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COMMON LIMIT RANGE PROPERTY IN NEUTROSOPHIC MENGER
SPACES

M. JEYARAMAN*, ANN. MANGAYARKKARASI AND V. JEYANTHI

ABSTRACT. The aim of this paper is to prove some common fixed-point theorems for
weakly compatible mappings in Neutrosophic Menger Spaces satisfying common limit
range property. Some examples are also given which demonstrate the validity of our re-
sults. As an application of our main result, we present a common fixed point theorems for
four finite families of self-mappings in Menger spaces.

1. INTRODUCTION

There have been a number of generalizations of metric spaces. One of such gener-
alization is a probabilistic metric space, briefly, PM-spaces, introduced in 1942 by Menger
[13]. In the PM-space, we do not know exactly the distance between two points, but we
know the probabilities of possible values of this distance. Many mathematicians proved
several common fixed point theorems for contraction mappings in Menger spaces by using
different notions viz. compatible mappings, weakly compatible mappings, property (E.A),
common property (E.A). Modifying the idea of Kramosil and Michalek [9], George and
Veeramani [5] introduced fuzzy metric spaces which are very similar to Menger spaces.

Recently, using the idea of intuitionistic fuzzy set, Atanassov as [1], which is a gener-
alization of a fuzzy set, Zadeh [19], Park [14] introduced the notion of intuitionistic fuzzy
metric spaces as a generalization of fuzzy metrics paces due to George and Veeramani [5].
Kutukcu et.al [10] introduced the notion of intuitionistic Menger spaces as a generalization
of Menger spaces. In 2011, Sintunavarat and Kumam introduced the concept of common
limit range (CLR) property. Very recently, Chauhan et. al [2] introduced the concept of
joint common limit range (JCLR) property. The importance of these properties is that we
don’t require the closedness of subspaces for the existence of fixed points.

In 1998, Smarandache [15-17] characterized the new concept called neutrosophic logic
and neutrosophic set and explored many results in it. In the idea of neutrosophic sets, there
is T degree of membership, I degree of indeterminacy and F degree of non-membership. In
2019, Kirisci et al [8] defined neutrosophic metric space as a generalization of intuitionistic
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fuzzy metric space and brings about fixed point theorems in complete neutrosophic metric
space. Sowndrarajan, Jeyaraman and Florentin Smarandache [18] proved some fixed point
results for contraction theorems in neutrosophic metric spaces. Jeyaraman and Florentin
Smarandache et. al [7] prove common fixed point theorems for four sub compatible maps
of type (J-1) in weak non-Archimedean neutrosophic metric space.

The purpose of this paper is to prove some common fixed-point theorems for weakly
compatible mappings in neutrosophic menger spaces satisfying CLR property. Some ex-
amples are also given which demonstrate the validity of our results.

2. PRELIMINARIES

Definition 2.1. [9] A binary operation * : [0,1] x [0,1] — [0,1] is a continuous t-norm
[CTN] if it satisfies the following conditions :
(1) = is commutative and associative,
(ii) * is continuous,
(ili) 1 *1 =& foralle; € [0,1],
(iv) e1 % €3 < &3 * €4 Whenever &1 < 3 and g5 < g4, foreach 1, e9,e3,24 € [0,1].

Definition 2.2. [9] A binary operation < : [0,1] x [0, 1] — [0, 1] is a continuous t-conorm
[CTC] if it satisfies the following conditions :
(i) < is commutative and associative,
(i) < is continuous,
(iii) £100 = ¢ forall e; € [0, 1],
(iv) 10eg < e30¢ey wheneverey < ez andes < g4, foreachey, e9,e3andey € [0, 1].

Definition 2.3. [4]

(i) A distance distribution function is a function F' : R — R which is left continuous
on R, non-decreasing and inficg F'(t) = 0,sup,cp F'(t) = 1. We will denote by
D the family of all distance distribution functions and by H a special element of
D defined by

0, if t<0
Hw_{l,ﬁt>0
If X is an non-empty set, F': X x X — D is called a probabilistic distance on X
and F'(z,y) is usually denoted by Fy,,.

(ii) A non-distance distribution function is a function L : R — R™ which is right
continuous on R, non-increasing and inf;cgp L(t) = 1,sup,cp L(t) = 0. We
will denote by E the family of all non-distance distribution functions and by G a
special element of F defined by

1, if t<0
G(t)_{ 0, if t>0
If X is anon-empty set, L : X x X — FE is called a probabilistic non distance on
X and L(x, y) is usually denoted by L.
(iii) A non-distance distribution function is a function P : R — R™ which is right
continuous on R, non-increasing and inf;cr P(t) = 1,sup,cp P(t) = 0. We
will denote by U the family of all non-distance distribution functions and by R a
special element of U defined by

1, if t<0
MD{Q if >0
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If X is anon-empty set, P : X x X — U is called a probabilistic non distance on
X and P(z,y) is usually denoted by P,,.

