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QUASISTATIC EVOLUTION OF DAMAGE IN
THERMO-ELECTRO-ELASTIC-VISCOPLASTIC MATERIALS WITH

NORMAL COMPLIANCE

AHMED HAMIDAT

ABSTRACT. We have studied contact problem in a quasistatic process with boundary con-
ditions, for which we couple a thermal effect and damage and electrical effect. We assume
that the contact is with normal compliance in a form with a gap function and is associated
to a slip rate-dependent version of Coulomb’s law of dry friction. We give the variational
formulation, then the existence and the uniqueness of the weak solution. The proof is based
on arguments of time-dependent variational inequalities, parabolic inequalities, and fixed
points.

1. INTRODUCTION

Numerous contacts occur between deformable bodies or between deformable and rigid
bodies in various industrial and daily life scenarios. Consequently, significant endeav-
ors have been dedicated to modeling and analyzing these contact processes, resulting in a
substantial body of engineering literature on the subject [5, 21, 14]. Due to the intricate
nature of contact phenomena, they give rise to novel and compelling mathematical mod-
els. The mathematical scrutiny of contact issues relies on fundamental physical principles
and demands expertise in partial differential equations, nonlinear analysis, and numerical
methods.

A piezoelectric material is one that produces an electrical voltage when subjected to me-
chanical stress, and conversely, exhibits mechanical deformations when an electric field is
applied. Such materials are commonly employed in various industries, serving as switches
in radiotronics, electroacoustics, or measuring equipment. Comprehensive models for elas-
tic materials with piezoelectric effects are detailed in [4, 24, 25, 26].

The study of problems involving the electro-mechanical properties of materials has been
extensive. Furthermore, a natural extension of these coupled electro-elastic models in-
volves incorporating temperature as an additional state variable to address thermal effects
alongside piezoelectric effects.

To comprehend the impact of temperature on the behavior of real materials such as
metals, magmas, and polymers, researchers in mathematics, physics, and engineering have
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delved into the study of thermo-elastic and thermo-viscoplastic constitutive laws. For de-
tailed examples and insights, refer to [20, 22, 23, 7, 1].

Damage, as another internal state variable, plays a crucial role in engineering by di-
rectly impacting the structural integrity of machines. Due to its significance, an increasing
number of engineering publications have explored damage models. Mathematical investi-
gations into models considering the influence of internal material damage on the contact
process have been undertaken. For a mathematical analysis of one-dimensional problems,
see [12].

The earliest mechanical damage models based on thermodynamic considerations can
be traced back to [8]. More recent and general models, as presented in [9, 10, 11, 13, 19],
derive from the principle of virtual power. In these works, material damage is characterized
by a damage function denoted by α, confined to values between zero and one. When
α = 1, the material is undamaged; when α = 0, the material is entirely damaged, and for
0 < α < 1, partial damage occurs, resulting in reduced system capacity.

Contact problems involving the coupling between thermal and mechanical fields are
considered in [6, 15, 16, 17, 18].

This paper is dedicated to exploring a novel mathematical model that characterizes
quasi-static contact conditions involving normal compliance and adhering to the Coulomb
law of dry friction between a thermo-piezoelectric body and an electrically conductive
foundation.

Our examination of the contact phenomenon unfolds through various stages, encom-
passing mathematical modeling and variational analysis, which includes establishing the
existence and uniqueness of the solution. In Section 2, the contact model is introduced, and
insights are provided on the associated boundary conditions. Moving forward, Section 3
outlines the assumptions regarding the data and formulates the variational description. The
subsequent Section 5 is dedicated to proving the existence and uniqueness of the solution.

2. PROBLEM STATEMENT

Consider a material body situated within a bounded domain Ω ⊂ Rd(d = 2, 3), fea-
turing a well-defined boundary surface Γ. This surface is divided into three measurable
parts, namely Γ1, Γ2 and Γ3, with the condition measΓ1 > 0. The unit outward normal
vector on Γ is denoted as ν. The body is fixed within a structure on Γ1. Surface trac-
tions of density f2 and voluminal forces of density f0, both varying slowly with respect
to time, act on Γ2 and Ω respectively. Additionally, the body is subject to electric charges
with volume density q0 and surface electric charges. To describe the latter, we introduce
another partition of the boundary into three parts: Γa, Γb and Γ3 with meas(Γa) > 0.
Frictional contact with a conductive foundation occurs on Γ3, where the electric potential
vanishes on Γa, and a prescribed surface electric charge density q2 is applied on Γb. At
each time instant, Γ3 is further divided into two parts: one where the body and foundation
are in contact, and the other where they are separated. The boundary of the contact part
represents a free boundary, determined by the solution of the problem. For generality, we
assume the existence of a gap, denoted as g = g(x), between Γ3 and the foundation in
the reference configuration. This gap is measured along the outer normal ν. It is crucial
to note that the assumption meas(Γ1) > 0 is essential in quasistatic problems. Without
this assumption, the problem becomes noncoercive mathematically, and many estimates
and results outlined below may not hold. This aligns with the physical scenario where, if
Γ1 = 0, the body is not restrained and can move freely in space as a rigid body.
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The classical formulation of the mechanical problem involving an electro-elastic-viscoplastic
body with damage and thermal effects can be articulated as follows.

Problem P . Find a displacement field u : Ω×(0, T ) → Rd, a stress field σ : Ω×(0, T ) →
Sd, an electric potential field φ : Ω× (0, T ) → R, a temperature field θ : Ω× (0, T ) → R,
an electric displacement field D : Ω×(0, T ) → Rd, and a damage field α : Ω×(0, T ) → R
such that

σ(t) =Aε(u̇(t)) + Bε(u(t))− E∗E(φ(t))

+

∫ t

0

G(σ(s)−A(ε(u̇(s)) + E∗E(φ(t)), ε(u(s)), θ(s), α(s))ds

in Ω, a.e .t ∈ (0, T ),

(2.1)

D = Eε(u) +B∇(φ) in Ω× (0, T ), (2.2)

Divσ + f0 = 0 in Ω× (0, T ), (2.3)

divD − q0 = 0 in Ω× (0, T ), (2.4)

θ̇ − k0∆θ = Θ(σ(t)−A(ε(u̇(t)) + E∗E(φ(t)), ε (u) , θ, α) + ρ

in Ω× (0, T ),
(2.5)

α̇− k1∆α+ ∂φK(α) ∋ S (σ(t)−A(ε(u̇(t)) + E∗E(φ(t)), ε(u), θ, α)

in Ω× (0, T ),
(2.6)

u = 0 on Γ1 × (0, T ), (2.7)

σν = f2 on Γ2 × (0, T ), (2.8)

− σν = p (uν − g) on Γ3 × (0, T ), (2.9)

∥στ∥ ≤ µ (∥u̇τ∥) |σν |
−στ = µ (∥u̇τ∥) |σν | u̇τ

∥uτ∥ if u̇τ ̸= 0

}
on Γ3 × (0, T ), (2.10)

∂α

∂ν
= 0 on Γ× (0, T ), (2.11)

φ = 0 on Γa × (0, T ), (2.12)

D.ν = q2 on Γb × (0, T ), (2.13)

D · ν = ψ (uν − g)ϕl (φ− φ0) on Γ3 × (0, T ), (2.14)

k0
∂θ

∂ν
+ k2θ = 0 on Γ× (0, T ), (2.15)

u(0) = u0, θ(0) = θ0, α(0) = α0, in Ω. (2.16)

