ϕψds (and is not

∫
S
ϕψds).

When ψ runs through all of Hℓ−1, the Qψ runs through all of Hℓ, ℓ ≥ 0. This and
equation (4.7) imply

ϕ = Q−1f. (4.8)
We have proved the following theorem.
Theorem 2. For any f ∈ H−ℓ, ℓ ≥ 0, there exists a unique ϕ ∈ H−ℓ−1 such that

u = Qxϕ =
∫
S
g(x, s)ϕ(s)ds solves problem (2.1) and ϕ = Q−1f.

Remark 1. One can prove that QH−ℓ = H−ℓ+1, ℓ ≥ 0, using the fact that QHℓ =
Hℓ+1. The dual space for Hℓ+1 is (Hℓ+1)′ = H−ℓ−1, and (QHℓ)′ = (Hℓ+1)′ =
Q−1H−ℓ. Therefore, Q−1H−ℓ = H−ℓ−1. So, H−ℓ = QH−ℓ−1. This is equivalent
to QH−ℓ = H−ℓ+1, ℓ ≥ 0.

5. DIFFERENTIAL EQUATIONS WITH RIGHT-HAND SIDES

In this Section we outline the idea for treating the problem:

∆u = −f, u|S = h. (5.1)

Here f, h are known, f ∈ L2(D), u is unknown. We look for u of the form

u = Gxf +Qxϕ, (5.2)

where Gxf :=
∫
D
g(x, y)f(y)dy and Qxϕ was defined in Section 3.

When x→ t ∈ S, one gets:

h(t)−Gtf = Qϕ, (5.3)

and ϕ is found by the formula analogous to (4.8):

ϕ = Q−1(h(t)−Gtf). (5.4)
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The existence and continuity properties of Q−1 we have discussed in Remark 1 and Theo-
rem 2.

6. CONCLUSION

The history of the Dirichlet problem goes back to 1828. The results in this paper are
new. Theorem 1 yields existence and uniqueness of the solution to the Dirichlet problem
with the boundary values in L1(S). It also gives a method for calculating of the solution
to the Dirichlet problem with f ∈ L1(S) as a limit of the solutions to this problem with
fn ∈ Hµ(S). It is assumed that S is a smooth connected boundary of a bounded domain
D ⊂ Rn, n ≥ 2.

Theorem 2 yields existence and uniqueness of the solution to problem (2.1) for any
f ∈ H−ℓ, ℓ ≥ 0 and the representation of the solution as a potential u =

∫
S
g(x, s)ϕ(s)ds,

ϕ ∈ H−ℓ+1, ℓ ≥ 0, ϕ = Q−1f , where Q is an isomorphism of Hℓ onto Hℓ+1 defined by
formula (4.3).

Disclosure statement. There are no competing interests to declare. There is no financial
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