Definition 2.4. A 4-tuple (X, F, L, P) is said to be an neutrosophic probabilistic metric
space if X is an arbitrary set, F' is a probabilistic distance and L and P are probabilistic
non-distance on X satisfying the following conditions; for all z,y,z € X and ¢, s > 0.
(i) Fry(t) + Lay(t) + Ppy(t) < 3,
(ii) Fyy(0) =0,
(iil) Fyy(t) =1if and only if x = y,

(V) If Fpy(t) = 1and Fyy.(s) = 1, then F,(t +s) =1,
(Vi) Lay(0) = 1,

(vii) Ly (t) = 0if and only if z = y,

(Vi) Ly (1) = Lya(t),
(ix) If Loy (t) = 0 and L, (s) = 0, then L. (t + s) = 0.
(x) Pyy(0) =1,
(xi) Ppy(t) =0if and only if z =y,

(xii) Pyy(t) = Pyo(t).

(xiii) If P,y (t) = 0and P,.(s) =0, then P,,(t +s) = 0.

Definition 2.5. A 6-tuple (X, F, L, P, x, <) is said to be an Neutrosophic Menger Space
(shortly NMS) if (X, F, L, P) is an neutrosophic probabilistic metric space and in addition,
the following in equalities hold: for all z,y, 2z € X and ¢, s > 0,
(1) Foy(t) * Fy.(s) > Fpo(t+s),

(i) Lay(t)OLy.(s) < Lya(t + s),

(ili) Ppy(t)OPy.(s) < Pp.(t+ s).
Where * is a continous t-norm and < is a continous t-conorm. The functions F, denote
the degree of nearness, L., and P, the degree of non-nearness between x and y with
respect to ¢ respectively.

Remark. In NMS (X, F, L, P, *, ) F, is non-decreasing and Ly, and Py, non-increasing
forall z,y € X.

Remark. Ifthe t - norm x and the t - conorm < of an NMS (X, F, L, P, x, ) satisfy the
conditions sup,¢ g 1) (t*t) = 1,inf,c 1) (1-1)O(1—t)) = 0 and infyco,1) (1) (1~
t)) =0, then (X, F, L, P, x, <) is a Hausdor{f topological space in the (e, \) topology, i.e.,
the family of sets {U, (g, \),e > 0, X € (0,1], 2 € X} is a basis of neighborhoods of point
« for a Hausdorff topology 7(F, L), or (g, \) topology on X, where {U, (¢, \) = {y € X :
Foy(e) >1— X\ Lyy(e) < Xand Pyy(e) < A}

Remark. Every an neutrosophic metric space (X, F, L, P, x, ) is an NMS by considering
F:XxX — D, L:XxX — FEand P : X x X — U defined by F,,(t) =
M(z,y,t), Lyy(t) = N(x,y,t) and Pyy(t) = U(z,y,t) for all x,y € X. Throughout
this paper, (X, F, L, P, x,<) is an NMS with the following conditions:

tlifféo Foy(t) =1, t_13+moo L,y(t) =0 and tl}gloo Py (t) =0, (2.1)

forallx,y € X andt > 0.

Definition 2.6. (a) Let (X, F,L, P,+,<) be an NMS. A sequence {Z, }nen in X
is said to be convergent to a point x € X, if foreach¢ > 0 and ¢ € (0,1),
there exists a positive integer ng = ng(t, €) such that for all n > ng, F,, x(t) >
1—e,L; 2(t) <eand Py, x(t) < e.
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(b) A sequence {z,}nen in X is called a Cauchy sequence if for all ¢ > 0 and
e € (0,1), there exists a positive integer ng = ng(t,<) such that for all n,m >
1o, Fooz, (1) >1—¢,Ly 5. (1) <eand Ly 5, (t) <e

(c) An NMS in which every Cauchy sequence is convergent is said to be complete.

Remark. An induced NMS (X, F, L, P, x, <) is complete if (X, d) is complete.