Now we will provide some comments on the equalities, inclusion and boundary condi-
tions (2.1)-(2.16) . Equations (2.1)-(2.2) represents the law of thermo-electro-elastic-
viscoplastic behaviour with damage were A and B are the viscosity and elasticity op-
erators, respectively, and G is the viscoplastic operator, where θ represents the absolute
temperature and α is the damage field. E(φ) = −∇φ is the electric field, E = (eijk)
represent the third order piesoelectric tensor, E∗ is its transposition, and (2.3)-(2.4) repre-
sent the equilibrium equations for the stress and electric displacement fields. (2.5) repre-
sents the conservation of energy where k0 is a strictly positive constant, Θ is a nonlinear
constitutive function that represents the heat generated by the internal forces, ρ is a data,
which represents the source of heat density. The evolution of the damage field is gov-
erned by the inclusion (2.6) with k1 is a strictly positive constant, ∂φK represents the
sub-differential of the indicator function φK of the set K of admissible damage functions
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defined byK = {α ∈ H1(Ω)| 0 ≤ α ≤ 1 a.e. inW} and S is a given constituent function;
which represents the source of the damage in the system. Equalities (2.7) and (2.8) are the
conditions at the displacement-traction limits, respectively. Equation (2.9) represents the
normal compliance condition on the contact surface Γ3 where p is a given positive func-
tion, which will be described below. (2.10) represents a version of the Coulomb law of dry
friction, (2.11) is a homogeneous Neumann boundary condition for the damage field on Γ

(2.12) and (2.13) represent the electric boundary conditions described on Γa and Γb.
The electrical condition on the potential contact surface Γ3 presented by Equality (2.14) ,
where ϕl is the potential of the electric foundation. The function ϕl is given by

ϕl(s) =


−l if s < −l,
s if − l ≤ s ≤ l,

l if s > l.

(2.17)

here l is a large positive constant, it may be arbitrarily large, higher than any possible peak
voltage in the system. The function ψ is given bellow. For more details see [20]. (2.15)
represent a Fourier boundary condition for the temperature, (2.16) are the initial date.

3. VARIATIONAL FORMULATION AND PRELIMINARIES

Here are some notations and conventions that we will use throughout this paper. We
denote by Sd(d = 2, 3) the space of symmetric tensors of order two on Rd; (, ) and ∥.∥
represent respectively the scalar product and the Euclidean norm on Rd and Sd. Thus, we
have

u · v = uivi, ∀u,v ∈ Rd and σ · τ = σijτij ∀σ, τ ∈ Sd,
∥u∥ = (u · u) 1

2 , ∀u ∈ Rd and ∥σ∥ = (σ · σ) 1
2 , ∀σ ∈ Sd.

Here and below, the indices i, j and k run from 1 to d and the summation convention over
repeated indices is used. We denote by vν and vτ the normal and tangential components
of v on the boundary given by

vν = v.ν, vτ = v − uνν.

We denote by σ = σ(x; t) the field of stresses, by u = u(x; t) the field of displacements
and by ε(u) the field of infinitesimal deformations. To simplify the notations, we do not
explicitly indicate the dependence of the functions on x ∈ Ω and t ∈ [0, T ]. For a stress
field σ we denote by σν and στ the normal and tangential components at the boundary
given by

σν = σν · ν, στ = σν − σνν.

Now we introduce a Hilbert space

H1(Ω) = {u ∈ L2(Ω) | ∂iu ∈ L2(Ω), i = 1, ....d}.
we introduce the spaces

H = L2(Ω;Rd), H1 = {u ∈ H | ε(u) ∈ H} = H1(Ω;Rd),
H =

{
σ = (σij) | σij = σji ∈ L2(Ω)

}
= L2(Ω;Sd), H1 = {σ ∈ H | Divσ ∈ H}.

The spaces H , H1; H, and H1 are real Hilbert spaces endowed with the scalar products
given by

(u,v)H =

∫
Ω

uividx ∀u,v ∈ H, (σ, τ )H =

∫
Ω

σijτijdx ∀σ, τ ∈ H,



QUASISTATIC CONTACT PROBLEMS 25

(u,v)H1
= (u,v)H + (ε(u), ε(v))H, ∀u,v ∈ H1,

(σ, τ )H1
= (σ, τ )H + (Divσ,Div τ )H , σ, τ ∈ H1.

where ε : H1
(
Ω;Rd

)
→ L2

(
Ω;Sd

)
and Div : H1 → L2

(
Ω;Rd

)
are respectively the

operators of deformation and divergence, defined by

ε(u) = (εij(u)) , εij(u) =
1

2
(ui,j + uj,i) , Div(σ) = σij,j .

The associated norms in H , H1, H and H1 are denoted by ∥.∥H , ∥.∥H1
, ∥.∥H and ∥.∥H1

respectively. Since the boundary Γ is Lipschitz, the exterior normal vector ν at the bound-
ary is defined a.e. For any vector field v ∈ H1 we use the notation v to denote the trace γv
of v on Γ. Recall that the trace map γ : H1 → HΓ is linear and continuous, but not sur-
jective. The image of H1 by this map is denoted by HΓ, this subspace injects continuously
into L2(Γ)d. Let H ′

Γ be the dual of HΓ, and (.; .) the duality product between H ′
Γ and HΓ

For all σ ∈ H1, there exists an element σν ∈ H ′
Γ such that

(σν, γv) = (σ, ε(v))H + (Divσ, v)H ∀v ∈ H1.

Also, if σ is regular enough (e.g. C1), we have the formula

(σν, γv) =

∫
Γ

σν.vda, ∀v ∈ H1.

So, for fairly regular σ we have the following formula (Green’s Formula):

(σ, ε(v))H + (Divσ,v)H =

∫
Γ

σν.vda, ∀v ∈ H1.

We define the closed subspaces of L2(Ω and H1

V =
{
v ∈ L2(Ω) | εij(v) ∈ L2(Ω)

}
= H1(Ω), V = {v ∈ H1 | v = 0 sur Γ1} . (3.1)

Since meas(Γ1) > 0, Korn’s inequality holds on V , then, there exists a constant CK > 0
depending only on Ω and Γ1 such that

∥ε(v)∥H ≥ CK∥v∥H1(Ω)d , ∀v ∈ V.

A proof of Korn’s inequality may be found in ([27] ,p.79). we consider the inner product
and the associated norm given by

(u,v)V = (ε(u), ε(v))H, ∥v∥V = ∥ε(v)∥H, u,v ∈ V. (3.2)

It follows that ∥.∥H1(Ω)d and ∥.∥V are equivalent norms on V and therefore (V, ∥.∥V )
is a real Hilbert space. Moreover, by the Sobolev trace Theorem and (3.2) there exists a
constant c0 > 0 depending only on Ω,Γ1 and Γ3 such that

∥v∥L2(Γ3)
d ≤ c0∥v∥V , ∀v ∈ V. (3.3)

In what follows, we define the Sobolev spaces associated with the electrical unknowns
(field of the electrical displacement D and the electrical potential φ ) of the electro-
mechanical problem which will be introduced in this paper. Let the spaces

W =
{
D = (Di) | Di ∈ L2(Ω),divD ∈ L2(Ω)

}
, (3.4)

W =
{
ξ ∈ H1(Ω), ξ = 0 on Γa

}
. (3.5)
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where divD = (Di,i). These spaces W and W are real Hilbert spaces endowed with the
scalar products given by

(D,E)W = (D,E)H + (divD,divE)L2(Ω), (3.6)

(φ, ξ)W =

∫
Ω

∇φ.∇ξdx, (3.7)

and the associated norms ∥.∥W and ∥.∥W , respectively.

∥D∥2W = ∥D∥2L2(Ω)d + ∥divD∥2L2(Ω), ∥ϕ∥W = ∥∇ϕ∥L2(Ω)d

Since meas(Γa) > 0, the Friedrichs-Poincaré inequality is satisfied, thus,

∥∇ζ∥H ≥ cF ∥ζ∥H1(Ω), ∀ζ ∈W, (3.8)

where cF > 0 is a constant which depends only on Ω and Γa and ∇ζ = (ζ.,i). It follows
from (3.8) that ∥.∥H1(Ω) and ∥.∥W are equivalent norms on W and therefore (W, ∥.∥W ) is
a real Hilbert space.

