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NON-HOMOGENEOUS QUINARY CUBIC EQUATION
(x3 − y3) = (z3 − w3) + 72t2

N. THIRUNIRAISELVI∗, SHARADHA KUMAR AND M.A. GOPALAN

ABSTRACT. This article is discussed for finding non-zero different solutions in integers
to the non-homogeneous cubic equation with five unknowns represented by (x3 − y3) =
(z3−w3)+72t2 . Various choices of integer solutions to the above equation are obtained
through employing linear transformations and simplification. Some special results based
on the solutions are also discussed.

1. INTRODUCTION

As equation of degree three are numerous and have wide area for research [1-3]. For the
collection of different problems , one may refer [4-23]. This problem aims in solving the
quinary cubic equation (x3−y3) = (z3−w3)+72t2 for various choices of integer solutions
through employing linear transformations and simplification. Some special results based
on the solutions are also discussed

2. METHOD OF ANALYSIS

Consider
(x3 − y3) = (z3 − w3) + 72t2 (2.1)

Taking
x = c+ 1, y = c− 1, z = a+ 1, w = a− 1, a, c ̸= 0 (2.2)

in (2.1) leads to
c2 = a2 + 12t2 (2.3)

Solving (2.3) through different ways for getting the values of a,c,t and using (2.2) ,one gets
different sets of integer solutions to (2.1) . The above process is illustrated below :

2.1. Way 1. (2.3) is satisfied by

t = 2pq, a = 12p2 − q2, c = 12p2 + q2 (2.4)
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In view of (2.2) , one obtains

x = 12p2 + q2 + 1, y = 12p2 + q2 − 1,

z = 12p2 − q2 + 1, w = 12p2 − q2 − 1
(2.5)

(2.5) and (2.4) satisfy (2.1).
Special Properties from the solution are illustrated below:

(1) Each expressions is a square multiple of 6
y+z, x+w, x2−y2+z2−w2, 3(x2−y2−z2+w2), 6(x+y)+3(z+w)+36t

(2) 12t2 = x2 − 2x − w2 − 2w = x2 − 2x − z2 + 2z = y2 + 2y − z2 + 2z =
y2 + 2y − w2 − 2w

(3) (x+ y)2 − (z + w)2 = 48t2

2.2. Way 2. Express (2.3)as the simultaneous equations as in Table I below:

TABLE 1. Simultaneous equations

choices I II III IV v

c+ a 2t2 3t2 4t 6t 12t

c− a 6 4 3t 2t t

Solving each choices above , we get c,a,t .
From (2.2) ,the integer solutions to (2.1) are correspondingly obtained . For brevity and
simplicity , the respective solutions are given below:
Choice I
x = k2 + 4, y = k2 + 2, z = k2 − 2, w = k2 − 4, t = k
Choice II
x = 6k2 + 3, y = 6k2 + 1, z = 6k2 − 1, w = 6k2 − 3, t = 2k
Choice III
x = 7k + 1, y = 7k − 1, z = k + 1, w = k − 1, t = 2k
Choice IV
x = 4k + 1, y = 4k − 1, z = 2k + 1, w = 2k − 1, t = k
Choice V
x = 13k + 1, y = 13k − 1, z = 11k + 1, w = 11k − 1, t = 2k

2.3. Way 3. Write (2.3) as
a2 + 12t2 = c2 ∗ 1 (2.6)

Assume
c = p2 + 12q2 (2.7)

1 on the R.H.S. of (2.6) can be written as

1 =
(2 + i

√
12)(2− i

√
12)

16
(2.8)

Putting the values of (2.7) and (2.8) in (2.6) and simplifying , consider

a+ i
√
12t =

(2 + i
√
12)(p+ i

√
12q)2

4
(2.9)
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Evaluating the real and imaginary parts in (2.9) and changing by p by 2P,q by 2Q the
corresponding integer values to a,c,t are given by

a = 2P 2 − 24Q2 − 24PQ, c = 4P 2 + 48Q2, t = P 2 − 12Q2 + 4PQ (2.10)

Considering (2.2), the corresponding integer solutions to (2.1) are given by

x = 4P 2 + 48Q2 + 1, y = 4P 2 + 48Q2 − 1

z = 2P 2 − 24Q2 − 24PQ+ 1, w = 2P 2 − 24Q2 − 24PQ− 1
(2.11)

Thus ,x,y,z,w,t values are given by (2.11) and (2.10) and they satisfy (2.1).
Some special fascinating relations from the solutions are presented :

(1)
(x+ y)± (z + w)

2± 2t
is written as difference of two squares.

(2) 6(x+ y) + 3(z + w) + 36t is a square multiple of 6
(3) 2(x+ y)− (z + w + 12t) represents area of pythagorean triangle.

Note 1
In addition to (2.8) , integer 1 in (2.6) may also be written as below

1 =
(1 + i2

√
12)(1− i2

√
12)

49

1 =
(r2 − 12s2 + i

√
12rs)(r2 − 12s2 − i

√
12rs)

(r2 + 12s2)2

Following the same procedure as above , another two distinct sets of integer solutions to
(2.1) are generated.

2.4. Way 4. Rewrite (2.3) as
c2 − 12t2 = a2 ∗ 1 (2.12)

Assume
a = p2 − 12q2 (2.13)

Consider integer 1 from (2.12) as

1 =
(4 +

√
12)(4−

√
12)

4
(2.14)

Following the same method as in Way 3 , the solutions to (2.12) are as follows

a = 4P 2 − 12q2, c = 8P 2 + 24q2 + 24Pq, t = 2P 2 + 6q2 + 8Pq (2.15)

From (2.2) , the respective integer solutions to (2.1) are as follows

x = 8P 2 + 24q2 + 24Pq + 1, y = 8P 2 + 24q2 + 24Pq − 1,

z = 4P 2 − 12q2 + 1, w = 4P 2 − 12q2 − 1
(2.16)

Thus , the values of x,yz,w,t given by (2.16) and (2.15) satisfy (2.1).
Note 2
Other than (2.14) ,the integer 1 on the right hand side (2.12) can be written as
1 = (7 + 2

√
12)(7− 2

√
12)

Following the above procedure , another set of different solution to (2.1) are found.

3. CONCLUSION

In this article different ways for finding distinct set of non-zero integer solutions are
found for the considered third degree equation with five unknowns (x3 − y3) = (z3 −
w3) + 72t2.Researchers may attempt to find more sets of non-zero different solutions to
the problem or may try to solve similar types of problem with multiple variables.
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