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ALMOST BI-IDEALS AND FUZZY ALMOST BI-IDEALS OF TERNARY
SEMIGROUPS

VANITA R. DADDI

ABSTRACT. In this paper, we present the concepts of almost bi-ideals and fuzzy almost
bi-ideals in ternary semigroups. The aim is to study their characterizations and establish
the relation between different types of ideals in a ternary semigroup with various examples.

1. INTRODUCTION

Like any algebra theory, ideals play a significant role in the theory of ternary semi-
groups. F.M.Sioson [2] developed the theory of ideals in a ternary semigroup. General-
izing the notion of bi-ideals introduced by R. A. Good and D. R. Hughes [6], a detailed
study of quasi-ideals and bi-ideals in a ternary semigroup is carried out by V.N. Dixit and
S. Diwan [9,10]. The concept of a fuzzy set was introduced by L. A. Zadeh [4]. Fuzzy
algebraic structures have been developed in many fields. S. Kar and P. Sarkar [7] applied
the concepts of L. A. Zadeh to define fuzzy ideals of Ternary Semigroups.
The notion of almost ideals of semigroups was introduced and studied by O. Grosek and
L.Satko [5] in 1980. Also studied the notions of minimal almost-ideals, maximal almost-
ideals. Almost ideals and fuzzy almost ideals of ternary semigroups were studied by S.
Suebsung, K. Wattanatripop, R. Chinram [8]. Moreover, they introduced the notion of
minimal fuzzy almost ideals of ternary semigroups and studied properties of them. Subse-
quently, K. Wattanatripop, R. Chinramb, T. Changphas [3] introduced the notion of almost
bi-ideals and fuzzy almost bi-ideals in semigroup. Recently, many researchers extended
the idea of almost ideals to n-ary semigroups.
In this paper, an attempt is made to define the notions of almost bi-ideal and fuzzy almost
bi-ideal of ternary semigroups. The main purpose is to study their characterizations and
establish the relation between ideals, bi-ideals, quasi-ideals, almost ideals, almost bi-ideals
and fuzzy ideals, fuzzy bi-ideals, fuzzy quasi-ideals, fuzzy almost ideals, fuzzy almost
bi-ideals in a ternary Semigroup.
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2. PRELIMINARIES

In this section, we recall some definitions and results which will be used throughout this
paper.

Definition 2.1. A non-empty set T together with a ternary operation [ ] defined on T is
called a ternary semigroup if [ ] satisfies the associative law. i.e.
[x1x2x3x4x5] = [[x1x2x3]x4x5] = [x1[x2x3x4]x5] = [x1x2[x3x4x5]] for all xi ∈ T ,
1 ≤ i ≤ 5

For non-empty subsets A,B and C of T , Define
[ABC] = {[abc] : a ∈ A, b ∈ B, c ∈ C}.
We write [{a}BC] = [aBC], [A{b}C] = [AbC], [AB{c}] = [ABc] and [AAA] = A3.
Due to associative law in T , for non-empty subsets A,B,C,D,E of T . we get [ABCDE] =
[[ABC]DE] = [A[BCD]E] = [AB[CDE]]

Throughout this paper, T stands for a ternary semigroup with respect to ternary opera-
tion [ ] unless otherwise stated.

Definition 2.2. 1) A non-empty subset S of T is a ternary sub-semigroup of T , if S3 ⊆ S.
2) A left (right, lateral) ideal of T is a non-empty subset L(R,M) of T such that [TTL] ⊆
L ([RTT ] ⊆ R, [TMT ] ⊆ M ).
3) A non-empty subset I of T is a two-sided ideal of T , if it is a left and a right ideal of T .
4) A non-empty subset I of T is an ideal of T , if it is a left, a right and a lateral ideal of T .
5) An ideal I of T is proper, if I ̸= T .

Definition 2.3. A non-empty subset Q of T is a quasi-ideal of T , if
1) [QTT ] ∩ [TQT ] ∩ [TTQ] ⊆ Q and
2) [QTT ] ∩ [TTQTT ] ∩ [TTQ] ⊆ Q.