Definition 2.7. Let (X, F, L, P, *,<) be an NMS.
A sequence {zp, }nen in X is called a Cauchy sequence if and only if lim F, .(t) =

n—4oo
1, lim L, .(t)=0and lim P, ,(t)=0,forallt> 0.
n—-+4oo n——+o0o

Lemma2.1. Let (X, F, L, P, *,<) be an NMS and {x,, }, {yn } be two sequences in X with

xn, — x and y, — vy, respectively. Then lim,_, o inf F, , () > Fyp,(t),lim, 4o

sup Ly, y, (t) < Lyy(t) and liril sup Py, 4., (t) < Pyy(t), forallt > 0. Ift > Oisa
n—-—+oo

continuous point of Fy,,, Ly, and Py, then lirf Fo oy, (t) = Fgy(t), hIf Ly, (1) =
n—-+o00 n—+00
Ly (t) and lilf P,y (t) = Py(t).
n—-+0oo

Lemma 2.2. Let {x,, }nen be a sequence in an NMS with the condition . If there exists
a number k € (0,1) such that for v,y € X,t >0andn =0,1,2,... . Fy 0., (kt) >
Frpiion(t), Loy sz (k) < Loy i, (t) and Py, e,y (k) < P, ya, (1), then {x,}
is a Cauchy sequence in X.

Lemma 2.3. Let (X, F, L, P, *x,$) be an NMS. If there exists a number k € (0,1
(

that for all x,y € X and t > 0, Fpy(kt) > Fyy(t), Lyy(kt) < Lgy(t) and Py
P,y(t), then x = y.

) such
kt) <

Definition 2.8. Two self - mappings A and S of an NMS are said to be compatible if

ngrfoo Fasz, 542, (t) = Lngr}rloo Lasz, SAz,(t) = 0 and nglfoo Pysz, 54z, (t) =0,

for all ¢ > 0. Whenever {x,} C X such that lirJIrl Az, = lim Sz, = z, for some
n—-+0oo

n—-+oo
z e X.

Definition 2.9. Two self - mappings A and .S of an NMS are said to be non - compatible
if there exists a sequence {z,,} in X such that lim Fa, .(t)= lim Fs,, .(t) =1,
n——+00 n—-+00

for some z € X, but for some t > 0, either 1i1}_1 FAss, Az, (t) # 1or
n——+0oo
11111 LAsz, SAz, (t) # 0or 11111 PAss, .54, (t) # 0 or one of the limits do not exist.
n—-+oo n—-+oo
Definition 2.10. A pair of self - mappings A and S of an NMS (X, F, L, P, %, <) is said

to be satisfy the property (E. A) if there exists a sequence {x,,} in X such that for some
ze X,

ngr—j&[-loo FA‘T"’Z(t) - TLEI-POO FSJE"’Z (t) =1
lim LAsz(t) = lim Lan,z(t) =0 and
n—+oo n—r+oo
lim Pag, .(t)= lim Pg,, .(t)=0,forallt> 0. (2.2)

n—+o00 n—-+oo
Remark. It is easy to see that two non - compatible self - mappings of an NMS satisfy the
property (E.A), but the converse is not true in general.
Definition 2.11. Two pairs (A, S) and (B, T') of self - mappings of an NMS (X, F, L, P, x, <)
are said to satisfy the common property (E. A), if there exist two sequences {xz,, } and {y,, }
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in X such that some z € X and for all ¢ > 0.

ngr_{_loo Fag, -(t) = nll)g_loo Fsq, () = nglfoo Fpy, - (t) = ngﬂf_loo Fry, -(t) =1,

nEI-ir-loo LAI"’Z(t) - nllgir-loo LSI"’Z(t) - nkr-&r-loo LByn,z(t) - ngr-ir-loo LTy"’Z(t) =0 and
= 0.

nEI«Eoo Pag, -(t) = ngrfoo Psy, - (t) = ngr}rloo Ppy, (t) = ngrfoo Pry, -(t)

If B= A and T = S in this definition we get the definition of the property (E.A).

Definition 2.12. A pair of self - mappings A and S of an NMS (X, F, L, P, x, <) is said
to satisfy the common limit range property with respect to the mapping S (briefly CLR
property), if there exists a sequence {z,, } in X such that (2.2 holds, where z € S(X).

Now, we given an example of self - mappings A and S satisfying the C'L R property.

Example 2.13. Let (X, F\, L, P,*,<) be an NMS, where X = [0, 00), the t - norm * is
defined by a * b = min{a, b}, the t -conorm < is defined by aCb = max{a, b} and also
defined Fy,(t) = H(t — |z — y|), Loy (t) = G(t — |z — y|) and Py (t) = J(t — |z — y|)
forall z,y € X and ¢t > 0.

Define self - mappings A and S on X by: Ax = z + 4,Sx = 5z. Let a sequence

{z, =1+ %}nGN in X. Since nllerIrloo Az, = nBIJIrloo Sz, =5, then
ngrfm Faz, 5(t) = ngffoo Fsy, 5(t) =1,
nkrfoo Ly, 5(t) = nglfoo Lsy, 5(t) =0 and
nll)filoo Pz, 5(t) = nll)filoo Psz,, 5(t) = 0.

for all t > 0, where 5 € S(X). Therefore, the mappings A and S satisfy the C' LR,
property. From this example, it is clear that a pair (A, S) satisfying the property (E.A)
with the closedness of the subspace S(X) always verifies the C'L R property.

