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COMMON LIMIT RANGE PROPERTY IN NEUTROSOPHIC MENGER
SPACES

M. JEYARAMAN∗, A.N. MANGAYARKKARASI AND V. JEYANTHI

ABSTRACT. The aim of this paper is to prove some common fixed-point theorems for
weakly compatible mappings in Neutrosophic Menger Spaces satisfying common limit
range property. Some examples are also given which demonstrate the validity of our re-
sults. As an application of our main result, we present a common fixed point theorems for
four finite families of self-mappings in Menger spaces.

1. INTRODUCTION

There have been a number of generalizations of metric spaces. One of such gener-
alization is a probabilistic metric space, briefly, PM-spaces, introduced in 1942 by Menger
[13]. In the PM-space, we do not know exactly the distance between two points, but we
know the probabilities of possible values of this distance. Many mathematicians proved
several common fixed point theorems for contraction mappings in Menger spaces by using
different notions viz. compatible mappings, weakly compatible mappings, property (E.A),
common property (E.A). Modifying the idea of Kramosil and Michalek [9], George and
Veeramani [5] introduced fuzzy metric spaces which are very similar to Menger spaces.

Recently, using the idea of intuitionistic fuzzy set, Atanassov as [1], which is a gener-
alization of a fuzzy set, Zadeh [19], Park [14] introduced the notion of intuitionistic fuzzy
metric spaces as a generalization of fuzzy metrics paces due to George and Veeramani [5].
Kutukcu et.al [10] introduced the notion of intuitionistic Menger spaces as a generalization
of Menger spaces. In 2011, Sintunavarat and Kumam introduced the concept of common
limit range (CLR) property. Very recently, Chauhan et. al [2] introduced the concept of
joint common limit range (JCLR) property. The importance of these properties is that we
don’t require the closedness of subspaces for the existence of fixed points.

In 1998, Smarandache [15-17] characterized the new concept called neutrosophic logic
and neutrosophic set and explored many results in it. In the idea of neutrosophic sets, there
is T degree of membership, I degree of indeterminacy and F degree of non-membership. In
2019, Kirisci et al [8] defined neutrosophic metric space as a generalization of intuitionistic
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fuzzy metric space and brings about fixed point theorems in complete neutrosophic metric
space. Sowndrarajan, Jeyaraman and Florentin Smarandache [18] proved some fixed point
results for contraction theorems in neutrosophic metric spaces. Jeyaraman and Florentin
Smarandache et. al [7] prove common fixed point theorems for four sub compatible maps
of type (J-1) in weak non-Archimedean neutrosophic metric space.

The purpose of this paper is to prove some common fixed-point theorems for weakly
compatible mappings in neutrosophic menger spaces satisfying CLR property. Some ex-
amples are also given which demonstrate the validity of our results.

2. PRELIMINARIES

Definition 2.1. [9] A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is a continuous t-norm
[CTN] if it satisfies the following conditions :

(i) ∗ is commutative and associative,
(ii) ∗ is continuous,

(iii) ε1 ∗ 1 = ε1 for all ε1 ∈ [0, 1],
(iv) ε1 ∗ ε2 ≤ ε3 ∗ ε4 whenever ε1 ≤ ε3 and ε2 ≤ ε4, for each ε1, ε2, ε3, ε4 ∈ [0, 1].

Definition 2.2. [9] A binary operation 3 : [0, 1]× [0, 1] → [0, 1] is a continuous t-conorm
[CTC] if it satisfies the following conditions :

(i) 3 is commutative and associative,
(ii) 3 is continuous,

(iii) ε130 = ε1 for all ε1 ∈ [0, 1],
(iv) ε13ε2 ≤ ε33ε4 whenever ε1 ≤ ε3 and ε2 ≤ ε4, for each ε1, ε2, ε3 and ε4 ∈ [0, 1].

Definition 2.3. [4]
(i) A distance distribution function is a function F : R → R+ which is left continuous

on R, non-decreasing and inft∈R F (t) = 0, supt∈R F (t) = 1. We will denote by
D the family of all distance distribution functions and by H a special element of
D defined by

H(t) =

{
0, if t < 0
1, if t > 0

.

If X is an non-empty set, F : X ×X → D is called a probabilistic distance on X
and F (x, y) is usually denoted by Fxy .

(ii) A non-distance distribution function is a function L : R → R+ which is right
continuous on R, non-increasing and inft∈R L(t) = 1, supt∈R L(t) = 0. We
will denote by E the family of all non-distance distribution functions and by G a
special element of E defined by

G(t) =

{
1, if t ≤ 0
0, if t > 0

.

If X is a non-empty set, L : X ×X → E is called a probabilistic non distance on
X and L(x, y) is usually denoted by Lxy .

(iii) A non-distance distribution function is a function P : R → R+ which is right
continuous on R, non-increasing and inft∈R P (t) = 1, supt∈R P (t) = 0. We
will denote by U the family of all non-distance distribution functions and by R a
special element of U defined by

R(t) ==

{
1, if t ≤ 0
0, if t > 0

.
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If X is a non-empty set, P : X ×X → U is called a probabilistic non distance on
X and P (x, y) is usually denoted by Pxy .

Definition 2.4. A 4-tuple (X,F,L, P ) is said to be an neutrosophic probabilistic metric
space if X is an arbitrary set, F is a probabilistic distance and L and P are probabilistic
non-distance on X satisfying the following conditions; for all x, y, z ∈ X and t, s > 0.