Definition 2.4. A ternary sub-semigroup B of T is a bi-ideal of T , if [BTBTB] ⊆ B.

Definition 2.5. 1) A non-empty subset L of T is an almost left ideal of T , if [ttL]∩L ̸= ∅,
for all t ∈ T .
2) A non-empty subset M of T is an almost lateral ideal of T , if [tMt] ∩M ̸= ∅, for all
t ∈ T .
3) A non-empty subset R of T is an almost right ideal of T , if [Rtt]∩R ̸= ∅, for all t ∈ T .
4) A non-empty subset I of T is an almost ideal of T , if it is an almost left, right and lateral
ideal of T .

Theorem 2.1. 1) Let L be an almost left ideal of T . If A is a subset of T such that L ⊆ A,
then A is an almost left ideal of T .
2) Let R be an almost right ideal of T . If A is a subset of T such that R ⊆ A, then A is an
almost right ideal of T .
3) Let M be an almost lateral ideal of T . If A is a subset of T such that M ⊆ A, then A is
an almost lateral ideal of T .
4) Let I be an almost ideal of T . If A is a subset of T such that I ⊆ A, then A is an almost
ideal of T .

Corollary 2.2. 1) If L1 and L2 are almost left ideals of T , then L1 ∪ L2 is an almost left
ideal of T .
2) If R1 and R2 are almost right ideals of T , then R1 ∪R2 is an almost right ideal of T .
3) If M1 and M2 are almost lateral ideals of T , then M1 ∪M2 is an almost lateral ideal
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of T .
4) If I1 and I2 are almost ideals of T , then I1 ∪ I2 is an almost ideal of T .

Definition 2.6. A non-empty subset Q of T is an almost quasi-ideal of T , if
[Qtt] ∩ ([tQt] ∪ [ttQtt]) ∩ [ttQ] ∩Q ̸= ∅, for all t ∈ T .

Definition 2.7. A fuzzy subset of T is a function f : T → [0, 1]

Definition 2.8. Let f and g be two fuzzy subsets of T . Then the union and the intersection
of f and g, denoted by f ∪ g and f ∩ g are fuzzy subsets of T , defined as
(f ∪ g)(x) = max{f(x), g(x)},
(f ∩ g)(x) = min{f(x), g(x)} and
f ⊆ g, if f(x) ≤ g(x) for any x ∈ T.

Definition 2.9. Let f, g and h be fuzzy subsets of T . The product of f, g, h is denoted by
f ◦ g ◦ h, is defined as, for any x ∈ T

[f ◦ g ◦ h](x) =


∨

x=[pqr]

{f(p) ∧ g(q) ∧ h(r)}, x = [pqr], p, q, r ∈ T

0, otherwise

Definition 2.10. Let f be a fuzzy subset of T , the support of f is defined by
suppf = {x ∈ T : f(x) ̸= 0}.

Definition 2.11. 1) Let A be a non-empty subset of T , the characteristic mapping of A is
a fuzzy subset of T is defined by

CA(x) =

{
1, x ∈ A

0, x /∈ A

2) Let t ∈ T , the characteristic mapping of {t} is a fuzzy subset of T is denoted by
C{t} = Ct and is defined by

Ct(x) =

{
1, x = t

0, x /∈ t

3) Let t ∈ T and α ∈ (0, 1], the fuzzy point tα of T is a fuzzy subset of T and is defined
by

tα(x) =

{
α, x = t

0, otherwise

Proposition 2.3. Let A,B,D be three non-empty subset of T . Then
(i) CA ∩ CB ∩ CD = CA∩B∩D

(ii) CA ◦ CB ◦ CD = CABD

Definition 2.12. Let f be a fuzzy subset of T , then for all x, y, z ∈ T
1) f is fuzzy left ideal of T if f([xyz]) ≥ f(z)
2) f is fuzzy right ideal of T if f([xyz]) ≥ f(x)
3) f is fuzzy lateral ideal of T if f([xyz]) ≥ f(y)
4) f is fuzzy ideal of T if it is fuzzy left ideal, fuzzy right ideal and fuzzy lateral ideal of T

Definition 2.13. A fuzzy ternary subsemigroup f of a ternary semigroup T is called a
fuzzy bi-ideal of T if f([uvwxy]) ≥ f(u) ∧ f(w) ∧ f(y) for all u, v, w, x, y ∈ T .

