Annals of Communications in Mathematics

Volume 7, Number 2 (2024), 91-94 DOI: 10.62072/acm.2024.070201

ISSN: 2582-0818

© http://www.technoskypub.com

INVARIANT SMOOTH EXTENSIONS

RICARDO ESTRADA

ABSTRACT. We study continuous extension operators for smooth functions from $[0,\infty)$ to $\mathbb R$. If $\mathcal A$ is a topological vector space of smooth functions in $\mathbb R$, let us denote by $\mathcal A[0,\infty)$ the space of restrictions of functions of $\mathcal A$ to $[0,\infty)$. We show that when $\mathcal A$ is any of the standard test function spaces $\mathcal D$, $\mathcal S$, or $\mathcal K$ then there is a continuous linear operator E from $\mathcal A[0,\infty)$ to $\mathcal A$ that satisfies that $E\left(\varphi\right)\left(t\right)=\varphi\left(t\right)$ for $t\geq 0$ and that satisfies the invariant condition $E\left\{\phi\left(\lambda x\right);t\right\}=E\left\{\phi\left(x\right);\lambda t\right\}$, for $\lambda\geq 0$. However, we show that when $\mathcal A$ is $\mathcal E$, the space of all smooth functions, then such an operator E does not exist.

1. Introduction

An interesting and much studied problem in analysis is the possibility of extending a function defined on a closed set to the whole space. Of particular interest is the case when the extension is *smooth*. The case of the extension from a closed set in \mathbb{R}^n was studied in the 1930's by Whitney in his influential article [8] and several hundred papers have been written on the subject since then. For our purposes we would like to highlight the extension result for a half space given by Seeley in 1964 [7] that gives a *continuous* linear extension procedure from functions smooth in $[0, \infty) \times \mathbb{R}^n$ to smooth functions in the whole $\mathbb{R} \times \mathbb{R}^n$.

In this note we consider the following extension problem. Let \mathcal{A} be a topological vector space of smooth functions in \mathbb{R} ; \mathcal{A} can be any of the standard spaces of test functions, namely, \mathcal{D} , \mathcal{S} , \mathcal{E} , or \mathcal{K} . Let us denote by $\mathcal{A}[0,\infty)$ the space of restrictions of functions of \mathcal{A} to $[0,\infty)$. Is there a continuous linear operator E from $\mathcal{A}[0,\infty)$ to \mathcal{A} that satisfies that $E(\varphi)(t) = \varphi(t)$ for t > 0 and certain additional conditions?

Interestingly, imposing some very natural extra conditions implies that no such operator exists. For example, if φ is a test function in $(0,\infty)$ we can extend it to a function $\widetilde{\varphi}=E_n\left(\varphi\right)$ defined in $\mathbb R$ by putting $\widetilde{\varphi}\left(t\right)=0$ for t outside of the support of φ . The operator E_n is a continuous linear operator from $\mathcal D\left(0,\infty\right)$ to $\mathcal D\left(\mathbb R\right)$. We can extend E_n to a continuous linear operator from $C^k[0,\infty)$ to $C^k\left(\mathbb R\right)$ for $k<\infty$, but such extension does not exist for $\mathcal E=C^\infty$ or for $\mathcal D$. In fact the transpose of E_n is the restriction of distributions to the open set $(0,\infty)$, and the transpose of an extension of E_n would be a restriction to the closed set $[0,\infty)$, but continuous restrictions to closed sets do not exist [3].

92 R. ESTRADA

Therefore we consider a milder restriction on the extension operator, namely, we seek invariant operators, those that satisfy

$$E\{\phi(\lambda x);t\} = E\{\phi(x);\lambda t\}, \quad \lambda \ge 0. \tag{1.1}$$

We show that there are invariant continuous linear extension operators in the spaces \mathcal{D} , \mathcal{S} , or \mathcal{K} but no such operators exist for the space \mathcal{E} of all smooth functions in \mathbb{R} . We present our results in one variable, but corresponding results in a cylinder $\mathbb{R} \times M$, where M is a smooth manifold, follow immediately.

2. SMOOTH EXTENSIONS

Our notation for spaces of smooth functions and their duals is the standard [5]; the reader is referred to this for all the necessary facts about distributions.

We start with the following result.