Moreover, by the Sobolev trace theorem, there exist a constant c̃0 such that

∥ϕ∥L2(Γ3) ≤ c̃0∥ϕ∥W , ∀ϕ ∈W. (3.9)

Moreover,recall that when D ∈ W is a regular function, the following Green’s type for-
mula holds

(D,∇ζ)H + (divD, ζ)L2(Ω) =

∫
Γ

D · νζda, ∀ζ ∈ H1(Ω). (3.10)

For any real Hilbert space X , we use the classical notation for the spaces Lp(0, T ;X) and
W k,p(0, T ;X), where 1 ≤ p ≤ ∞ and k ≥ 1. For T > 0 we denote by C(0, T ;X) and
C1(0, T ;X) the space of continuous and continuously differentiable functions from [0, T ]
to X , respectively, with the norms

∥u∥C(0,T ;X) = max
t∈[0,T ]

∥u(t)∥X .

∥u∥C1(0,T ;X) = max
t∈[0,T ]

∥u(t)∥X + max
t∈[0,T ]

∥u̇(t)∥X .

In order to obtain existence and uniqueness results in study of variational inequality that
we have in contact mechanics. Given the operators A : X → X and B : X → X , the
functions j : X ×X → R and f : [0, T ] → X . We consider the following problems

Problem I Find u : [0, T ] → X such that

(Au̇(t), v − u̇(t))X + (Bu(t), v − u̇(t))X + j(u(t), v)

−j(u(t), u̇(t)) ≥ (f(t), v − u̇(t))X ∀v ∈ X, t ∈ [0, T ],
(3.11)

u(0) = u0. (3.12)

Theorem 3.1. Let X be a Hilbert space. Assume that the operator A : X → X satisfies
(a) There exists mA > 0 such that

(Au1 −Au2, u1 − u2)X ≥ mA ∥u1 − u2∥2X , ∀u1, u2 ∈ X.

(b) There exists L > 0 such that

∥Au1 −Au2∥X ≤ L ∥u1 − u2∥X ,∀u1, u2 ∈ X.

(3.13)
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The functional j : X ×X → R satisfied
(a) For all u ∈ X, j(u, .) is convex and l.s.c.

(b) There exists α > 0 such that

j (u1, v2)− j (u1, v1) + j (u2, v1)− j (u2, v2)

≤ α ∥u1 − u2∥X ∥v1 − v2∥X , ∀u1, u2, v1, v2 ∈ X.

(3.14)

The operator B : X → X satisfies

∃LB > 0 such that ∥Bu−Bv∥X ≤ LB ∥u− v∥X ,∀u, v ∈ X. (3.15)

Finally, we assume that

f ∈ C([0, T ], X). (3.16)
u0 ∈ X. (3.17)

Then
1) There is a unique solution u ∈ C1([0, T ];X) to problem I.
2) If u1 and u2 are two solutions of the problem I corresponding to the data f1, f2 ∈

C([0, T ];X), then there exists c > 0 such that

∥u̇1(t)− u̇2(t)∥X ≤ c (∥f1(t)− f2(t)∥X + ∥u1(t)− u2(t)∥X) , ∀t ∈ [0, T ]. (3.18)

The proof of Theorem 3.1 can be found in reference [20].
Now we consider X and H two real Hilbert spaces such that the inclusion map of

(V, ∥.∥X) in (H, ∥.∥H) is continuous and dense. Identifying the dual of H with itself, i.e.
we can write the Gelfand triplet X ⊂ H ⊂ X ′. The notations ∥.∥X , ∥.∥X′ and (., .)X′×X
represent the norms on X , X ′ and the product of duality between X ′ and X , respectively

Theorem 3.2. Let X ⊂ H ⊂ X ′ be a Gelfand triple. Assume that A : X → X ′ is a
hemicontinuous and monotone operator that satisfies

(Av, v)X′×X ≥ w∥v∥2X + ς ∀v ∈ X, (3.19)

∥Av∥X′ ≤ C (∥v∥X + 1) ∀v ∈ X. (3.20)

for some constants w > 0, C > 0 and ς ∈ R. Then, given u0 ∈ H and f ∈ L2(0, T ;X ′),
there exists a unique function u that satisfies

u ∈ L2(0, T ;X) ∩ C([0, T ];H), u̇ ∈ L2 (0, T ;X ′) ,

u̇(t) +Au(t) = f(t) a.e. t ∈ (0, T ),

u(0) = u0.

The previous abstract result can be found in [2, 3].
In the study of the problem P , we consider the following assumptions
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The viscosity operator A : Ω× Sd −→ Sd satisfies

(a) There exists LA > 0 such that

∥A(x, ε1)−A(x, ε2)∥ ≤ LA∥ε1 − ε2∥,

for all ε1, ε2 ∈ Sd, a.e x ∈ Ω.

(b) There exists mA > 0 such that

(A(x, ε1)−A(x, ε2)).(ε1 − ε2) ≥ mA∥ε1 − ε2∥2,

for all ε1, ε2 ∈ Sd, a.e x ∈ Ω.

(c) The mapping x 7→ A(x, ε) is Lebesgue measurable on Ω,

for any ε ∈ Sd.
(d) The mapping x 7→ A(x,0) ∈ H.

(3.21)

The elastic function B : Ω× Sd × R −→ Sd satisfies

(a) There exists LB > 0 such that

∥B(x, ε1)− B(x, ε2)∥ ≤ LB∥ε1 − ε2∥, ∀ε1, ε2 ∈ Sd,∀ a.e x ∈ Ω.

(b)The mapping x 7→ B(x, ε) is Lebesgue measurable on Ω,

∀ε ∈ Sd.
(c) The mapping x 7→ B(x, 0) ∈ H.

(3.22)

The plasticity operator G : Ω× Sd × Sd × R× R −→ Sd satisfies

(a)There exists a constant LG > 0 such that

∥G (x,σ1, ε1, θ1, α1)− G (x,σ2, ε2, θ2, α2)∥
≤ Lg (∥σ1 − σ2∥+ ∥ε1 − ε2∥+ ∥θ1 − θ2∥+ ∥α1 − α2∥) ,

∀σ1,σ2, ε1, ε2 ∈ Sd, ∀θ1, θ2 ∈ R, ∀α1, α2 ∈ R, a.e. x ∈ Ω.

(b) The mapping x 7→ G(x,σ, ε, θ, α) is Lebesgue measurable on Ω,

∀σ, ε ∈ Sd,∀θ, α ∈ R.
(c) The mapping x 7→ G(x,0,0, 0, 0) ∈ H.

(3.23)

The function Θ : Ω× Sd × Sd × R× R −→ R satisfies

(a) There exists a constant LΘ > 0 such that

∥Θ(x,σ1, ε1, θ1, α1)−Θ(x,σ2, ε2, θ2, α2)∥ ≤ LΘ(∥σ1 − σ2∥+ ∥ε1 − ε2∥
+ ∥θ1 − θ2∥+ ∥α1 − α2∥),

for all ε1, ε2,σ1,σ2 ∈ Sd, and θ1, θ2, α1, α2 ∈ R, a.e x ∈ Ω.

(b) For any σ, ε ∈ Sd, and θ, α ∈ R,x 7→ Θ(x,σ, ε, θ, α) is Lebesgue
measurable on Ω.

(c) The mapping x 7→ Θ(x,0,0, 0, 0) ∈ L2(Ω).
(3.24)
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The function of the damage source S : Ω× Sd × Sd × R× R −→ R satisfies

(a)There exists a constant LS > 0 such that

∥S (x,σ1, ε1, θ1, α1)− S (x,σ2, ε2, θ2, α2)∥
≤ LS (∥σ1 − σ2∥+ ∥ε1 − ε2∥+ ∥θ1 − θ2∥+ ∥α1 − α2∥) ,

∀σ1,σ2, ε1, ε2 ∈ Sd, ∀θ1, θ2 ∈ R, ∀α1, α2 ∈ R, a.e. x ∈ Ω.

(b) The mapping x 7→ S(x,σ, ε, θ, α) is Lebesgue measurable on Ω,

∀σ, ε ∈ Sd,∀θ, α ∈ R.
(c) The mapping x 7→ S(x,0,0, 0, 0) ∈ L2(Ω).