Definition 2.14. Two pairs (4, S) and (B, T') of self - mappings of an NMS (X, F, L, P, x, <)
are said to satisfy the common limit range property with respect to mappings S and T’
(briefly, C LRg property), if there exist two sequences {x,,} and {y, } in X such that for
allt > 0.

ngr}rloo Faz, - (t) = ngrfoo Fs, 2(t) = nll}}}oo Fpy, (t) = ngrfoo Fry, () =1,
ngr_{_loo Lag,,-(t) = HEI_POO Lsq, -(t) = HETOO Lpy,.(t) = ngr_{_loo Ly, .(t)=0 and
nllg_loo Pug, 2(1) = nll)r_{_loo Psg, - (t) = TLEI_POO Ppy, -(t) = TLEI_POO Pry, .(t) =0,

where z € S(X)NT(X).
Remark. If B = A and T = S in this definition we get the definition of C LRg property.

Remark. The CLRgy property implies the common property (E.A), but the converse is
not true in general,

Remark. [fthe pairs (A, S) and (B, T) satisfy the common property (E.A) and S(X) and
T(X) are closed subsets of X, then the pairs satisfy also the C LRgT property.

Definition 2.15. Two pairs (A, S) and (B, T') of self - mappings of an NMS (X, F, L, P, x, <)
are said to satisfy the joint common limit range property with respect to mappings S and
T (briefly JC LR gy property), if there exist two sequences {x,, } and {y,,} in X such that
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forallt > 0

nllgrloo Fag, -(t) = nll)lfoo Fsq, 2 (t) = nllgloo Fpy, -(t) = ngljfrloo Fry, -(t) =1,
nll}l_ir_loo Lag, (t) = nkrfw Lsy, »(t) = nll)rfw Lpy, -(t) = ngrfw Lpy, .(t)=0 and
im P ()= lm Ps, ()= lm Py, ()= lm_Pr, .(t)=0,

where z = Su = Tu,u € X.
Remark. If B = A and T = S in this definition we get the definition of C LRg property.

Definition 2.16. Two families of self - mappings {A;} and {S;} are said to be pairwise
commuting if

(1) Ai,Aj = Ain,i,j S {1, 2, .. ,m},

2 Sk'Sl = SlSka k7l € {17 27 s 7”},

(3) A;S, = Spds, i€ {1,2,...,m} ke {1,2,...,n.

3. MAIN RESULTS

Lemma 3.1. Let A, B, S and T be self - mappings of an NMS (X, F, L, P, x, ) satisfying
the following conditions.
(i) The pairs (A, S) satisfies the CLRg Property or the pair (B, T) satisfies the
C LRy property,
(i) A(X) CT(X)or B(X)C S(X),
(iii) T(X) or S(X) is a closed subset of X.
(iV) B(yn) converges for every sequence {y,} in X whenever T(y,) converges or
A(z,,) converges for every sequence {x,,} in X whenever S(x,,) converges.

(14 aFsz1y(t) Faz,By(t)
> amin{ Fau,5:(t) Foyry(t), Fsupy(t) Fazry(t) }
FSI’Ty(t)7t ftligztmin{FAz,Sz(tl)aFSZ,By(tQ)}ﬂ
+ min sup1 H;i;l{FBy,Ty (t3), Faz,1y(ta)} 61y
tatta=3t
(1+ BLsz1y(t)) Laz,By(t)
< Bmax{ Lags:(t) Lyry(t), Lsz,sy(t) Lasry(t) }
LSx’Ty(t),t1+itI;f:%tmaX{LAx,Sm(tl)7LS%By(tQ)}’
+ max " @2)

inf ) max{Lpy 1y(t3), Laz,ry(ts)}
tz+ta=31

(1 + ')/PS:c,Ty(t)) PAm,By(t)
< ymax{ Paz s2(t) Ppyry(t), Pse,py(t) Pasry(t) }
Pgy.1y(t), inf;2 max{Paz, s2(t1), Psz,By(t2)},
+ max ftta=it G113

inf Y max{PBy’Ty(tg), PAm,Ty(téL)}
tatta=2t
SJorall x,y € X,t > 0 for some o, 8,7 > 0and 1 < k < 2. Then the pairs (A, S) and

(B, T) satisfy the CLRg property.
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Proof. Suppose that the pair (A, S) satisfies the CLRg property and T(X) is a closed
subset of X. Then, there exists a sequence {x,, } in X such that

lim Az, = lim Sz, =z, where z € S(X).
n— oo n— 00

Since A(X) C T(X), there exists a sequence {yy, } in X such that Az,, = Ty,.
So
lim Ty, = lim Az, =z, where z € S(X)NT(X).