Proposition 2.1. Let $f \in \mathcal{K}'(\mathbb{R})$ with supp $f \subset [0, \infty)$ and moments $\{\mu_n\}_{n=0}^{\infty}$. Define the operator $R = R_f$, on $\mathcal{K}[0, \infty)$ as

$$\Phi(t) = R\{\phi(x); t\} = \langle f(x), \phi(-xt) \rangle, \quad t \le 0.$$
(2.1)

Then

$$R: \mathcal{K}[0,\infty) \longrightarrow \mathcal{K}(-\infty,0],$$
 (2.2)

and in fact R is a continuous operator. Furthermore,

$$\Phi^{(q)}(0^{-}) = (-1)^{q} \mu_{q} \phi^{(q)}(0) , \qquad q \ge 0.$$
 (2.3)

Proof. We need to prove that $\Phi(t)$ is a smooth function in $(-\infty, 0]$. The fact that all derivatives exist when t < 0 is clear because differentiation of distributional evaluations is valid,

$$\Phi^{\left(q\right)}\left(t\right) = \left\langle f\left(x\right), \left(-x\right)^{q} \phi^{\left(q\right)}\left(-xt\right) \right\rangle \; , \; \; t < 0 \; . \tag{2.4}$$

On the other hand, the moment asymptotic expansion [5, Chp. 3] gives the strong development

$$\Phi^{(q)}(t) = \sum_{n=0}^{N} \frac{(-1)^{n+q} \mu_n \phi^{(n+q)}(0)}{n!} t^n + O\left(|t|^{N+1}\right) , \qquad (2.5)$$

as $t \to 0^-$. Therefore, $\Phi^{(q)}(0^-)$ exists for all q and (2.3) holds.

The fact that $\phi \in \mathcal{K}[0,\infty)$ and (2.4) give that Φ satisfies the same sort of bounds as $t \to -\infty$, and this yields that $\Phi \in \mathcal{K}(-\infty,0]$ and the continuity of the operator.

In particular if the moments of f satisfy

$$\mu_n = (-1)^n \,, \tag{2.6}$$

then the function Ψ given by

$$\Psi\left(t\right) = \begin{cases} \phi\left(t\right), & t \ge 0, \\ \Phi\left(t\right), & t \le 0, \end{cases}$$

$$(2.7)$$

provides a smooth extension of ϕ to the whole real line.

The existence of distributions $f \in \mathcal{K}'(\mathbb{R})$ with supp $f \subset [0,\infty)$ that satisfy (2.6) follows from the more general result [1, 2] that for *any* arbitrary sequence $\{\mu_n\}_{n=0}^{\infty}$ of complex numbers there exist smooth functions $\varphi \in \mathcal{S}(0,\infty)$ with

$$\int_{0}^{\infty} \varphi(t) t^{n} dt = \mu_{n} , \quad n \ge 0 .$$
 (2.8)

Of course, $S(0, \infty)$ is a subspace of $K'(\mathbb{R})$, so that existence in this latter space follows.

Proposition 2.2. Suppose $f \in \mathcal{K}'(\mathbb{R})$ with supp $f \subset [0, \infty)$ has moments $\mu_n = (-1)^n$. Then the operator E that sends ϕ to Ψ is a continuous extension operator from $\mathcal{K}[0, \infty)$ to $\mathcal{K}(\mathbb{R})$.

Proof. Follows at once from our analysis.

Notice also that both the operator R and E are *invariant* with respect to dilations, namely

$$R\{\phi(\lambda x);t\} = R\{\phi(x);\lambda t\}, \quad \lambda \ge 0,$$
(2.9)

$$E\{\phi(\lambda x);t\} = E\{\phi(x);\lambda t\}, \quad \lambda > 0.$$
 (2.10)

3. OTHER SPACES

If we choose f in an appropriate way then E will not only send $\mathcal{K}[0,\infty)$ to $\mathcal{K}(\mathbb{R})$ but it will also send $\mathcal{S}[0,\infty)$ to $\mathcal{S}(\mathbb{R})$ or maybe $\mathcal{D}[0,\infty)$ to $\mathcal{D}(\mathbb{R})$.

Proposition 3.1. Suppose $f \in \mathcal{K}'(\mathbb{R})$ with supp $f \subset [0,\infty)$ has moments $\mu_n = (-1)^n$. If all the distributional values $f^{(n)}(0)$ (dist) exist and vanish then the operator E sends $S[0,\infty)$ to $S(\mathbb{R})$.

Proof. If $\phi \in \mathcal{S}[0,\infty)$ then the asymptotic expansion

$$\left\langle f\left(x\right),\phi\left(-xt\right)\right\rangle =t^{-1}\left\langle f\left(t^{-1}x\right),\phi\left(t\right)\right\rangle =o\left(\left|t\right|^{-N}\right)\;,\quad\text{as }t\rightarrow\infty\;,\tag{3.1}$$

follows because $f^{(n)}(0) = 0$ for all n.

The existence of such $f \in \mathcal{K}'(\mathbb{R})$ with null distributional values for all derivatives at zero actually follows because the moment problem (2.8) has solutions in $\mathcal{S}(a,\infty)$ for any $a \in \mathbb{R}$. This is a stronger condition that yields the ensuing.

Proposition 3.2. Suppose $f \in \mathcal{K}'(\mathbb{R})$ has moments $\mu_n = (-1)^n$.If supp $f \subset [a, \infty)$ for some a > 0 then E sends $\mathcal{D}[0, \infty)$ to $\mathcal{D}(\mathbb{R})$.