(3.25)

The surface electrical conductivity function ψ : Γ3 × R → R+ satisfies

(a) There exists Lψ > 0 such that
∥ψ (., u1)− ψ (., u2)∥ ≤ Lψ ∥u1 − u2∥ , for all u1, u2 ∈ R.
(b) There exists Mψ > 0 such that ∥ψ(x, u)∥ ≤Mψ,

for all u ∈ R, a.e. x ∈ Γ3.
(c)x 7→ ψ(x, ) is measurable on Γ3, for all u ∈ R,
(d)x 7→ ψ(x, u) = 0, for all u ≤ 0.

(3.26)

Electric permittivity operator B = (bij) : Ω× Rd → Rd satisfies
(a) B(x, E) = (bij(x)Ej) for all E = (Ei) ∈ Rd, a.e. x ∈ Ω.

(b) bij = bji ∈ L∞(Ω), 1 ≤ i, j ≤ d.

(c) There exists a constant mB > 0 such that

BE.E ≥ mB∥E∥2, for all E = (Ei) ∈ Rd, a.e. in Ω.

(3.27)

The piezoelectric operator E : Ω× Sd → Rd satisfies{
(a) E = (eijk) , eijk ∈ L∞(Ω), 1 ≤ i, j, k ≤ d.

(b) E(x)σ · τ = σ · E∗τ , for all σ ∈ Sd, and all τ ∈ Rd.
(3.28)

The normal compliance function p : Γ3 × R −→ R+ satisfies
(a) There exists L > 0 such that
∥p (x, u1)− p (x, u2)∥ ≤ L ∥u1 − u2∥

∀u1, u2 ∈ R, a.e. x ∈ Γ3

(d) For any u ∈ R,x 7→ p(x, u) is measurable on Γ3

(e) x 7→ p(x, u) = 0, for all u ≤ 0.

(3.29)

The coefficient of friction satisfies

(a) µ : Γ3 × R+ −→ R+

(b) There exists Lµ > 0 such that

∥µ (x, r1)− µ (x, r2)∥ ≤ Lµ ∥r1 − r2∥ , ∀r1, r2 ∈ R+, a.e. x ∈ Γ3,

(c) The mapping x 7−→ µ(x, r) is Lebesgue measurable on Γ3, ∀r ∈ R+,

(d) The mapping x 7−→ µ(x, 0) ∈ L2 (Γ3) .

(3.30)
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We assume that the body forces, surface tractions, volume heat source and initial date,
satisfy

f0 ∈ C(0, T, L2(Ω)), f2 ∈ C(0, T, L2(Γ2)
d), ρ ∈ L2(0, T, L2(Ω)). (3.31)

u0 ∈ V, θ0 ∈ V, α0 ∈ K, q0 ∈ C(0, T, L2(Ω)), q2 ∈ C(0, T, L2(Γb)), (3.32)
ki > 0; i = 0, 1, 2. (3.33)

We define the bilinear form ai : H
1(Ω)×H1(Ω) → R, (i = 0, 1).

a0(ζ, ξ) = k0

∫
Ω

∇ζ · ∇ξdx+ k2

∫
Γ

ζξdγ. (3.34)

a1(ζ, ξ) = k1

∫
Ω

∇ζ · ∇ξdx. (3.35)

Next. We define four mappings j : V × V → R, h : V ×W → W , f : [0, T ] → V
and q : [0, T ] →W , respectively, by

j(u,v) =

∫
Γ3

p(uν − g)vνdΓ +

∫
Γ3

µ (∥u̇τ∥) p(uν − g) ∥vτ∥ dΓ ∀u,v ∈ V, (3.36)

(h(u, φ), ζ)W =

∫
Γ3

ψ (uν − g)ϕl (φ− φ0) ζda, (3.37)

(f(t),v)V =

∫
Ω

f0(t) · vdx+

∫
Γ2

f2(t) · vda, (3.38)

(q(t), ζ)W =

∫
Ω

q0(t)ζdx−
∫
Γb

q2(t)ζda, (3.39)

for all u,v ∈ V , φ, ζ ∈W and t ∈ [0, T ]. Note that

f ∈ C (0, T ;V ) , q ∈ C(0, T ;W ). (3.40)

By a standard procedure based on Green’s formula we can derive the following varia-
tional formulation of the contact problem (2.1)-(2.16).

problem PV . Find a displacement field u : (0, T ) → V , a stress field σ : (0, T ) → H, an
electric potential φ : (0, T ) →W, a damage field α : (0, T ) → H1(Ω), and a temperature
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θ : (0, T ) → H1(Ω) such that

σ(t) =Aε(u̇(t)) + Bε(u(t))− E∗E(φ(t))

+

∫ t

0

G(σ(s)−A(ε(u̇(s)) + E∗E(φ(t)), ε(u(s)), θ(s), α(s))ds

in Ω, a.e .t ∈ (0, T ),

(3.41)

(σ(t), ε(v)− ε(u̇(t))H + j(u(t),v)− j(u(t), u̇(t)) ≥ (f(t),v − u̇(t))V (3.42)

(B∇φ(t),∇ζ)H − (Eε(u(t)),∇ζ)H + (h(u(t), φ(t)), ζ)W = (q(t), ζ)W , (3.43)

(θ̇(t), v)L2(Ω) + a0(θ(t), v)

= (Θ(σ(t)−A(ε(u̇(t)) + E∗E(φ(t)), ε(u(t)), θ(t), α(t)), v)L2(Ω)

+ (ρ(t), v)L2(Ω), ∀v ∈ H1(Ω), a.e. t ∈ (0, T ),

(3.44)

α(t) ∈ K, (α̇(t), ξ − α(t))L2(Ω) + a(α(t), ξ − α(t))

≥ (S (σ(t)−A(ε(u̇(t)) + E∗E(φ(t)), θ(t), α(t)) , ξ − α(t))L2(Ω) ,

∀ξ ∈ K, t ∈ (0, T ),

(3.45)

u(0) = u0, θ(0) = θ0, α(0) = α0. (3.46)

Our main existence and uniqueness result for Problem PV is in the following section.

4. EXISTENCE AND UNIQUENESS

Theorem 4.1. Assume that (3.21)-(3.33) hold, Then there exists a unique solution (u,σ, φ, θ, α,D)
to problem PV . Moreover, the solution has the regularity

u ∈ C1(0, T ;V ), (4.1)

σ ∈ C(0, T ;H), Divσ ∈ C(0, T ;H), (4.2)

φ ∈ C(0, T ;W ), (4.3)

θ ∈ L2 (0, T ;V) ∩ C
(
0, T ;L2(Ω)

)
∩W 1,2 (0, T ;V ′) , (4.4)

α ∈W 1,2
(
0, T ;L2(Ω)

)
∩ L2

(
0, T ;H1(Ω)

)
, (4.5)

D ∈ C(0, T ;W). (4.6)

A set of functions (u,σ, φ, θ, α,D ) satisfying (3.41)-(3.46) is called a weak solution
of the thermo-elctro-elastic-vescoplastic contact problem P. We conclude that, under the
conditions specified in the previous theorem, the problem (2.1)-(2.16) has a unique weak
solution. We now deal with the proof of Theorem 4.1, which is based on classical results of
evolution equations and inequalities with monotonic operators and fixed point arguments.
To this end, we assume that (3.21)-(3.33) hold, and C will represent a strictly positive
constant which may depend on the data of the problem but it is independent of time t, and
its value may change from place to place. For simplicity, we remove in the following the
explicit dependence of the various functions on x ∈ Ω ∪ Γ.