(i) Fxy(t) + Lxy(t) + Pxy(t) ≤ 3,
(ii) Fxy(0) = 0,

(iii) Fxy(t) = 1 if and only if x = y,
(iv) Fxy(t) = Fyx(t),
(v) If Fxy(t) = 1 and Fyz(s) = 1, then Fxz(t+ s) = 1,

(vi) Lxy(0) = 1,
(vii) Lxy(t) = 0 if and only if x = y,

(viii) Lxy(t) = Lyx(t),
(ix) If Lxy(t) = 0 and Lyz(s) = 0, then Lxz(t+ s) = 0.
(x) Pxy(0) = 1,

(xi) Pxy(t) = 0 if and only if x = y,
(xii) Pxy(t) = Pyx(t),

(xiii) If Pxy(t) = 0 and Pyz(s) = 0, then Pxz(t+ s) = 0.

Definition 2.5. A 6-tuple (X,F,L, P, ∗,3) is said to be an Neutrosophic Menger Space
(shortly NMS) if (X,F,L, P ) is an neutrosophic probabilistic metric space and in addition,
the following in equalities hold: for all x, y, z ∈ X and t, s > 0,

(i) Fxy(t) ∗ Fyz(s) ≥ Fxz(t+ s),
(ii) Lxy(t)3Lyz(s) ≤ Lxz(t+ s),

(iii) Pxy(t)3Pyz(s) ≤ Pxz(t+ s).
Where ∗ is a continous t-norm and 3 is a continous t-conorm. The functions Fxy denote
the degree of nearness, Lxy and Pxy the degree of non-nearness between x and y with
respect to t respectively.

Remark. In NMS (X,F,L, P, ∗,3)Fxy is non-decreasing andLxy andPxy non-increasing
for all x, y ∈ X .

Remark. If the t - norm ∗ and the t - conorm 3 of an NMS (X,F,L, P, ∗,3) satisfy the
conditions supt∈(0,1)(t∗t) = 1, inft∈(0,1)((1−t)3(1−t)) = 0 and inft∈(0,1)((1−t)3(1−
t)) = 0, then (X,F,L, P, ∗,3) is a Hausdorff topological space in the (ε, λ) topology, i.e.,
the family of sets {Ux(ε, λ), ε > 0, λ ∈ (0, 1], x ∈ X} is a basis of neighborhoods of point
x for a Hausdorff topology τ(F,L), or (ε, λ) topology onX , where {Ux(ε, λ) = {y ∈ X :
Fxy(ε) > 1− λ, Lxy(ε) < λ and Pxy(ε) < λ}.

Remark. Every an neutrosophic metric space (X,F,L, P, ∗,3) is an NMS by considering
F : X × X → D,L : X × X → E and P : X × X → U defined by Fxy(t) =
M(x, y, t), Lxy(t) = N(x, y, t) and Pxy(t) = U(x, y, t) for all x, y ∈ X . Throughout
this paper, (X,F,L, P, ∗,3) is an NMS with the following conditions:

lim
t→+∞

Fxy(t) = 1, lim
t→+∞

Lxy(t) = 0 and lim
t→+∞

Pxy(t) = 0, (2.1)

for all x, y ∈ X and t > 0.

Definition 2.6. (a) Let (X,F,L, P, ∗,3) be an NMS. A sequence {xn}n∈N in X
is said to be convergent to a point x ∈ X , if for each t > 0 and ε ∈ (0, 1),
there exists a positive integer n0 = n0(t, ε) such that for all n ≥ n0, Fxn

x(t) >
1− ε, Lxn

x(t) < ε and Pxn
x(t) < ε.
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(b) A sequence {xn}n∈N in X is called a Cauchy sequence if for all t > 0 and
ε ∈ (0, 1), there exists a positive integer n0 = n0(t, ε) such that for all n,m ≥
n0, Fxnxm(t) > 1− ε, Lxnxm(t) < ε and Lxnxm(t) < ε

(c) An NMS in which every Cauchy sequence is convergent is said to be complete.

Remark. An induced NMS (X,F,L, P, ∗,3) is complete if (X, d) is complete.

Definition 2.7. Let (X,F,L, P, ∗,3) be an NMS.
A sequence {xn}n∈N in X is called a Cauchy sequence if and only if lim

n→+∞
Fxnx(t) =

1, lim
n→+∞

Lxnx(t) = 0 and lim
n→+∞

Pxnx(t) = 0, for all t > 0.

Lemma 2.1. Let (X,F,L, P, ∗,3) be an NMS and {xn}, {yn} be two sequences inX with
xn → x and yn → y, respectively. Then limn→+∞ inf Fxnyn(t) ≥ Fxy(t), limn→+∞
supLxnyn

(t) ≤ Lxy(t) and lim
n→+∞

supPxnyn
(t) ≤ Pxy(t), for all t > 0. If t > 0 is a

continuous point of Fxy, Lxy and Pxy , then lim
n→+∞

Fxnyn
(t) = Fxy(t), lim

n→+∞
Lxnyn

(t) =

Lxy(t) and lim
n→+∞

Pxnyn(t) = Pxy(t).