n—o0 n— o0
Thus, Az, — z, Sz, — z and Ty, — z. Now, we show that By,, — z.
Let lim Fgy, .(to) =1, lim Lpg,, .(to) =0and lim Pg,, ,(to) = 0. We assert that
n—00 n— 00 n—00

1 = z. Assume that 11 # z. We prove that there exists ¢y > 0 such that
2 2 2
Fopu(£10) > Foto)s Le(5t0) < Leulto) and Py (Sto) < Polte). BT4)

Suppose that contrary. Therefore, for all £ > 0 we have

Fw(%t) > F, (1), sz#(%t) <L,,(t) and PW(%t) < P, ,(t). @B:15)

Using repeatedly(3.1]5), we obtain

b2 (3 2 2 (2))
L.(t) < LW(%t) <. < LW((%)"Q 0 and
bt () =< r((2)") 0
as n — 00, is shows that F, ,,(t) =1, L, ,(t) = 0and P, ,(t) = 0, for all ¢ > 0, which

contradicts v # z and hence (3.1[4) is proved.

Without loss of generality, we may assume that ¢g in is a continuous point of
F.,., L., and P, ,. Since every distance distribution function is left-continuous and
every a non-distance distribution function is right continuous, (3.1[4) implies that there
exists € > 0 such that holds for all ¢t € (¢ — ¢, ). Since F; , is non-decreasing,
L., and P, , are non- increasing,the set of all discontinuous points of F, ,, L, , and
P, ,, is a countable set at most. Thus, when g is a discontinuous point of F, ,, L. , and
P, ,, we can choose a continuous point ¢; of F} , and F. , in (to—¢,to) to replace tg.

Using the inequality (3.1[1), 3.1[2) and (3.1[3) with x = =z, y = y,, we get for some
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to >0
(1 + aFSIn;Tyn (to))FAa:n;Byn (t())

> amin {FAzn,Szn (tO)FByn,Tyn (to), F‘Szn,By71 (tO)FAmn,Tyn (tO)}

. . 2
+ min {stnaTyn (t0)7 mln{FAzn7an (5)7 stn,7Byn (Eto - €)}7

min{ Fiy, 2y, (2t — &), Faz, 7y, (€) }
(]- + ﬂLSzn,Tyn (t(]))LAzn,Byn (t(])

< /8 max {LAan,San (tO)LByanyn (t0)7 Lsxn,7Byn (tO)LAxn,7Tyn (to)}

2
Eto — E)},

+ max {LSM,Tyn (to), max{L g, sz, (€); Lsa,, By,
maX{LByruTyn (2t0 - E)’ LAwruTyn (E)} and

< 7y max {PAwnﬂgwn (tO)PByn7Tyn (t0)7 PSI?L ,Byn (tO)PAwn7Tyn (to)}

2
+ max { Py, 1y, (to): max{ Pas, 52, (€): P,z (1t = )},

maX{PBymTyn (2t0 — 5)7 PAzn,Tyn (E)}

forall € € (0, £t0). Letting n — oo, we have

2 2

Fz7p(t0) Z min {1,FM)Z (kto — 6)} = sz (kto — 6) 5
2 2

Lz’#(fo) < max {O>Lu,z (kto — 6)} = Lu,z (kto — 6) and
2 2

Pz,u(tO) < max O,P'u’z %to — € = Pﬂyz Eto — €.

As ¢ — 0, we obtain

2 2 2
Fz,,u(tO) 2 Fz,,u <kt0) 7Lz,;t(t0) S Lz,,u <kt0) and Pz#(to) S PZ,;L (]{}t())

which contradicts (3.1]4]) and so we have z = . Thus, the pairs (A, .S) and (B, T) satisfy
the C L Rgr property. O

Theorem 3.2. Let A, B, S and T be self - mappings of an NMS (X, F, L, P, *,<) sat-
isfying the inequality of lemma (3.1). If the pairs (A, S) and (B,T) satisfy the CLRgr
property, then (A, S) and (B, T) have coincidence points. Moreover, if (A, S) and (B, T)
are weakly compatible, then A, B, S and T have a unique common fixed point in X.

Proof. Since the pairs (A, S) and (B, T) satisfy the CLRgr property, there exist two
sequences {z,} and {y,} in X such that

lim Az, = lim Sz, = lim By, = lim Ty, = z,

n— oo n—oo n—oo n— oo
where z € S(X) N T(X). Hence, there exist u,v € X such that Su = Tv = z. Now, we
show that Au = Su = z. If z # Au, putting = u and y = y,, in the inequality (3I[T),
3.1 and , letting n — 400, we have for all € € (O, %to).
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FAu,z(tO) > FAu,z (%to - 6) s LAu,z(tO) < LAu,z (%to - E)

and PA, .(to) < PAy. (3t —e).