Let η ∈ C(0, T ;H), we consider the following variational problem.
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Problem P1
η . Find a displacement field uη : [0, T ] → V , such that

(Aε(u̇η(t)), ε(v − u̇η(t)))H + (Bε(uη(t)), ε(v − u̇η(t)))H + (η(t),v − u̇η(t))H
+j (uη(t),v)− j (uη(t), u̇η(t)) ≥ (f,v − u̇η(t))V

a.e. t ∈ (0, T ), for all v ∈ V,
(4.7)

uη(0) = u0. (4.8)

We have the following result for P1
η

Lemma 4.2. There is a unique solution uη ∈ C1([0, T ];V ) to the problem (4.7)-(4.8).
Moreover, if uη1 , and uη2 Are two solutions of the problem (4.7)-(4.8) corresponding to
the data η1, η2 ∈ C([0, T ];H), then there exists c > 0 such that

∥u̇1(t)− u̇2(t)∥V ≤ c (∥η1(t)− η(t)∥H + ∥u1(t)− u2(t)∥V ) , ∀t ∈ [0, T ]. (4.9)

Proof. We use the Riesz-Fréchet representation theorem to define the operators A : V →
V , B : V → V and the function f : [0, T ] → V by equalities

(Au,v)V = (Aε(u), ε(v))H, (4.10)

(Bu,v)V = (Bε(u), ε(v))H, (4.11)

(fη(t),v)V = (f(t),v)V − (η(t), ε(v))H. (4.12)

For all u,v ∈ V and t ∈ [0, T ]. It follows from the assumptions (3.21)

(Au1 −Au2,u1 − u2)V = (A (ε (u1))−A (ε (u2)) , ε (u1)− ε (u2))H

≥ mA ∥ε (u1)− ε (u2)∥2H ≥ C ∥u1 − u2∥2V .
Also for all u1,u2 ∈ V and v ∈ V we have

∥(Au1 −Au2,v)V ∥ = ∥(A (ε (u1))−A (ε (u2)) , ε(v))∥H ,

≤ ∥A (ε (u1))−A (ε (u2))∥H ∥ε(v)∥H,
≤ LA ∥ε (u1)− ε (u2)∥H ∥ε(v)∥H,
≤ LA ∥u1 − u2∥V ∥v∥V .

So
∥Au1 −Au2∥V ≤ C∥u1 − u2 ∥V .

Similarly, using (3.22) we obtain

∥Bu1 −Bu2∥V ≤ C ∥u1 − u2∥V .
By means of (3.29)-(3.30) and (3.3) we obtain

j (u1,v2)− j (u1,v1) + j (u2,v1)− j (u2,v2)

=

∫
Γ3

(p (u1ν − g)− p (u2ν − g)) (v2ν − v1ν) dΓ

+

∫
Γ3

(µ (∥u1τ∥) p (u1ν − g)− µ (∥u2τ∥) p (u2ν − g)) (∥v2τ∥ − ∥v1τ∥) dΓ

≤ Lp∥γ∥ ∥u1ν − u2ν∥L2(Γ3)
∥v1 − v2∥V

+ µ∗Lp∥γ∥ ∥u1ν − u2ν∥L2(Γ3)
∥v1 − v2∥V

+ Lµp
∗∥γ∥2 ∥u1 − u2∥V ∥v1 − v2∥V

(4.13)
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For all u1,u2,v1 and v2 ∈ V , which shows that the functional j satisfies the condition
(3.14) (b) on V . We note that fη ∈ C([0, T ];V ). Finally, note that (3.31) shows that
the condition (3.17) is also satisfied. And from it, the conditions of the Theorem 3.1 are
satisfied, which means that there is a single weak solution uη ∈ C1(0, T ;V ). □

In the second step we use the displacement field uη obtained in Lemma 4.2, to construct
the following variational problem for the an electrical potential.

Problem P2
η . Find an electrical potential φη : (0, T ) →W such that

(B∇φη(t),∇ζ)H − (Eε (uη(t)) ,∇ζ)H + (h (uη(t), φη(t)) , ζ)W
= (q(t), ζ)W , for all ζ ∈W, t ∈ (0, T ).

(4.14)

We have the following result for problem P2
η

Lemma 4.3. Problem (4.14) has unique solution φη which satisfies the regularity (4.3).
Moreover, ifφη1 andφη2 are the solutions of (4.14) corresponding to η1,η2 ∈ C([0, T ];H),
then there exists C > 0 such that

∥φη1(t)− φη2(t)∥W ≤ C ∥uη1(t)− uη2(t)∥V ∀t ∈ [0, T ]. (4.15)

To prove the above lemma, we use an abstract existence and unique result which may
be found in [20] .

In the third step, we use the displacement field uη obtained in Lemma 4.2 to consider
the following variational problem.

Problem Pχ. Find the temperature field θχ : (0, T ) → L2(Ω)(
θ̇χ(t),v

)
L2(Ω)

+ a0 (θχ(t),v) = (χ(t) + ρ(t),v)L2(Ω),

∀v ∈ L2(Ω), a.e. t ∈ (0, T ),
(4.16)

θχ(0) = θ0, in Ω. (4.17)

Lemma 4.4. There exists a unique solution θχ to the auxiliary problem Pχ satisfying (4.4).

Proof. The inclusion of the trace of (V; ∥.∥V) in (L2(Ω), ∥.∥L2(Ω)) is continuous and
dense, we can write the Gelfand Triplet

V ⊂ L2(Ω) ⊂ V ′.

We use the notation (., .)V′×V to denote the duality product between V ′ and V , we have

(ζ, ξ)V′×V = (ζ, ξ)L2(Ω).

We consider the linear operator A0 : V → V ′ defined by

(A0ζ, ξ)V′×V = a0(ζ, ξ), ∀ζ, ξ ∈ V.
we use this last equality and the de definition (3.34), we can write for all ζ, ξ ∈ V∣∣(A0ζ, ξ)V′×V

∣∣ ≤ k0

∫
Ω

|∇ζ.∇ξ|dx+ k2

∫
Γ

|ζξ|da,

by using Hölder’s inequality, we obtain

∣∣(A0ζ, ξ)V′×V
∣∣ ≤ k0∥∇ζ∥L2(Ω)d∥∇ξ∥L2(Ω)d + k2∥ζ∥L2(Γ)∥ξ∥L2(Γ). (4.18)

Keeping in mind Sobolev trace Theorem, the inequality (4.18) becomes

∥A0ζ∥V′ ≤ C∥ζ∥V ,
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which shows that A0 : V → V ′ is continuous and therefore hemicontinuous. Easy to make
sure that

(A0ζ, ζ)V′×V ≥ 0,

i.e, that A0 : V → V ′ is a monotone operator.
On the other hand, by means of (4.18), as k2 > 0 and for all ζ ∈ V we obtain

(A0ζ, ζ)V′×V ≥ k0∥∇ζ∥2L2(Ω)d ,

and from where
(A0ζ, ζ)V′×V ≥ k0∥ζ∥2V − k0∥ζ∥2L2(Ω).

Then, A0 satisfies condition (3.19) of Theorem 3.2 with w = k0 and ς = −k0∥ξ∥2L2(Ω),
according to the above we have also A0 satisfies the condition (3.20). It now follows
from the regularity (3.31) and χ ∈ L2(0, T ;V ′) that ρχ = χ + ρ ∈ L2(0, T ;L2(Ω)) and
θ0 ∈ L2(Ω). Finally, we notice that all the conditions of Theorem 3.2 hold, so we conclude
that there exists a unique function θχ which satisfies

θχ ∈ L2(0, T ;V) ∩ C
(
[0, T ];L2(Ω)

)
, θ̇χ ∈ L2 (0, T ;V ′) , (4.19)

θ̇χ(t) +A0θχ(t) = ρχ(t) a.e.t ∈ (0, T ), (4.20)

θχ(0) = θ0. (4.21)

□

In the fourth step we let λ ∈ C(0, T ;L2(Ω))

Problem Pλ. Find the damage field αλ : (0, T ) → L2(Ω) such that αλ(t) ∈ Y and

(α̇λ(t), ξ − αλ)L2(Ω) + a (αλ(t), ξ − αλ(t))

≥ (λ(t), ξ − αλ(t))L2(Ω) ∀ξ ∈ K, a.e. t ∈ (0, T ),
(4.22)

αλ(0) = α0. (4.23)

For the study of problem Pλ, we have the following result.

Lemma 4.5. There exists a unique solution αλ to the auxiliary problem Pλ satisfying (4.5).