Theorem 2.4. Let f be a fuzzy subset of T , then
1) f is a fuzzy subsemigroup of T if and only if f ◦ f ◦ f ⊆ f ,
2) f is a fuzzy left ideal of T if and only if T ◦ T ◦ f ⊆ f ,
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3)f is a fuzzy right ideal of T if and only if f ◦ T ◦ T ⊆ f ,
4) f is a fuzzy lateral ideal of T if and only if T ◦ f ◦ T ⊆ f ,
5) f is a fuzzy ideal of T if and only if T ◦ T ◦ f ⊆ f , f ◦ T ◦ T ⊆ f and T ◦ f ◦ T ⊆ f ,
6) f is a fuzzy bi-ideal of T if and only if f ◦ T ◦ f ◦ T ◦ f ⊆ f

3. ALMOST BI-IDEALS IN TERNARY SEMIGROUP

In this section, we introduce the notion of almost bi-ideal in ternary semigroup and
study some of their properties.

Definition 3.1. A non-empty subset B of T is called an almost bi-ideal of T , if [BtBtB]∩
B ̸= ∅, for all t ∈ T .

Proposition 3.1. Every bi-ideal of T is an almost bi-ideal of T .

Proof. Let B be a bi-ideal of T . Then [BtBtB] ̸= ∅ and
[BtBtB] ⊆ [BTBTB] ⊆ B for all t ∈ T .
Hence [BtBtB] ∩ B = [BtBtB] ̸= ∅, for all t ∈ T .Therefore B is an almost bi-ideal of
T . □

Remark. As every bi-ideal of T is an almost bi-ideal of T . But every almost bi-ideal of
T need not be bi-ideal of T . We establish this in the following example.

Example 3.1. Consider a ternary semigroup T = {e, a, b, c} with respect to the ternary
operation [ ], where [ ] is defined by [xyz] = ((xy)z) = (x(yz)) for all x, y, z ∈ T , and (
) is defined by the table:

( ) e a b c
e e a b c
a a b c e
b b c e a
c c e a b

Let B = {a, b, c} be a subset of T .
For t = e, we have [BtBtB] ∩B = {e, a, b, c} ∩B = B ̸= ∅,
For t = a, we have [BtBtB] ∩B = {e, a, b, c} ∩B = B ̸= ∅,
For t = b, we have [BtBtB] ∩B = {e, a, b, c} ∩B = B ̸= ∅,
For t = c, we have [BtBtB] ∩B = {e, a, b, c} ∩B = B ̸= ∅,
Hence for each t ∈ T , we have [BtBtB]∩B ̸= ∅. Therefore B is an almost bi-ideal of T .
As [BtBtB] ⊈ B , it follows that B is not a bi-ideal of T .

Remark. As every quasi-ideal of T is a bi-ideal of T and every bi-ideal of T is an almost
bi-ideal of T . Hence every quasi-ideal of T is an almost bi-ideal of T . But every almost
bi-ideal of T need not be quasi-ideal of T (Example 3.1).

Theorem 3.2. If B is an almost bi-ideal of T and M is a subset of T and suct that B ⊆
M ⊆ T , then M is an almost bi-ideal of T .