Letting € — 0, we have

FAu,z(t(]) 2 FAu,z (%to) 7LAu,z(t0) S LAu,z (%t(]) and PAu,z(tO) S PAu,z (%tO) )
which contradicts (3:1[4) and so Au = Su = z.

Therefore, u is a coincidence point of the pair (A4, S).

Now, we assert that Bu = Tv = z. If z # Bu, putting x = u and y = v in the inequality

@11, B.1[2) and (B.1[3), we get for some tg > 0

2
(]- + aFSu,TU(tO))FAu,Bv (tO) > an,Bv(tO) + Fz,Bv <kt0 - 6) )

2
(1 + 6LSU,T’U(tO))LA’U.,B’U(tO) < /BLZ,BU(tO) + Lz,Bv (ktO - €> and

2 2
(1 +vPsy,1v(t0)) Pau,Bv(to) < YP: Bo(to) + P2 Bo (kto - 6) , foralle € <0, kt0> )

As e — 0 we have

Fz,Bv(tO) > FZ,B’U (%tO) 7Lz,Bv(t0) < LZ7B’U (%tO) and Pz,Bv(tO) < Pz,Bv (%tO)
which contradicts (3.1[4) and so Bv = Tv = z.

Therefore, v is a coincidence point of the pair (B,T'). Since the pair (A, S) is weakly
compatible and Au = Su we obtain Az = Sz. Now, we assert that z is a common fixed

point of A and S. If z # Az, applying the inequality (3.1[1), (3.1[2) and (B.1[3) with z = =
and y = v, we obtain for some ¢y > 0.

. 2
(1 aFse 010 P o) > @ (P 00) + min { Fac (00, e (o)}

2
(1 + /BLSZ,T’U(tO))LAZ,B’U(tO) < B (LAZ z + max {LAz z tO LAZ,Z (ktO) } and
(1 + ’yPSZ,T’U (tO))PAz,Bv(tO) <7 (PAZ z + max {

2
PAz z t() PAz,z (kt0> } .

FAz,z(tO) > min{FAZ,Z(tO)vFAZ,Z ( >} FAzz tO

Hence

LAz,z(tO) < max {LAz,z(tO)a LAz,z < ) LAz z tO and

PAz,z(tO) < max {PAz,z(t0)7 PAz,z (kt()) } PAZ z(tO)

which is impossible and so Az = z = Sz, which show that z is a common fixed point of
Aand S. Since the pair (B, T) is weakly compatible, we get Bz = T'z. Similarity, we can
prove that z is a common fixed point of B and T'. Therefore, z is a common fixed point
of A, B, S and T The uniqueness of z follows easily by the inequality (3.1[T), (3-1]2) and

GI3). O
Remark. If B = Aand T = S in theorems (3.2), we obtain a common fixed point for a
pair of self-mappings.

Corollary 3.3. Let {A;}",{B,}7—,,{Sk}i_, and {Ty}]_, be four finite families of

self - mappings of an NMS (X, F, L, P, x,©), where * is a continuous t - norm and ¢ is
a continuous t - conorm with A = AjAy... Ay, B = B1By...B,,S = 5152...5
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and T =TTy ... T, satisfying the inequality GI[1), B-1[2) and G.I3) of lemma B.1).
Suppose that the pairs (A, S) and (B, T) verify the CLRgT property.

Then { A}y {Br}r— {Sk}h_y and {T},}}_, a unique common fixed point in X pro-
vided that the pairs of families ({A;}7"1,{Sk}i_,) and ({B,}7—1,{Th}}_,) commute
pairwise.

Lemma 3.4. Let A, B, S and T be self - mappings of an NMS (X, F, L, P, x, ©) satisfying
the conditions (i), (i1), (ii1), (iv) of lemma and

(14 aFsz,1y(t)) Faz,By(t)
> amin{ Fags:(t) Fpyry(t), Fsapy(t) Fazry(t) }
Fsypry(t), sup max{Fay s:(t1), Fse,By(t2)},

. ty+to=2t
+ min k 1
sup  max{Fpy 1y (t3), Fasry (1)} G2
tatta=3t

(1+ BLsa,ry(t)) Laz,By(t)
< Bmax{ Laz,s:(t) Ly, ry(t), Lse,By(t) Lazry(t) }

Lsyry(t), itnfthin{LAx,Sz(tl),LSI,By(tZ)}a

t1+ta=1
+ max . F @42
inf = min{Lpy 1y(t3), Laz,ry(ts)} )
t3+t4:Et

(1 +9Psz,1y(t)) Paz,py(t)
< ymax{ PAx,SJ;(t) PBnyy(t)a PSw,By(t) PAz,Ty(t) }

PSx,Ty(t)a . +1tnf 2tmin{PAx,Sac(t1)7 PSa:,By(tZ)}a
+ ma. LT 3
mhax inf R InlIl{PB%Ty(f?,),PAm’Ty(tz;)} @ )
tzgt+ta=51
Sforall z,y € Xt > 0, for some o, > 0and 1 < k < 2. Then the pairs (A, S) and
(B, T) satisfy the CLRg property.