Proof. The inclusion mapping of
(
H1(Ω), ∥ · ∥H1(Ω)

)
into

(
L2(Ω), ∥ · ∥L2(Ω)

)
is contin-

uous and its range is dense. We denote by (H1(Ω))′ the dual space of H1(Ω) and, identi-
fying the dual of L2(Ω) with itself, we can write the Gelfand triple

H1(Ω) ⊂ L2(Ω) ⊂
(
H1(Ω)

)′
.

We use the notation (., .)(H1(Ω))′×H1(Ω) to represent the duality pairing between (H1(Ω))′

and (H1(Ω)). We have

(α, ς)(H1(Ω))′×H1(Ω) = (α, ς)L2(Ω), ∀α ∈ L2(Ω), ς ∈ H1(Ω),

and we note that K is a closed convex set in (H1(Ω)), using the definition (3.35) of the
bilinear form a, for all ϑ, ς ∈ H1(Ω), we have a(ϑ, ς) = a(ς, ϑ) and

|a(ϑ, ς)| ≤ k0∥∇ϑ∥H∥∇ς∥H ≤ c∥ϑ∥H1(Ω)∥ς∥H1(Ω),

Therefore, a is continuous and symmetric. Thus, for all ϑ ∈ H1(Ω), we have

a(ϑ, ϑ) = k0∥∇ϑ∥2H ,
so

a(ϑ, ϑ) + (k0 + 1)∥ϑ∥2L2(Ω) ≥ k0

(
∥∇ϑ∥2H + ∥ϑ∥2L2(Ω)

)
,
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which implies

a(ϑ, ϑ) + c0l∥ϑ∥2L2(Ω) ≥ c1∥ϑ∥2H1(Ω) with c0 = k0 + 1 and c1 = k0.

Finally, we use that condition α0 ∈ K, and we use a standard result for parabolic
variational inequalities ( see [3], p. 124), we find that there exists a unique function α ∈
W 1,2

(
0, T ;L2(Ω)

)
∩L2

(
0, T ;H1(Ω)

)
, such that α(0) = α0, α(t) ∈ K for all t ∈ [0, T ]

and for almost all t ∈ (0, T )

(α̇λ(t), ς − αλ)(H1(Ω))′×H1(Ω) + a (αλ(t), ς − αλ(t)) ≥ (λ(t), ς − αλ(t))L2(Ω) ,

∀ς ∈ K,

□

In the fifth step, we use uη , φη , θη and αλ obtained in Lemmas 4.2, 4.3, 4.4 and 4.5,
respectively to construct the following Cauchy problem for the stress field.

Problem Pη,χ,λ. Find the stress field ση,λ,µ : [0, T ] → H which is a solution of the
problem

ση,χ,λ(t) = Bε (uη(t)) +
∫ t

0

G (ση,χ,λ(s), ε (uη(s)) , θχ(s), αλ(s)) ds ∀t ∈ [0, T ].

(4.24)

Lemma 4.6. Pη,χ,λ has a unique solutions ση,χ,λ ∈ C(0, T ;H). Moreover, if σηi,χi,λi
,

uηi , θχi and αλi represent the solutions of Problems Pη,χ,λ, P1
η , P2

η Pχ and, Pλ respec-
tively, for (ηi, χi, λi) ∈ C(0, T ;H × L2(Ω) × L2(Ω)), i = 1, 2, then there exists C > 0
such that

∥ση1,χ1,λ1(t)− ση2,χ2,λ2(t)∥
2
H ≤C

(
∥uη1(t)− uη2(t)∥

2
V

+

∫ t

0

∥αλ1
(s)− αλ2

(s)∥2L2(Ω) ds

+

∫ t

0

∥θχ1(s)− θχ2(s)∥
2
L2(Ω) ds

+

∫ t

0

∥uη1(s)− uη2(s)∥
2
V ds

)
.

(4.25)

Proof. Let Ση,χ,λ : C(0, T ;H) → C(0, T ;H) be the operator given by

Ση,χ,λσ(t) = Bε (uη(t)) +
∫ t

0

G (ση,χ,λ,µ(s), ε (uη(s)) , θχ(s), αλ(s)) ds, (4.26)

Let σi ∈ W 1,∞(0, T ;H), i = 1, 2 and t1 ∈ (0, T ). Using hypothesis (3.23) and
Holder’s inequality, we find

∥Ση,χ,λσ1 (t1)− Ση,χ,λσ2 (t1)∥2H ≤ L2
GT

∫ t1

0

∥σ1(s)− σ2(s)∥2H ds.

Integration on the time interval (0, t2) ⊂ (0, T ), it follows that∫ t2

0

∥Ση,χ,λσ1 (t1)−Ση,χ,λσ2 (t1)∥2H dt1 ≤ L2
GT

∫ t2

0

∫ t1

0

∥σ1(s)− σ2(s)∥2H dsdt1.

Therefore

∥Ση,χ,λσ1 (t2)−Ση,χ,λσ2 (t2)∥2H ≤ L4
GT

2

∫ t2

0

∫ t1

0

∥σ1(s)− σ2(s)∥2H dsdt1.



36 AHMED HAMIDAT

For t1, t2, ..., tn ∈ (0, T ), we generalize the procedure above by recurrence on n.
We obtain the inequality

∥Ση,χ,λσ1 (tn)−Ση,χ,λσ2 (tn)∥2H

≤ L2n
G Tn

∫ tn

0

· · ·
∫ t2

0

∫ t1

0

∥σ1(s)− σ2(s)∥2H dsdt1 . . . dtn−1.

Which implies

∥Ση,χ,λσ1 (tn)−Ση,χ,λσ2 (tn)∥2H ≤
L2n
G Tn+1

n!

∫ T

0

∥σ1(s)− σ2(s)∥2H ds.

Thus, we can infer, by integrating over the interval time (0, T ), that

∥Ση,χ,λσ1 −Ση,χ,λσ2∥2C(0,T ;H) ≤
L2n
G Tn+2

n!
∥σ1 − σ2∥2C(0,T ;H) .

It follows from this inequality that for large n enough, the operator Σn
η,χ,λ is a con-

traction on the Banach space C(0, T ;H), and therefore there exists a unique element
σ ∈ C(0, T ;H) such that Ση,χ,λσ = σ. Moreover, σ is the unique solution of Problem
Pη,χ,λ. Consider now (η1, χ1, λ1), (η2, χ2, λ2) ∈ C(0, T ;H × L2(Ω)) and for i = 1, 2,
denote uηi = ui, θχi = θi, αλi = αi and σηi,χi,λi = σi. We have

σi(t) = Bε (ui(t)) +
∫ t

0

G (σi(s), ε (ui(s)) , θi(s), αi(s)) ds,

a.e. t ∈ (0, T ).

(4.27)

and using the properties (3.22) and (3.23) of B and G we find

∥σ1(t)− σ2(t)∥2H ≤ C
(
∥u1(t)− u2(t)∥2V

+

∫ t

0

∥θ1(s)− θ2(s)∥2L2(Ω) ds+

∫ t

0

∥α1(s)− α2(s)∥2L (Ω)ds

+

∫ t

0

∥u1(s)− u2(s)∥2V ds+
∫ t

0

∥σ1(s)− σ2(s)∥2H ds

)
, ∀t ∈ [0, T ].

(4.28)

We use Gronwall argument in the previous inequality to deduce (4.25), which concludes
the proof of Lemma 4.6. □

Finally, as a consequence of these results and using the properties of the operator G the
operator E , the functions Θ and S for t ∈ (0, T ), we consider the element

Λ(η, χ, λ)(t) =
(
Λ1(η, χ, λ)(t),Λ2(η, χ, λ)(t),Λ3(η, χ, λ)(t)

)
∈ H × L2(Ω)× L2(Ω),

(4.29)

defined by(
Λ1(η, χ, λ)(t),v

)
H×V = (E∗∇φη(t), ε(v))H

+

(∫ t

0

G (ση,χ,λ(s), ε (uη(s)) , θχ(t), αλ(s)) ds, ε(v)

)
H
,∀v ∈ V,

(4.30)

Λ2 (η, χ, λ) (t) = Θ (ση,χ,λ, ε (uη(t)) , θχ(t), αλ(t)) . (4.31)

Λ3 (η, χ, λ) (t) = S (ση,χ,λ, ε (uη(t)) , θχ(t), αλ(t)) . (4.32)

Here, for every (η, χ, λ) ∈ C(0, T ;H×L2(Ω)×L2(Ω)). uη , φη , θχ, αλ and ση represent
the displacement field, the electric potential field, the temperature field, the damage field
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and the stress field , obtained in Lemmas 4.2, 4.3, 4.4,4.5 and 4.6 respectively. We have
the following result.