Lemma 2.2. Let {xn}n∈N be a sequence in an NMS with the condition (2.1). If there exists
a number k ∈ (0, 1) such that for x, y ∈ X, t > 0 and n = 0, 1, 2, . . . . Fxn+2xn+1

(kt) ≥
Fxn+1xn

(t), Lxn+2xn+1
(kt) ≤ Lxn+1xn

(t) and Pxn+2xn+1
(kt) ≤ Pxn+1xn

(t), then {xn}
is a Cauchy sequence in X .

Lemma 2.3. Let (X,F,L, P, ∗,3) be an NMS. If there exists a number k ∈ (0, 1) such
that for all x, y ∈ X and t > 0, Fxy(kt) ≥ Fxy(t), Lxy(kt) ≤ Lxy(t) and Pxy(kt) ≤
Pxy(t), then x = y.

Definition 2.8. Two self - mappings A and S of an NMS are said to be compatible if
lim

n→+∞
FASxnSAxn

(t) = 1, lim
n→+∞

LASxnSAxn
(t) = 0 and lim

n→+∞
PASxnSAxn

(t) = 0,

for all t > 0. Whenever {xn} ⊂ X such that lim
n→+∞

Axn = lim
n→+∞

Sxn = z, for some

z ∈ X .

Definition 2.9. Two self - mappings A and S of an NMS are said to be non - compatible
if there exists a sequence {xn} in X such that lim

n→+∞
FAxn,z(t) = lim

n→+∞
FSxn,z(t) = 1,

for some z ∈ X , but for some t > 0, either lim
n→+∞

FASxn,SAxn
(t) ̸= 1 or

lim
n→+∞

LASxn,SAxn
(t) ̸= 0 or lim

n→+∞
PASxn,SAxn

(t) ̸= 0 or one of the limits do not exist.

Definition 2.10. A pair of self - mappings A and S of an NMS (X,F,L, P, ∗,3) is said
to be satisfy the property (E. A) if there exists a sequence {xn} in X such that for some
z ∈ X ,

lim
n→+∞

FAxn,z(t) = lim
n→+∞

FSxn,z(t) = 1,

lim
n→+∞

LAxn,z(t) = lim
n→+∞

LSxn,z(t) = 0 and

lim
n→+∞

PAxn,z(t) = lim
n→+∞

PSxn,z(t) = 0, for all t > 0. (2.2)

Remark. It is easy to see that two non - compatible self - mappings of an NMS satisfy the
property (E.A), but the converse is not true in general.

Definition 2.11. Two pairs (A,S) and (B, T ) of self - mappings of an NMS (X,F,L, P, ∗,3)
are said to satisfy the common property (E. A), if there exist two sequences {xn} and {yn}
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in X such that some z ∈ X and for all t > 0.

lim
n→+∞

FAxn,z(t) = lim
n→+∞

FSxn,z(t) = lim
n→+∞

FByn,z(t) = lim
n→+∞

FTyn,z(t) = 1,

lim
n→+∞

LAxn,z(t) = lim
n→+∞

LSxn,z(t) = lim
n→+∞

LByn,z(t) = lim
n→+∞

LTyn,z(t) = 0 and

lim
n→+∞

PAxn,z(t) = lim
n→+∞

PSxn,z(t) = lim
n→+∞

PByn,z(t) = lim
n→+∞

PTyn,z(t) = 0.

If B = A and T = S in this definition we get the definition of the property (E.A).

Definition 2.12. A pair of self - mappings A and S of an NMS (X,F,L, P, ∗,3) is said
to satisfy the common limit range property with respect to the mapping S (briefly CLR
property), if there exists a sequence {xn} in X such that (2.2) holds, where z ∈ S(X).

Now, we given an example of self - mappings A and S satisfying the CLRs property.

Example 2.13. Let (X,F,L, P, ∗,3) be an NMS, where X = [0,∞), the t - norm ∗ is
defined by a ∗ b = min{a, b}, the t -conorm 3 is defined by a3b = max{a, b} and also
defined Fxy(t) = H(t− |x− y|), Lxy(t) = G(t− |x− y|) and Pxy(t) = J(t− |x− y|)
for all x, y ∈ X and t > 0.
Define self - mappings A and S on X by: Ax = x + 4, Sx = 5x. Let a sequence
{xn = 1 + 1

n}n∈N in X . Since lim
n→+∞

Axn = lim
n→+∞

Sxn = 5, then

lim
n→+∞

FAxn,5(t) = lim
n→+∞

FSxn,5(t) = 1,

lim
n→+∞

LAxn,5(t) = lim
n→+∞

LSxn,5(t) = 0 and

lim
n→+∞

PAxn,5(t) = lim
n→+∞

PSxn,5(t) = 0.

for all t > 0, where 5 ∈ S(X). Therefore, the mappings A and S satisfy the CLRs

property. From this example, it is clear that a pair (A,S) satisfying the property (E.A)
with the closedness of the subspace S(X) always verifies the CLR property.

Definition 2.14. Two pairs (A,S) and (B, T ) of self - mappings of an NMS (X,F,L, P, ∗,3)
are said to satisfy the common limit range property with respect to mappings S and T
(briefly, CLRST property), if there exist two sequences {xn} and {yn} in X such that for
all t > 0.

lim
n→+∞

FAxn,z(t) = lim
n→+∞

FSxn,z(t) = lim
n→+∞

FByn,z(t) = lim
n→+∞

FTyn,z(t) = 1,

lim
n→+∞

LAxn,z(t) = lim
n→+∞

LSxn,z(t) = lim
n→+∞

LByn,z(t) = lim
n→+∞

LTyn,z(t) = 0 and

lim
n→+∞

PAxn,z(t) = lim
n→+∞

PSxn,z(t) = lim
n→+∞

PByn,z(t) = lim
n→+∞

PTyn,z(t) = 0,

where z ∈ S(X) ∩ T (X).