Proof. In fact, if supp
$$\phi \subset [0, b]$$
 then $\langle f(x), \phi(-xt) \rangle = 0$ if $|t| > b/a$.

4. A CONVERSE

We also have a converse result.

Proposition 4.1. Let $E: \mathcal{K}[0,\infty) \longrightarrow \mathcal{K}(\mathbb{R})$ be a continuous extension operator that satisfies the invariance condition (2.9). Then there exists $f \in \mathcal{K}'(\mathbb{R})$ with supp $f \subset [0,\infty)$ and moments $\mu_n = (-1)^n$, such that (2.7) holds, where R is given by (2.1).

Proof. Indeed, let R be the restriction of E to $(-\infty, 0]$ and let

$$f(x) = R^{t} \{ \delta(t+1); -x \}. \tag{4.1}$$

so that $f \in \mathcal{K}'(\mathbb{R})$ with supp $f \subset [0, \infty)$ and moments $\mu_n = (-1)^n$. Also if $\lambda \geq 0$,

$$\begin{split} \left\langle f\left(x\right),\phi\left(-\lambda x\right)\right\rangle &=\left\langle R^{t}\left\{\delta\left(t+1\right);-x\right\},\phi\left(-\lambda x\right)\right\rangle \\ &=\left\langle\delta\left(t+1\right),R\left\{\phi\left(\lambda x\right);t\right\}\right\rangle \\ &=\left\langle\delta\left(t+1\right),R\left\{\phi\left(x\right);\lambda t\right\}\right\rangle \\ &=R\left\{\phi\left(x\right);\lambda\right\}\,, \end{split}$$

¹Distributional point values were introduced by Łojasiewicz [6]. See [5] for their properties.

94 R. ESTRADA

as required.

It is possible to find invariant extension operators for the spaces \mathcal{K} , \mathcal{S} , and \mathcal{D} . Is it possible to find them for all the typical spaces of test functions? From the Proposition 4.1 we immediately obtain the ensuing negative result.

Proposition 4.2. There are no extension operators from $\mathcal{E}[0,\infty)$ to $\mathcal{E}(\mathbb{R})$ that satisfy the invariance condition (2.9).

Proof. If such an operator exists then $f \in \mathcal{E}'[0,\infty)$ would have moments $\mu_n = (-1)^n$, and that is impossible because there is at most one solution of any moment problem in $\mathcal{E}'(\mathbb{R})$ [4] and the one with moments $(-1)^n$ is $\delta(x+1)$, whose support is $\{-1\}$.

The construction of [7] gives a continuous linear extension from $\mathcal{E}[0,\infty)$ to $\mathcal{E}(\mathbb{R})$, but that operator is not invariant with respect to dilations.

5. Conclusions

We have established the intrinsic connection between the existence of continuous invariant extension operators E from a space $\mathcal{A}[0,\infty)$ to $\mathcal{A}(\mathbb{R})$ and the existence of solutions of certain moment problems in the space $\mathcal{A}'[0,\infty)$. In particular, such operators exist for some standard spaces of test functions, namely \mathcal{D} , \mathcal{S} , and \mathcal{K} , but they do not exist for the space \mathcal{E} of all smooth functions in \mathbb{R} .

These results promise to have interesting consequences to study the extension problems for sectionally analytic functions and the solution of Wiener-Hopf integral equations in spaces of distributions, because such problems and the ones studied presently are related by the use of the holomorphic Fourier transform.

REFERENCES

- [1] A. J. Durán, The Stieltjes moments problem for rapidly decreasing functions, Proc. Amer. Math. Soc., 107, (1989), 731–741.
- [2] A. L. Durán and R. Estrada, Strong moment problems for rapidly decreasing smooth functions, Proc. Amer. Math.Soc., 120, (1994), 529-534.
- [3] R. Estrada, The non-existence of regularization operators, J. Math. Anal. Appls., 286, (2003), 1-10.
- [4] R. Estrada and R. P. Kanwal, Moment sequences for a certain class of distributions, Complex Variables, 9, (1987), 31-39.
- [5] R. Estrada and R. P. Kanwal, A Distributional Approach to Asymptotics. Theory and Applications, Second edition, Birkhäuser, Boston, 2002.
- [6] S. Łojasiewicz, Sur la valuer et la limite d'une distribution en un point, Studia Math., 16, (1957), 1–36.
- [7] R. T. Seeley, Extension of C^{∞} functions defined in a half space, Proc. Amer. Math. Soc., 15, (1964), 625–626.
- [8] Whitney, H., Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc., 36, (1934), 63–89.

RICARDO ESTRADA

DEPARTMENT OF MATHEMATICS, LOUISIANA STATE UNIVERSITY, BATON ROUGE, LA 70803, USA *Email address*: restrada@math.lsu.edu