Lemma 4.7. The mapping Λ has a fixed point (η, χ, λ) ∈ C(0, T ;H× L2(Ω)× L2(Ω)),
such that Λ (η∗, χ∗, λ∗) = (η∗, χ∗, λ∗) .

Proof. Let t ∈ (0, T ) and (η1, χ1, λ1) , (η2, χ2, λ2) ∈ C
(
0, T ;H× L2(Ω)× L2(Ω)

)
.

We use the notation that uηi = ui, u̇ηi = vηi = vi, θχi = θi, φηi = φi, αλi = αi and
σηi,θi = σi for i = 1, 2.

Let us start by using (3.23), (3.28) and (4.25), we have

∥Λ1 (η1, χ1, λ1) (t)− Λ1 (η2, χ2, λ2) (t)∥2H
≤ ∥E∗∇φ1(t)− E∗∇φ2(t)∥2H

+

∫ t

0

∥G (σ1(s), ε(u1(s)), θ1(s), α1(s))− G (σ2(s), ε(u2(s)), θ2(s), α2(s))∥2H ds,

≤ C

(
∥φ1(t)− φ2(t)∥2W +

∫ t

0

∥σ1(s)− σ2(s)∥2L2(Ω) ds+

∫ t

0

∥u1(s)− u2(s)∥2V ds

+

∫ t

0

∥θ1(s)− θ2(s)∥2L2(Ω) ds+

∫ t

0

∥α1(s)− α2(s)∥2L2(Ω) ds

)
.

(4.33)

By similar arguments, from (4.31), (3.24) we obtain∥∥Λ2 (η1, χ1, λ1) (t)− Λ2 (η2, χ2, λ2) (t)
∥∥2
H

≤ C
(
∥σ1(t)− σ2(t)∥2V + ∥u1(t)− u2(t)∥2V

+ ∥θ1(t)− θ2(t)∥2L2(Ω) + ∥α1(t)− α2(t)∥2L2(Ω)

)
, a.e. t ∈ (0, T ).

(4.34)

Similarly, using (4.32), (3.25) implies∥∥Λ3 (η1, χ1, λ1) (t)− Λ3 (η2, χ2, λ2) (t)
∥∥2
H

C
(
∥σ1(t)− σ2(t)∥2V + ∥u1(t)− u2(t)∥2V

+ ∥θ1(t)− θ2(t)∥2L2(Ω) + ∥α1(t)− α2(t)∥2L2(Ω)

)
, a.e. t ∈ (0, T ).

(4.35)

It follows now from (4.33), (4.34) and (4.35) that

∥Λ (η1, χ1, λ1) (t)− Λ (η2, χ2, λ2) (t)∥2H
≤ C

(
∥φ1(t)− φ2(t)∥2W + ∥σ1(t)− σ2(t)∥2H

+ ∥u1(t)− u2(t)∥2V +

∫ t

0

∥u1(s)− u2(s)∥2V ds

+ ∥θ1(t)− θ2(t)∥2L2(Ω) +

∫ t

0

∥θ1(s)− θ2(s)∥2L2(Ω) ds

+ ∥α1(s)− α2(s)∥2L2(Ω) +

∫ t

0

∥α1(s)− α2(s)∥2L2(Ω) ds

)
.

(4.36)
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We use estimates (4.15), (4.25)to obtain

∥Λ (η1, χ1, λ1) (t)− Λ (η2, χ2, λ2) (t)∥2H

≤ C

(
∥u1(t)− u2(t)∥2V +

∫ t

0

∥u1(s)− u2(s)∥2V ds

+ ∥θ1(t)− θ2(t)∥2L2(Ω) +

∫ t

0

∥θ1(s)− θ2(s)∥2L2(Ω) ds

+ ∥α1(s)− α2(s)∥2L2(Ω) +

∫ t

0

∥α1(s)− α2(s)∥2L2(Ω) ds

)
.

(4.37)

On the other hand, since ui (t) =

t∫
0

u̇i (s) ds+ u0, we know that for a.e. t ∈ (0, T ),

∥u1(t)− u2(t)∥2V ≤
∫ t

0

∥u̇1(s)− u̇2(s)∥2V ds, (4.38)

and using this inequality in (4.9) yields

∥u̇1(t)− u̇2(t)∥V ≤ C

(
∥η1(t)− η2(t)∥H +

∫ t

0

|u̇1(s)− u̇2(s)|V ds
)
. (4.39)

Next, we apply Gronwall’s inequality to deduce∫ t

0

∥u̇1(s)− u̇2(s)∥V ds ≤ c

∫ t

0

∥η1(t)− η2(t)∥Q ds, for all t ∈ [0;T ], (4.40)

which also implies, using a variant of (4.38), that

∥u1(s)− u2(s)∥2V ≤ C

∫ t

0

∥η1(s)− η2(s)∥2Q ds, a.e. t ∈ [0, T ]. (4.41)

For the temperature, if we take the substitution χ = χ1, χ = χ2 in (4.16) and subtract-
ing the two obtained equations, we deduce by choosing v = θ1 − θ2 as test function and
t ∈ [0, T ], such that

∥θ1(t)− θ2(t)∥2L2(Ω) + C1

∫ t

0

∥θ1(t)− θ2(t)∥2V

≤
∫ t

0

∥χ1(s)− χ2(s)∥V′ ∥θ1(s)− θ2(s)∥V ds.

We use the inclusion L2(Ω) ⊂ V , we get

∥θ1(t)− θ2(t)∥2L2(Ω) +

∫ t

0

∥θ1(s)− θ2(s)∥2L2(Ω) ds ≤ C

∫ t

0

∥χ1(s)− χ2(s)∥2V′ ds.

From this inequality, combined with Gronwall’s inequality, we deduce that

∥θ1(t)− θ2(t)∥2L2(Ω) ≤ C

∫ t

0

∥χ1(s)− χ2(s)∥2V′ ds, (4.42)

Form (4.22), deduced that
(α̇1 − α̇2, α1 − α2)L2(Ω) + a1 (α1 − α2, α1 − α2)

≤ (λ1 − λ2, α1 − α2)L2(Ω) , a.e. t ∈ (0, T ).

integrate inequality with respect to time, using the initial conditions α1 (0) = α2 (0) = α0,
and inequality a1 (α1 − α2, α1 − α2) ≥ 0, we find
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1
2 ∥α1 (t)− α2 (t)∥2L2(Ω) ≤ C

t∫
0

(λ1 (s)− λ2 (s) , α1 (s)− α2 (s))L2(Ω)ds,

which implies

∥α1 (t)− α2 (t)∥2L2(Ω)

≤ C

 t∫
0

∥λ1 (s)− λ2 (s)∥2L2(Ω) ds+

t∫
0

∥α1 (s)− α2 (s)∥2L2(Ω) ds

 .

This inequality combined with the Gronwall inequality leads to

∥α1 (t)− α2 (t)∥2L2(Ω) ≤ C

t∫
0

∥λ1 (s)− λ2 (s)∥2L2(Ω) ds , ∀t ∈ [0, T ] . (4.43)

Form the previous inequality and estimates (4.42), (4.41) and (4.37) it follows now that

∥Λ (η1, χ1, λ1) (t)− Λ (η2, χ2, λ2) (t)∥2H×L2(Ω)×L2(Ω)

≤ C

∫ T

0

∥(η1, χ1, λ1) (s)− (η2, χ2, λ2) (s)∥2H×L2(Ω)×L2(Ω) ds.
(4.44)

Reiterating this inequality m times we obtain

∥Λm (η1, χ1, λ1)− Λm (η2, χ2, λ2)∥2C(0,T ;H×L2(Ω)×L2(Ω))

≤ CmTm

m!
∥(η1, χ1, λ1)− (η2, χ2, λ2)∥2C(0,T ;H×L2(Ω)×L2(Ω)) .