Remark. If B = A and T = S in this definition we get the definition of CLRS property.

Remark. The CLRST property implies the common property (E.A), but the converse is
not true in general,

Remark. If the pairs (A,S) and (B, T ) satisfy the common property (E.A) and S(X) and
T (X) are closed subsets of X , then the pairs satisfy also the CLRST property.

Definition 2.15. Two pairs (A,S) and (B, T ) of self - mappings of an NMS (X,F,L, P, ∗,3)
are said to satisfy the joint common limit range property with respect to mappings S and
T (briefly JCLRST property), if there exist two sequences {xn} and {yn} in X such that
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for all t > 0

lim
n→+∞

FAxn,z(t) = lim
n→+∞

FSxn,z(t) = lim
n→+∞

FByn,z(t) = lim
n→+∞

FTyn,z(t) = 1,

lim
n→+∞

LAxn,z(t) = lim
n→+∞

LSxn,z(t) = lim
n→+∞

LByn,z(t) = lim
n→+∞

LTyn,z(t) = 0 and

lim
n→+∞

PAxn,z(t) = lim
n→+∞

PSxn,z(t) = lim
n→+∞

PByn,z(t) = lim
n→+∞

PTyn,z(t) = 0,

where z = Su = Tu, u ∈ X .

Remark. If B = A and T = S in this definition we get the definition of CLRS property.

Definition 2.16. Two families of self - mappings {Ai} and {Sj} are said to be pairwise
commuting if

(1) Ai, Aj = AjAi, i, j ∈ {1, 2, . . . ,m},
(2) SkSl = SlSk, k, l ∈ {1, 2, . . . , n},
(3) AiSk = SkAi, i ∈ {1, 2, . . . ,m}, k ∈ {1, 2, . . . , n}.

3. MAIN RESULTS

Lemma 3.1. LetA,B, S and T be self - mappings of an NMS (X,F,L, P, ∗,3) satisfying
the following conditions.

(i) The pairs (A,S) satisfies the CLRS Property or the pair (B, T ) satisfies the
CLRT property,

(ii) A(X) ⊆ T (X) or B(X) ⊆ S(X),
(iii) T (X) or S(X) is a closed subset of X.
(iV) B(yn) converges for every sequence {yn} in X whenever T (yn) converges or

A(xn) converges for every sequence {xn} in X whenever S(xn) converges.

(1 + αFSx,Ty(t))FAx,By(t)

> αmin
{
FAx,Sx(t) FBy,Ty(t), FSx,By(t) FAx,Ty(t)

}
+min


FSx,Ty(t), sup

t1+t2=
2
k t

min{FAx,Sx(t1), FSx,By(t2)},

sup
t3+t4=

2
k t

min{FBy,Ty(t3), FAx,Ty(t4)}

 (3.1.1)

(1 + βLSx,Ty(t))LAx,By(t)

< βmax
{
LAx,Sx(t) LBy,Ty(t), LSx,By(t) LAx,Ty(t)

}
+max


LSx,Ty(t), inf

t1+t2=
2
k t
max{LAx,Sx(t1), LSx,By(t2)},

inf
t3+t4=

2
k t
max{LBy,Ty(t3), LAx,Ty(t4)}

 (3.1.2)

(1 + γPSx,Ty(t))PAx,By(t)

< γmax
{
PAx,Sx(t) PBy,Ty(t), PSx,By(t) PAx,Ty(t)

}
+max


PSx,Ty(t), inf

t1+t2=
2
k t
max{PAx,Sx(t1), PSx,By(t2)},

inf
t3+t4=

2
k t
max{PBy,Ty(t3), PAx,Ty(t4)}

 (3.1.3)

for all x, y ∈ X, t > 0 for some α, β, γ ≥ 0 and 1 ≤ k < 2. Then the pairs (A,S) and
(B, T ) satisfy the CLRST property.
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Proof. Suppose that the pair (A,S) satisfies the CLRS property and T (X) is a closed
subset of X. Then, there exists a sequence {xn} in X such that

lim
n→∞

Axn = lim
n→∞

Sxn = z, where z ∈ S(X).

Since A(X) ⊆ T (X), there exists a sequence {yn} in X such that Axn = Tyn.
So

lim
n→∞

Tyn = lim
n→∞

Axn = z, where z ∈ S(X) ∩ T (X).