Proof. Let B be an almost bi-ideal of T and M ibe a subset of T and suct that B ⊆ M ⊆
T . Then ∅ ≠ [BtBtB] ∩B ⊆ [MtMtM ] ∩M , for all t ∈ T .
Thus M is an almost bi-ideal of T . □

Theorem 3.3. The Union of any two almost bi-ideals of T is an almost bi-ideal of T .
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Proof. Let A and B be two almost bi-ideals of T .
Then [AtAtA] ∩A ̸= ∅ and [BtBtB] ∩B ̸= ∅ , for all t ∈ T .
Therefore ∅ ≠ [BtBtB] ∩B ⊆ [(A ∪B)t(A ∪B)t(A ∪B)] ∩ (A ∪B), for all t ∈ T .
Thus A ∪B is an almost bi-ideal of T . □

Corollary 3.4. Arbitrary Union of almost bi-ideals of T is an almost bi-ideal of T .

Remark. As Union of any two almost bi-ideals of T is an almost bi-ideal of T . But
intersection of two almost bi-ideals of T need not be an almost bi-ideal of T . We illustrate
this in the following example.

Example 3.2. Consider a ternary semigroup (Z5, [ ]) defined by [abc] = a+ (b+ c) =
(a + b) + c for all a, b, c ∈ Z5. We have B1 = {1̄, 3̄, 4̄} and B2 = {1̄, 2̄, 4̄} are almost
bi-ideals of Z5, but B = B1 ∩ B2 = {1̄, 4̄} is not an almost bi-ideal of Z5, because for
0̄ ∈ Z5 , [B + 0̄ +B + 0̄ +B] = {0̄, 2̄, 3̄} and [B + 0̄ +B + 0̄ +B] ∩B ̸= ∅.

Proposition 3.5. If B is a bi-ideal of T . Then [xBy] is an almost bi-ideal of T , for any
x, y ∈ T .

Proof. As B is an bi-ideal of T , then [xBy] is non-empty subset of T , for any x, y ∈ T .
Let t ∈ T , then we have [[xBy]t[xBy]t[xBy]] = [xB[ytx]B[ytx]By] = [x[Bt1Bt1B]y] ⊆
[xBy] where t1 = [ytx] ∈ T . This impiles that [[xBy]t[xBy]t[xBy]]∩ [xBy] = [xBy] ̸=
∅, for any t ∈ T . Thus [xBy] is an almost bi-ideal of T . □

Proposition 3.6. Let X and Y be non-empty subsets of T . Then B = [XTY ] is an almost
bi-ideal of T .

Proof. As X and Y are non-empty subsets of T , then B = [XTY ] is a non-empty subset
of T .
Let t ∈ T , then we have
[BtBtB] = [[XTY ]t[XTY ]t[XTY ]] = [X[TY t][XTY ][tXT ]Y ] ⊆ [X[TTT ][TTT ][TTT ]Y ] ⊆
[X[TTT ]Y ] ⊆ [XTY ] = B. Thus [BtBtB] ∩ B = B ̸= ∅, for any t ∈ T . Therefore
B = [XTY ] is an almost bi-ideal of T . □

Proposition 3.7. T has a proper almost bi-ideal if and only if there exists an element
a ∈ T such that [(T − {a})x(T − {a})x(T − {a})] ∩ (T − {a}) ̸= ∅, for every x ∈ T .

Proof. Assume that B is a proper almost bi-ideal of T . Let a /∈ B, then B ⊂ (T − {a})
and T −{a} is a proper almost bi-ideal of T . Hence [(T −{a})x(T −{a})x(T −{a})]∩
(T − {a}) ̸= ∅ , for every x ∈ T . Converse is obvious. □

Proposition 3.8. For any a ∈ T , T −{a} is not an almost bi-ideal of T if and only if there
exists an element x ∈ T such that [(T − {a})x(T − {a})x(T − {a})] = {a}.

Proof. Let a ∈ T . Assume that T − {a} is not an almost bi-ideal of T . Then there
exists an element x ∈ T such that [(T − {a})x(T − {a})x(T − {a})] = ∅. So we have
[(T − {a})x(T − {a})x(T − {a})] = {a}.
Conversely assume that there exists an element x ∈ T such that [(T−{a})x(T−{a})x(T−
{a})] = {a}. Then [(T −{a})x(T −{a})x(T −{a})] = ∅. Thus T −{a} is not an almost
bi-ideal of T . □
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4. FUZZY ALMOST BI-IDEALS IN TERNARY SEMIGROUP

In this section, we define the notion fuzzy almost bi-ideals in ternary semigroup and
establish the relation between almost bi-ideals, fuzzy bi-ideal and fuzzy almost bi-ideals
of ternary semigroups.