Proof. As in the proof of lemma (3.1), Az,, — 2z, Sz, — z, and Ty,, — z.

Now, we show that By,, — z. We assert that y = z. Assume that p # z.

Using the inequality (3.4[1), 3.4[2) and (3.4[3) with z = x,,, ¥y = yn, and letting n — +o00
we have for all ¢ € (0, £t9) . F. .(to) = 1, L. ,.(to) = 0 and P, ,(t) = 0 and so we
have z = p.

Thus, the pairs (A4, S) and (B, T) satisfy the C L Rgr property. O

Theorem 3.5. Let A, B, S and T be self mappings of an NMS (X, F, L, P, x, o) satisfying
the inequality (3.4[1), and of lemma (34). If the pairs (A, S) and (B,T)
satisfy the C LRgt property, then (A, S) and (B, T) have coincidence points. Moreover,
if (A,S) and (B, T) are weakly compatible, then A, B, S and T have a unique common
fixed point in X.

Proof. As in the proof of theorem (3.2), there exist u,v € X such that Au = Su = Bv =
Tv = z. Therefore, u is a coincidence point of the pair (A, S) and v is a coincidence point
of the pair (B, T).

Since the pair (A, S) is weakly compatible and Au = Su we obtain Az = Sz. Now,
we assert that z is a common fixed point of A and S. If z # Az, applying the inequality
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@A), 3-42) and (B.4[3) with z = z and y = v, we obtain for some ty > 0
(1+ aFs.,70(t0))Faz po(to) > a (Fa. . (to))” + min {Fa. . (to), Fa: . (to)} ,
(1+ BLs. 70(t0)) Laz.o(to) < B(Laz-(to))* + max {La..(to), La. -(to)} and
(14 7Psz,7u(to)) Paz,Bo(to) <7 (Paz.:(to))” + max {Pa.,.(to), Paz,:(to)} -

Hence

FAz,z(tO) > FAz,z(tO); LAz,z(tO) < LAz,z(tO)andPAz,z(tO) < PAz,z (tO)

which is impossible and so Az = z = Sz, which shows that z is a common fixed point of

AandS.
Since the pair (B, T) is weakly compatible, we get Bz = Tz. Similarly, we can prove
that z is a common fixed point of B and 7" by putting = y = z in the inequality (3.4[T),
and (3:4[3). Therefore, z is a common fixed point of A, B, S and T'. The uniqueness

of z follows easily by the inequality (3.4[1), (3.4[2) and (B.4[3). O

Let @ be the set of all non-decreasing and continuous functions ¢ : (0,1] — (0, 1]
such that ¢(t) > t for all ¢ € (0,1] , ¥ be the set of all non-increasing and continuous
functions 7 : (0,1] — (0, 1] such that ¢(¢) < t for all t € (0, 1] and €2 be the set of
all non-increasing and continuous functions ¢ : (0,1] — (0, 1] such that ¢(¢) < ¢ for all
t € (0,1].

Lemma 3.6. Let A, B, S and T be self - mappings of an NMS (X, F, L, P, x, ) satisfying
the conditions (i), (i1), (4i1), (iv) of lemma and
(1+ aFse,ry(t))Faz,py(t)
> amin {Fag,s:(0) Fpyry (1), Fse,py (1) Faz,y (1)}
FSw,Ty(t)7 sup min {FAx,Sa: (tl)y FSw7By (t2)} )

. tyHto=2t
+ - 1
w | sup  min{Fpy 7y(t3), Faz,1y(ts)} €av
ts+ta=2t
(1 + ﬁLSw,Ty (t>)LA:v,By (t)
< Bmax{Lay s:(t) LBy 1y(t); Lss,By(t)Lagry(t)}

LSz,Ty(t)a . inf 5 max {LAI,Sx(t1)7 LSI,By(tQ)}u
1

. =% 2
+9 | max inf  max{Lpy1y(ts), Lazry(ts)} 6382

ts+ta=2t
(1 + 'YPSLTy(t))PAz}By(t)
< ymax {Pay, 52 (t) Py, 7y(t), Psz,By(t)Paz,ry(t)}
PSx,Ty(t)»t +itnf , ax {Paz,s2(t1), Psz,py(t2)},
1t+t2=% 3
+¢ | max inf = max {Ppy,1y(t3), Pag,1y(ts)} 6383

tatta=3t
forall z,y € Xt > 0 for some a, 5,7 > 0and 1 < k < 2, where p € ®,¢ € U and
Q € ¢. Then the pairs (A, S) and (B, T) satisfy the C LRgT property.
Proof. 1t follows as in the proof of lemma (3.1)) O