Thus, Axn → z, Sxn → z and Tyn → z. Now, we show that Byn → z.
Let lim

n→∞
FByn,µ(t0) = 1, lim

n→∞
LByn,µ(t0) = 0 and lim

n→∞
PByn,µ(t0) = 0. We assert that

µ = z. Assume that µ ̸= z. We prove that there exists t0 > 0 such that

Fz,µ

(2
k
t0

)
> Fz,µ(t0), Lz,µ

(2
k
t0

)
< Lz,µ(t0) and Pz,µ

(2
k
t0

)
< Pz,µ(t0). (3.1.4)

Suppose that contrary. Therefore, for all t > 0 we have

Fz,µ

(2
k
t
)
> Fz,µ(t), Lz,µ

(2
k
t
)
< Lz,µ(t) and Pz,µ

(2
k
t
)
< Pz,µ(t). (3.1.5)

Using repeatedly(3.1.5), we obtain

Fz,µ(t) ≥ Fz,µ

(2
k
t
)
≥ · · · ≥ Fz,µ

((2
k

)n

t
)
→ 1,

Lz,µ(t) ≤ Lz,µ

(2
k
t
)
≤ · · · ≤ Lz,µ

((2
k

)n

t
)
→ 0 and

Pz,µ(t) ≤ Pz,µ

(2
k
t
)
≤ · · · ≤ Pz,µ

((2
k

)n

t
)
→ 0,

as n → ∞, is shows that Fz,µ(t) = 1, Lz,µ(t) = 0 and Pz,µ(t) = 0, for all t > 0, which
contradicts µ ̸= z and hence (3.1.4) is proved.

Without loss of generality, we may assume that t0 in (3.1.4) is a continuous point of
Fz,µ, Lz,µ and Pz,µ. Since every distance distribution function is left-continuous and
every a non-distance distribution function is right continuous, (3.1.4) implies that there
exists ε > 0 such that (3.1.4) holds for all t ∈ (t0 − ε, t0). Since Fz,µ is non-decreasing,
Lz,µ and Pz,µ are non- increasing,the set of all discontinuous points of Fz,µ, Lz,µ and
Pz,µ is a countable set at most. Thus, when t0 is a discontinuous point of Fz,µ, Lz,µ and
Pz,µ, we can choose a continuous point t1 of Fz,µ and Fz,µ in (t0–ε, t0) to replace t0.
Using the inequality (3.1.1), (3.1.2) and (3.1.3) with x = xn, y = yn, we get for some
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t0 > 0

(1 + αFSxn,Tyn
(t0))FAxn,Byn

(t0)

> αmin
{
FAxn,Sxn(t0)FByn,Tyn(t0), FSxn,Byn(t0)FAxn,Tyn(t0)

}
+min

{
FSxn,Tyn(t0),min{FAxn,Sxn(ε), FSxn,Byn(

2

k
t0 − ε)},

min{FByn,Tyn
(2t0 − ε), FAxn,Tyn

(ε)
}

(1 + βLSxn,Tyn(t0))LAxn,Byn(t0)

< βmax
{
LAxn,Sxn(t0)LByn,Tyn(t0), LSxn,Byn(t0)LAxn,Tyn(t0)

}
+max

{
LSxn,Tyn(t0),max{LAxn,Sxn(ε), LSxn,Byn(

2

k
t0 − ε)},

max{LByn,Tyn(2t0 − ε), LAxn,Tyn(ε)
}

and

(1 + γPSxn,Tyn(t0))PAxn,Byn(t0)

< γmax
{
PAxn,Sxn

(t0)PByn,Tyn
(t0), PSxn,Byn

(t0)PAxn,Tyn
(t0)

}
+max

{
PSxn,Tyn(t0),max{PAxn,Sxn(ε), PSxn,Byn(

2

k
t0 − ε)},

max{PByn,Tyn
(2t0 − ε), PAxn,Tyn

(ε)
}

for all ε ∈ (0, 2k t0). Letting n→ ∞, we have

Fz,µ(t0) ≥ min

{
1, Fµ,z

(
2

k
t0 − ϵ

)}
= Fµ,z

(
2

k
t0 − ϵ

)
,

Lz,µ(t0) ≤ max

{
0, Lµ,z

(
2

k
t0 − ϵ

)}
= Lµ,z

(
2

k
t0 − ϵ

)
and

Pz,µ(t0) ≤ max

{
0, Pµ,z

(
2

k
t0 − ϵ

)}
= Pµ,z

(
2

k
t0 − ϵ

)
.

As ϵ→ 0, we obtain

Fz,µ(t0) ≥ Fz,µ

(
2

k
t0

)
, Lz,µ(t0) ≤ Lz,µ

(
2

k
t0

)
and Pz,µ(t0) ≤ Pz,µ

(
2

k
t0

)
which contradicts (3.1.4) and so we have z = µ. Thus, the pairs (A,S) and (B, T ) satisfy
the CLRST property. □

Theorem 3.2. Let A,B, S and T be self - mappings of an NMS (X,F,L, P, ∗,3) sat-
isfying the inequality of lemma (3.1). If the pairs (A,S) and (B, T ) satisfy the CLRST

property, then (A,S) and (B, T ) have coincidence points. Moreover, if (A,S) and (B, T )
are weakly compatible, then A,B, S and T have a unique common fixed point in X .

Proof. Since the pairs (A,S) and (B, T ) satisfy the CLRST property, there exist two
sequences {xn} and {yn} in X such that

lim
n→∞

Axn = lim
n→∞

Sxn = lim
n→∞

Byn = lim
n→∞

Tyn = z,

where z ∈ S(X) ∩ T (X). Hence, there exist u, v ∈ X such that Su = Tv = z. Now, we
show that Au = Su = z. If z ̸= Au, putting x = u and y = yn in the inequality (3.1.1),
(3.1.2) and (3.1.3), letting n→ +∞, we have for all ϵ ∈

(
0, 2k t0

)
.
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FAu,z(t0) ≥ FAu,z

(
2
k t0 − ϵ

)
, LAu,z(t0) ≤ LAu,z

(
2
k t0 − ϵ

)
and PAu,z(t0) ≤ PAu,z

(
2
k t0 − ϵ

)
.