Definition 4.1. A non-zero fuzzy subset f of T is called a fuzzy almost bi-ideal of T , if
(f ◦ tα ◦ f ◦ tα ◦ f) ∩ f ̸= 0, for all t ∈ T , α ∈ (0, 1].

Example 4.1 Consider a ternary semigroup T = {e, a, b, c, d} with respect to the
ternary operation [ ], where [ ] is defined by [xyz] = ((xy)z) = (x(yz)) for all x, y, z ∈ T ,
and ( ) is defined by the table:

( ) e a b c d
e e a e e e
a e a e e e
b e a b e e
c e a e e c
d e a e e d

Let f : T → [0, 1] be defined by f(e) = 0, f(a) = 0.3, f(b) = 0, f(c) = 0.1, f(d) = 0.2.
Then we have f is a fuzzy almost bi-ideal of T .

Theorem 4.1. Every non-zero fuzzy bi-ideal of T is a fuzzy almost bi-ideal of T .

Proof. Let f be a non-zero fuzzy bi-ideal of T , then there exists an element a ∈ T such
that f(a) ̸= 0. Let x, t ∈ T and α ∈ (0, 1] such that x = [atata], then we have
(f ◦ tα ◦ f ◦ tα ◦ f)(x)
=

∨
x=[atata]=[puqvr]

{f(p)∧tα(u)∧f(q)∧tα(v)∧f(r)}, where x = [puqvr], p, q, r, u, v ∈

T

⩾ f(a) ∧ tα(t) ∧ f(a) ∧ tα(t) ∧ f(a)
⩾ f(a) ∧ α ̸= 0.
Thus (f ◦tα◦f ◦tα◦f)(x) ̸= 0, it follows that f(x) = f([atata]) ⩾ f(a)∧f(a)∧f(a) =
f(a) ̸= 0. Hence ((f ◦ tα ◦ f ◦ tα ◦ f) ∩ f)(x) = (f ◦ tα ◦ f ◦ tα ◦ f)(x) ∧ f(x) ̸= 0.
This implies that (f ◦ tα ◦ f ◦ tα ◦ f) ∩ f ̸= 0. Therefore f is a fuzzy almost bi-ideal of
T . □

Remark. As non-zero fuzzy bi-ideal of T is a fuzzy almost bi-ideal of T But every almost
bi-ideal of T need not be fuzzy bi-ideal of T . From Example 3.3, we can see that f is a
fuzzy almost bi-ideal of T but it is not a fuzzy bi-ideal of T . Because for a, e, c, b, d ∈ T ,
we have
[aecbd] = e, f([aecbd]) = f(e) = 0 and f(a) ∩ f(c) ∩ f(d) = 0.3 ∧ 0.1 ∧ 0.2 = 0.1.
f([aecbd]) ≱ f(a) ∩ f(c) ∩ f(d).

Theorem 4.2. A non empty subset B of T is an almost bi-ideal of T if and only if CB is a
fuzzy almost bi-ideal of T .

Proof. Assume that a non empty subset B of T is an almost bi-ideal of T . Let t ∈ T
, α ∈ (0, 1]. Then [BtBtB] ∩ B ̸= ∅ and hence there exists x ∈ [BtBtB] ∩ B, so
CB(x) = 1 ̸= 0 and x = [b1tb2tb3], where b1, b2, b3 ∈ B.
(CB ◦ tα ◦ CB ◦ tα ◦ CB)(x)
=

∨
x=[b1tb2tb3]=[puqvr]