Theorem 3.7. Let A, B, S and T be self mappings of an NMS (X, F, L, P, x, ¢) satisfying
the inequality (3.6]1), and of lemma (3.6). If the pairs (A, S) and (B, T)

satisfy the CLRgt property, then (A, S) and (B,T) have coincidence points. Moreover,
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if (A,S) and (B,T) are weakly compatible, then A, B, S and T have a unique common
fixed point in X.

Proof. As in the proof of theorem 2z = Au = Su = Bv = T. Since the pair (A, S)
is weakly compatible and Au = Su, we obtain Az = Sz.

Now, we assert that z is a common fixed point of A and S. If z # Az, applying the
inequality (3.6[1)), (3.6[2) and (3.6[3)) with z = z and y = v, we obtain for some g > 0

(14 0570 (10) g o)

> a(Faect0)? + o (min { P fto)min { P o0, P (o= ) )
(14 Bl rulto)) L o (1)

< 5 (Laso(t0)? + 0 (o { L to) max { a0 L (30 ) 1)
(14 1Ps. o (t0)) Pac )

<3 (P04 0 (max { Pac o) max { a0, Pacs (1o =€) )

foralle € (0, 2¢9). Letting £ — 0, we get
(to) > ¢ (min Fa . (to)) > Faz z(to),
Laz,2(to) < ¢ (maxLas . (to)) < Las,:(to),
Py . (to) < ¢ (max Pa, . (to)) < Pa :(to),
Az = z = Sz, which shows that z is a common fixed point of

FAZ,Z

which is impossible and so
AandS.

Since the pair (B, T') is weakly compatible, we get Bz = Tz. Similarly, we can prove
that z is a common fixed point of B and 7" by putting = y = z in the inequality (3.6[T),
(3-6[2) and (B-6[3). Therefore, z is a common fixed point of A, B, S and T'. The uniqueness

of z follows easily by the inequality (3.6[1), (3.6[2)) and (3.6[3). O

Remark. In theorems (3.2), (3-3) and (3.7) by a similar manner, we can prove that A, B, S
and T have a unique common fixed point in X if we assume that the pairs (A, S) and
(B, T) verify JCLRgr property or CLR g property instead of C LRgT property.

Theorem 3.8. Let A, B, S and T be self - mappings of an NMS (X, F, L, P, x, ) satisfying
the conditions of lemma or lemma (3. 4)or lemma (3.6). If the pairs (A, S) and (B, T)
are weakly compatible, then A, B, S and T have a unique common fixed point in X.

Proof. In view of lemma (3.1), lemma (3.4), lemma (3.6), the pairs (A4, S) and (B,T)
verify the C LRgT property, therefore there exist two sequence {z,} and {y,} in X such
that

lim Az, = lim Sx,= lim By,= lim Ty, =z,
n—-+oo n—-+oo n—-+oo n—-+oo

where z € S(X) NT(X). The rest of the proof follows as in the proof of theorems (3.2),

(3.3) and (3.7). O

Example 3.1. Let (X, F, L, P, x,<) be an NMS, where X = [3,11), a * b = min{a, b}
and aOb = max{a,b} with F,(t) = H(t — |z — y|), Lsy(t) = G(t — |z — y|) and
Py(t) = R(t — |z —y|) forall z,y € X and ¢t > 0. Define the self — mappings A, B, S
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and T' by

(3 if ze{3}uU(511) (3 if ze{3}U(511)
Ax{]O if z € (3,5] ’Bx{9 if z € (3,5]

3 if x=3 3 if =3
Sz = 6 if x€(3,5) , Tx= 9 if x€(3,5)
= f =z e [5,11) r—2 if xe€l[511)

Therefore, A(X) = {3,4} C [3,9] = T(X) and B(X) = {3,5} C [3,6] = S(X). Thus,
all the conditions of theorem (3.5) are satisfied and 3 is a unique common fixed point of the
pairs (A, S) and (B, T). Also, it is noted that theorem cannot be used in the context
of this example as S(X) and T'(X) are closed subsets of X.

4. CONCLUSION

In this paper, we have used the concept of C'LRgr property to prove certain popu-
lar fixed point theorems for weakly compatible mappings in neutrosophic menger spaces.
Some illustrative examples are also given to show the usability of the presented results.
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