Letting ϵ→ 0, we have
FAu,z(t0) ≥ FAu,z

(
2
k t0

)
, LAu,z(t0) ≤ LAu,z

(
2
k t0

)
and PAu,z(t0) ≤ PAu,z

(
2
k t0

)
,

which contradicts (3.1.4) and so Au = Su = z.
Therefore, u is a coincidence point of the pair (A,S).
Now, we assert that Bv = Tv = z. If z ̸= Bv, putting x = u and y = v in the inequality
(3.1.1), (3.1.2) and (3.1.3), we get for some t0 > 0

(1 + αFSu,Tv(t0))FAu,Bv(t0) > αFz,Bv(t0) + Fz,Bv

(
2

k
t0 − ϵ

)
,

(1 + βLSu,Tv(t0))LAu,Bv(t0) < βLz,Bv(t0) + Lz,Bv

(
2

k
t0 − ε

)
and

(1 + γPSu,Tv(t0))PAu,Bv(t0) < γPz,Bv(t0) + Pz,Bv

(
2

k
t0 − ϵ

)
, for all ε ∈

(
0,

2

k
t0

)
.

As ε→ 0 we have
Fz,Bv(t0) ≥ Fz,Bv

(
2
k t0

)
, Lz,Bv(t0) ≤ Lz,Bv

(
2
k t0

)
and Pz,Bv(t0) ≤ Pz,Bv

(
2
k t0

)
which contradicts (3.1.4) and so Bv = Tv = z.
Therefore, v is a coincidence point of the pair (B, T ). Since the pair (A,S) is weakly
compatible and Au = Su we obtain Az = Sz. Now, we assert that z is a common fixed
point ofA and S. If z ̸= Az, applying the inequality (3.1.1), (3.1.2) and (3.1.3) with x = z
and y = v, we obtain for some t0 > 0.

(1 + αFSz,Tv(t0))FAz,Bv(t0) > α (FAz,z(t0))
2
+min

{
FAz,z(t0), FAz,z

(
2

k
t0

)}
,

(1 + βLSz,Tv(t0))LAz,Bv(t0) < β (LAz,z(t))
2
+max

{
LAz,z(t0), LAz,z

(
2

k
t0

)}
and

(1 + γPSz,Tv(t0))PAz,Bv(t0) < γ (PAz,z(t))
2
+max

{
PAz,z(t0), PAz,z

(
2

k
t0

)}
.

Hence

FAz,z(t0) > min

{
FAz,z(t0), FAz,z

(
2

k
t0

)}
= FAz,z(t0),

LAz,z(t0) < max

{
LAz,z(t0), LAz,z

(
2

k
t0

)}
= LAz,z(t0) and

PAz,z(t0) < max

{
PAz,z(t0), PAz,z

(
2

k
t0

)}
= PAz,z(t0)

which is impossible and so Az = z = Sz, which show that z is a common fixed point of
A and S. Since the pair (B, T ) is weakly compatible, we get Bz = Tz. Similarity, we can
prove that z is a common fixed point of B and T . Therefore, z is a common fixed point
of A,B, S and T . The uniqueness of z follows easily by the inequality (3.1.1), (3.1.2) and
(3.1.3). □

Remark. If B = A and T = S in theorems (3.2), we obtain a common fixed point for a
pair of self-mappings.

Corollary 3.3. Let {Ai}mi=1, {Br}nr=1, {Sk}pk=1 and {Th}qh=1 be four finite families of
self - mappings of an NMS (X,F,L, P, ∗, ⋄), where ∗ is a continuous t - norm and ⋄ is
a continuous t - conorm with A = A1A2 . . . Am, B = B1B2 . . . Bn, S = S1S2 . . . Sp
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and T = T1T2 . . . Tq satisfying the inequality (3.1.1), (3.1.2) and (3.1.3) of lemma (3.1).
Suppose that the pairs (A,S) and (B, T ) verify the CLRST property.
Then {Ai}mi=1, {Br}nr=1{Sk}pk=1 and {Th}qh=1 a unique common fixed point in X pro-
vided that the pairs of families ({Ai}mi=1, {Sk}pk=1) and ({Br}nr=1, {Th}

q
h=1) commute

pairwise.

Lemma 3.4. Let A,B, S and T be self - mappings of an NMS (X,F,L, P, ∗, ⋄) satisfying
the conditions (i), (ii), (iii), (iv) of lemma (3.1) and

(1 + αFSx,Ty(t))FAx,By(t)

> αmin
{
FAx,Sx(t) FBy,Ty(t), FSx,By(t) FAx,Ty(t)

}
+min


FSx,Ty(t), sup

t1+t2=
2
k t

max{FAx,Sx(t1), FSx,By(t2)},

sup
t3+t4=

2
k t

max{FBy,Ty(t3), FAx,Ty(t4)}

 (3.4.1)

(1 + βLSx,Ty(t))LAx,By(t)

< βmax
{
LAx,Sx(t) LBy,Ty(t), LSx,By(t) LAx,Ty(t)

}
+max


LSx,Ty(t), inf

t1+t2=
2
k t
min{LAx,Sx(t1), LSx,By(t2)},

inf
t3+t4=

2
k t
min{LBy,Ty(t3), LAx,Ty(t4)}

 (3.4.2)

(1 + γPSx,Ty(t))PAx,By(t)

< γmax
{
PAx,Sx(t) PBy,Ty(t), PSx,By(t) PAx,Ty(t)

}
+max


PSx,Ty(t), inf

t1+t2=
2
k t
min{PAx,Sx(t1), PSx,By(t2)},

inf
t3+t4=

2
k t
min{PBy,Ty(t3), PAx,Ty(t4)}

 (3.4.3)

for all x, y ∈ X, t > 0, for some α, β ≥ 0 and 1 ≤ k < 2. Then the pairs (A,S) and
(B, T ) satisfy the CLRST property.