{CB(p) ∧ tα(u) ∧ CB(q) ∧ tα(v) ∧ CB(r)}
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⩾ CB(b1) ∧ tα(t) ∧ CB(b2) ∧ tα(t) ∧ CB(b3)
⩾ 1 ∧ α ∧ α ∧ 1
= α ̸= 0.
((CB◦tα◦CB◦tα◦CB)∩CB)(x) = (CB◦tα◦CB◦tα◦CB)(x)∧(CB)(x) = α∩1 = α ̸= 0,
for all t, x ∈ T . Therefore CB is a fuzzy almost bi-ideal of T .
Conversely assume that for a non empty subset B of T , CB is a fuzzy almost bi-ideal of
T . Let t ∈ T , then (CB ◦ tα ◦ CB ◦ tα ◦ CB) ∩ CB ̸= 0. Hence there exists x ∈ T such
that [(CB ◦ tα ◦ CB ◦ tα ◦ CB) ∩ CB ](x) ̸= 0. ((CB ◦ tα ◦ CB ◦ tα ◦ CB) ∩ CB)(x) =
((C[BtBtB]∩B)(x) ̸= 0. Therefore x ∈ [BtBtB]∩B. So [BtBtB]∩B ̸= ∅, for all t ∈ T .
Hence B is an almost bi-ideal of T . □

Theorem 4.3. If g is any non- zero fuzzy subset of T and f is a fuzzy almost bi-ideal of T
suct that f ⊆ g ⊆ T , then g is a fuzzy almost bi-ideal of T .

Proof. Let g be any non- zero fuzzy subset of a ternary semigroup T and let t ∈ T ,
α ∈ (0, 1]. Assume that f be a fuzzy almost bi-ideal of T suct that f ⊆ g ⊆ T . This
implies that (f ◦tα ◦f ◦tα ◦f)∩f ̸= 0 and (f ◦tα ◦f ◦tα ◦f)∩f ⊆ (g◦tα ◦g◦tα ◦g)∩g.
Then we have 0 ̸= (f◦tα◦f◦tα◦f)∩f ⊆ (g◦tα◦g◦tα◦g)∩g, so (g◦tα◦g◦tα◦g)∩g ̸= 0.
Hence g is a fuzzy almost bi-ideal of T .

□

Corollary 4.4. Let f and g be a fuzzy almost bi-ideal of a ternary semigroup T . Then
f ∪ g is a fuzzy almost bi-ideal of T .

Proof. Since f ⊆ f ∪ g, by Theorem 4.2, f ∪ g is a fuzzy almost bi-ideal of T . □

Remark. As Union of any two fuzzy almost bi-ideals of a ternary semigroup T is a fuzzy
almost bi-ideal of T . But intersection of two fuzzy almost bi-ideals of T need not be a fuzzy
almost bi-ideal of T . We establish this in the following example.

Example 4.2. Consider a ternary semigroup (Z5, [ ]) defined by [abc] = a+ (b+ c) =
(a + b) + c for all a, b, c ∈ Z5. Let f : Z5 → [0, 1] be defined by f(0) = 0, f(1) =
0.5, f(2) = 0, f(3) = 0.1, f(4) = 0.1 and g : Z5 → [0, 1] be defined by g(0) = 0, g(1) =
0.2, g(2) = 0.1, g(3) = 0g(4) = 0.2. We have f and g are fuzzy almost bi-ideals of Z5

but f ∩ g is not a fuzzy almost bi-ideal of Z5.

The relationships between different ideals in a ternary semigroup T is given below.

A is an Ideal

�
���

��

H
HHH

HH

A is a Quasi-ideal

A is a Bi-ideal

A is an Almost Bi-ideal

CA is Fuzzy ideal

CA is Fuzzy Quasi-ideal

CA is Fuzzy Bi-ideal

CA is Fuzzy Almost Bi-ideal
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5. CONCLUSIONS AND/OR DISCUSSIONS

In this paper, we introduced the notions almost bi-ideals and fuzzy almost bi-ideals
in ternary semigroups and studied their properties. We established the relation between
different types of ideals in a ternary semigroup with various examples. One can extend this
work by studying the other algebraic structures like ordered ternary semigroups, ternary
semirings, etc
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