Proof. As in the proof of lemma (3.1), Axn → z, Sxn → z, and Tyn → z.
Now, we show that Byn → z. We assert that µ = z. Assume that µ ̸= z.
Using the inequality (3.4.1), (3.4.2) and (3.4.3) with x = xn, y = yn, and letting n→ +∞
we have for all ε ∈

(
0, 2k t0

)
. Fz,µ(t0) = 1, Lz,µ(t0) = 0 and Pz,µ(t0) = 0 and so we

have z = µ.
Thus, the pairs (A,S) and (B, T ) satisfy the CLRST property. □

Theorem 3.5. Let A,B, S and T be self mappings of an NMS (X,F,L, P, ∗, ⋄) satisfying
the inequality (3.4.1), (3.4.2) and (3.4.3) of lemma (3.4). If the pairs (A,S) and (B, T )
satisfy the CLRST property, then (A,S) and (B, T ) have coincidence points. Moreover,
if (A,S) and (B, T ) are weakly compatible, then A,B, S and T have a unique common
fixed point in X .

Proof. As in the proof of theorem (3.2), there exist u, v ∈ X such that Au = Su = Bv =
Tv = z. Therefore, u is a coincidence point of the pair (A, S̄) and v is a coincidence point
of the pair (B, T ).

Since the pair (A,S) is weakly compatible and Au = Su we obtain Az = Sz. Now,
we assert that z is a common fixed point of A and S. If z ̸= Az, applying the inequality
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(3.4.1), (3.4.2) and (3.4.3) with x = z and y = v, we obtain for some t0 > 0

(1 + αFSz,Tv(t0))FAz,Bv(t0) > α (FAz,z(t0))
2
+min {FAz,z(t0), FAz,z(t0)} ,

(1 + βLSz,Tv(t0))LAz,Bv(t0) < β (LAz,z(t0))
2
+max {LAz,z(t0), LAz,z(t0)} and

(1 + γPSz,Tv(t0))PAz,Bv(t0) < γ (PAz,z(t0))
2
+max {PAz,z(t0), PAz,z(t0)} .

Hence

FAz,z(t0) > FAz,z(t0), LAz,z(t0) < LAz,z(t0)andPAz,z(t0) < PAz,z(t0)

which is impossible and so Az = z = Sz, which shows that z is a common fixed point of
A and S.

Since the pair (B, T ) is weakly compatible, we get Bz = Tz. Similarly, we can prove
that z is a common fixed point of B and T by putting x = y = z in the inequality (3.4.1),
(3.4.2) and (3.4.3). Therefore, z is a common fixed point ofA,B, S and T . The uniqueness
of z follows easily by the inequality (3.4.1), (3.4.2) and (3.4.3). □

Let Φ be the set of all non-decreasing and continuous functions φ : (0, 1] → (0, 1]
such that φ(t) > t for all t ∈ (0, 1] , Ψ be the set of all non-increasing and continuous
functions ψ : (0, 1] → (0, 1] such that ψ(t) < t for all t ∈ (0, 1] and Ω be the set of
all non-increasing and continuous functions ϕ : (0, 1] → (0, 1] such that ϕ(t) < t for all
t ∈ (0, 1].

Lemma 3.6. LetA,B, S and T be self - mappings of an NMS (X,F,L, P, ∗,3) satisfying
the conditions (i), (ii), (iii), (iv) of lemma (3.1) and

(1 + αFSx,Ty(t))FAx,By(t)

≥ αmin {FAx,Sx(t)FBy,Ty(t), FSx,By(t)FAx,Ty(t)}

+ φ

min


FSx,Ty(t), sup

t1+t2=
2
k t

min {FAx,Sx(t1), FSx,By(t2)} ,

sup
t3+t4=

2
k t

min {FBy,Ty(t3), FAx,Ty(t4)}


 (3.6.1)

(1 + βLSx,Ty(t))LAx,By(t)

≤ βmax {LAx,Sx(t)LBy,Ty(t), LSx,By(t)LAx,Ty(t)}

+ ψ

max


LSx,Ty(t), inf

t1+t2=
2
k t
max {LAx,Sx(t1), LSx,By(t2)} ,

inf
t3+t4=

2
k t
max {LBy,Ty(t3), LAx,Ty(t4)}


 (3.6.2)

(1 + γPSx,Ty(t))PAx,By(t)

≤ γmax {PAx,Sx(t)PBy,Ty(t), PSx,By(t)PAx,Ty(t)}

+ ϕ

max


PSx,Ty(t), inf

t1+t2=
2
k t
max {PAx,Sx(t1), PSx,By(t2)} ,

inf
t3+t4=

2
k t
max {PBy,Ty(t3), PAx,Ty(t4)}


 (3.6.3)

for all x, y ∈ X, t > 0 for some α, β, γ ≥ 0 and 1 ≤ k < 2, where φ ∈ Φ, ψ ∈ Ψ and
Ω ∈ ϕ . Then the pairs (A,S) and (B, T ) satisfy the CLRST property.

Proof. It follows as in the proof of lemma (3.1) □

Theorem 3.7. Let A,B, S and T be self mappings of an NMS (X,F,L, P, ∗, ⋄) satisfying
the inequality (3.6.1), (3.6.2) and (3.6.3) of lemma (3.6). If the pairs (A,S) and (B, T )
satisfy the CLRST property, then (A,S) and (B, T ) have coincidence points. Moreover,
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if (A,S) and (B, T ) are weakly compatible, then A,B, S and T have a unique common
fixed point in X .

Proof. As in the proof of theorem (3.2) z = Au = Su = Bv = Tv. Since the pair (A,S)
is weakly compatible and Au = Su, we obtain Az = Sz.

Now, we assert that z is a common fixed point of A and S. If z ̸= Az, applying the
inequality (3.6.1), (3.6.2) and (3.6.3) with x = z and y = v, we obtain for some t0 > 0

(1 + αFSz,Tv(t0))FAz,Bv(t0)

≥ α (FAz,z(t0))
2
+ φ

(
min

{
FAz,z(t0),min

{
FAz,z(ϵ), FAz,z

(
2

k
t0 − ϵ

)}})
(1 + βLSz,Tv(t0))LAz,Bv(t0)

≤ β (LAz,z(t0))
2
+ ψ

(
max

{
LAz,z(t0),max

{
LAz,z(ϵ), LAz,z

(
2

k
t0 − ϵ

)}})
(1 + γPSz,Tv(t0))PAz,Bv(t0)

≤ γ (PAz,z(t0))
2
+ ϕ

(
max

{
PAz,z(t0),max

{
PAz,z(ϵ), PAz,z

(
2

k
t0 − ϵ

)}})
for all ε ∈

(
0, 2k t0

)
. Letting ε→ 0, we get

FAz,z(t0) ≥ φ (minFAz,z(t0)) > FAz,z(t0),

LAz,z(t0) ≤ ψ (maxLAz,z(t0)) < LAz,z(t0),

PAz,z(t0) ≤ ϕ (maxPAz,z(t0)) < PAz,z(t0),

which is impossible and so Az = z = Sz, which shows that z is a common fixed point of
A and S.

Since the pair (B, T ) is weakly compatible, we get Bz = Tz. Similarly, we can prove
that z is a common fixed point of B and T by putting x = y = z in the inequality (3.6.1),
(3.6.2) and (3.6.3). Therefore, z is a common fixed point ofA,B, S and T . The uniqueness
of z follows easily by the inequality (3.6.1), (3.6.2) and (3.6.3). □

Remark. In theorems (3.2), (3.5) and (3.7) by a similar manner, we can prove thatA,B, S
and T have a unique common fixed point in X if we assume that the pairs (A,S) and
(B, T ) verify JCLRST property or CLRAB property instead of CLRST property.

Theorem 3.8. LetA,B, S and T be self - mappings of an NMS (X,F,L, P, ∗, ⋄) satisfying
the conditions of lemma (3.1) or lemma (3.4)or lemma (3.6). If the pairs (A,S) and (B, T )
are weakly compatible, then A,B, S and T have a unique common fixed point in X .

Proof. In view of lemma (3.1), lemma (3.4), lemma (3.6), the pairs (A,S) and (B, T )
verify the CLRST property, therefore there exist two sequence {xn} and {yn} in X such
that

lim
n→+∞

Axn = lim
n→+∞

Sxn = lim
n→+∞

Byn = lim
n→+∞

Tyn = z,

where z ∈ S(X) ∩ T (X). The rest of the proof follows as in the proof of theorems (3.2),
(3.5) and (3.7). □

Example 3.1. Let (X,F,L, P, ∗,3) be an NMS, where X = [3, 11), a ∗ b = min{a, b}
and a3b = max{a, b} with Fxy(t) = H(t − |x − y|), Lxy(t) = G(t − |x − y|) and
Pxy(t) = R(t − |x − y|) for all x, y ∈ X and t > 0. Define the self – mappings A,B, S
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and T by

Ax =

{
3 if x ∈ {3} ∪ (5, 11)
10 if x ∈ (3, 5]

, Bx =

{
3 if x ∈ {3} ∪ (5, 11)
9 if x ∈ (3, 5]

Sx =

 3 if x = 3
6 if x ∈ (3, 5)

x+1
2 if x ∈ [5, 11)

, Tx =

 3 if x = 3
9 if x ∈ (3, 5)

x− 2 if x ∈ [5, 11)

Therefore, A(X) = {3, 4} ⊂ [3, 9] = T (X) and B(X) = {3, 5} ⊂ [3, 6] = S(X). Thus,
all the conditions of theorem (3.5) are satisfied and 3 is a unique common fixed point of the
pairs (A,S) and (B, T ). Also, it is noted that theorem (3.2) cannot be used in the context
of this example as S(X) and T (X) are closed subsets of X .

4. CONCLUSION

In this paper, we have used the concept of CLRST property to prove certain popu-
lar fixed point theorems for weakly compatible mappings in neutrosophic menger spaces.
Some illustrative examples are also given to show the usability of the presented results.
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