Thus, for m sufficiently large, Λm is a contraction on the Banach space C(0, T ;H ×
L2(Ω)× L2(Ω)), and so Λ has a unique fixed point. □

Now we have every thing that is required to prove Theorem 4.1.

Existence. Let (η∗, χ∗, λ∗) ∈ C(0, T ;H×L2(Ω)×L2(Ω)) be the fixed point of Λ defined
by (4.29)-(4.32) and denote

u = uη∗ , φη∗ = φ, σ = Aε(u̇) + ση∗,χ∗,λ∗ . (4.45)
θ = θχ∗ , α = αλ∗ . (4.46)

D = Eε(u) +B∇(φ). (4.47)

We prove that (u,σ, θ, α) satisfies (3.41)-(3.46) and (4.1)-(4.6). Indeed, we write (4.24)
for η∗ = η, χ∗ = χ, λ∗ = λ and use (4.45)-(4.46) to obtain that (3.41) is satisfied.
Now we consider (4.7) for η∗ = η and use the first equality in (4.45) to find

(Aε(u̇(t)), ε(v − u̇(t)))H + (Bε(u(t)), ε(v − u̇(t)))H + (η∗(t), ε(v − u̇(t)))H
+j (u̇(t),v)− j (u̇(t), u̇(t)) ≥ (f,v − u̇(t))V ′×V ,

a.e. t ∈ (0, T ), for all v ∈ V.
(4.48)
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The equalities Λ1 (η∗, χ∗, λ∗) = η∗, Λ2 (η∗, χ∗, λ∗) = χ∗ and Λ3 (η∗, χ∗, λ∗) = λ∗

combined with (4.30)-(4.32) and (4.45)-(4.46) show that for all v ∈ V ,

(η∗ (t) ,v)H×V =

(∫ t

0

G (σ(s), ε (u(s)) , θ(s), α(s)) ds, ε(v)

)
H
. (4.49)

χ∗(t) = χ (σ(t), ε (u(t)) , θ(t), α(t)) . (4.50)

λ∗(t) = Θ (σ(t), ε (u(t)) , θ(t), α(t)) . (4.51)

We now substitute (4.48) in (4.47) and use (3.41) to see that (3.42) is satisfied.
We write now (4.14) for η = η∗ and use (4.45) to find (3.43).
We write (4.16) for χ = χ∗ and use (4.45)-(4.46) and (4.49) to find that (3.44) is

satisfied.
Also We write (4.22) for λ = λ∗ and using (4.45)-(4.46) and (4.50) to find that (3.45) is

satisfied. Next (3.46), and regularities (4.1), (4.2), (4.3) and (4.4) follow Lemmas 4.2,4.3
and 4.4. The regularity σ ∈ C(0, T ;H) follows from Lemma 4.5.

Let now t1, t2 ∈ [0, T ], from (3.8), (3.27), (3.28) and (4.47), we conclude that there
exists a positive constant C > 0 verifying

∥D (t1)−D (t2)∥H ≤ C (∥φ (t1)− φ (t2)∥W + ∥u (t1)− u (t2)∥V ) .
The regularity of u and φ given by (4.1) and (4.3) implies

D ∈ C(0, T ;W). (4.52)

We choose ϕ ∈ D(Ω)d in (3.39) and using (3.43) we find

divD(t) = q0(t), ∀t ∈ [0, T ], (4.53)

Property (4.6) follows from (3.32),(4.52) and (4.53) which concludes the existence part the
Theorem 4.1.

Uniqueness. The uniqueness of the solution is a consequence of the uniqueness of the
fixed point of operator Λ.

5. CONCLUSION

This study investigates a specific category of evolutionary variational problems, where
the model integrates the displacement field, an electric potential field, a temperature field,
and the damage field. The paper explores the analysis of quasi-static contact conditions
involving normal compliance and adhering to the Coulomb law of dry friction between
a thermo-piezoelectric body and an electrically conductive foundation. Notably, it estab-
lishes the existence of a unique weak solution to this problem. As a suggestion for future
exploration, researchers may consider employing a numerical approach to this problem,
utilizing a fully discrete finite-elements scheme with explicit time discretization. This ap-
proach could provide valuable insights into the practical implementation and behavior of
the proposed model.
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[11] P. Germain, Cours de Mécanique des Milieux Continus, Masson et Cie, Paris, 1973.
[12] M. Fremond, K.L. Kuttler, B. Nedjar, M. Shillor, One-dimensional models of damage, Adv. Math. Sci. Appl.

8(2)(1998), 541-570.
[13] F. Messelmi, B. Merouani and M. Meflah, Nonlinear Thermoelasticity Problem, Analele Universitatii

Oradea, Fasc. Mathematica, Tome XV (2008), 207-217.
[14] A.C. FisherCripps Introduction to Contact Mechanics, Mechanical Engineering Series, Springer 2000.
[15] A. Hamidat, A. Aissaoui, A Quasistatic frictional contact problem with normal damped response for thermo-

electro-elastic-viscoelastic bodies, Advances in Mathematics: Scientific Journal.10 (12) (2021).
[16] A. Hamidat, A. Aissaoui. . A quasi-static contact problem with friction in electro viscoelasticity with long-

term memory body with damage and thermal effects. International Journal of Nonlinear Analysis and Ap-
plications (2022).

[17] A. Hamidat, A. Aissaoui. quasistatic frictional contact problem with damage for thermo–electro–elastic-
viscoplastic bodies. Differential Equations and Applications 4 (2023), 361-380.

[18] A. Hamidat, . Analysis of a class of frictional contact problem for elastic-viscoplastic piezoelectric thermal
materials. Mathematical Analysis and its Contemporary Applications, 5(4),(2023) 11-31.

[19] A. Hamidat, A. Aissaoui. A quasistatic elastic-viscoplastic contact problem with wear and frictionless.
Malaya Journal of Matematik, 12(01),(2024), 57-70.

[20] Z. Lerguet, M. Shillor, M. Sofonea, A frictional contact problem for an electro-viscoelastic body, Electron.
J. Diferential Equations, 2007 (2007), Article ID 170.

[21] A.D. Muradova, G.E. Stavroulakis Nonlinear Analysis: Real World Applications, 8 (2007), 1261-1271.
[22] F. Messelmi , B. Merouani, Quasi-Static Evolution of Damage in Thermo-Viscoplastic Materials, An. Univ.

Oradea Fasc. Mat, Tom XVII. 2, (2010), 133-148.
[23] A. Merouani and F. Messelmi, Dynamic Evolution of Damage in ElasticThermo-Viscoplastic Materials,

Electron. J. Differential Equations, 129,(2010), 1-15.
[24] R.D. Mindlin, Polarisation gradient in elastic dielectrics, Int. J. Solids Structures, 4(1968), 637-663.
[25] R.D. Mindlin, Continuum and lattice theories of influence of electromechanical coupling on capacitance of

thin dielectric films, Int. J. Solids, 4(1969), 1197-1213.
[26] R.D. Mindlin, Elasticity, Piezoelectricity and Cristal lattice dynamics, J. of Elasticity, 4(1972), 217-280.
[27] J. Necas, I. Hlavácek, Mathematical Theory of Elastic and Elastoplastic Bodies: An Introduction, Elsevier,

Amsterdam, 1981.

AHMED HAMIDAT

LABORATORY OF OPERATOR THEORY AND PDE: FOUNDATIONS AND APPLICATIONS, FACULTY OF EXACT

SCIENCES, UNIVERSITY OF EL OUED , 39000, EL OUED, ALGERIA.
Email address: hamidat-ahmed@univ-eloued.dz


	1. Introduction
	2. Problem statement
	Problem P

	3.  Variational formulation and preliminaries
	problem PV

	4. Existence and uniqueness
	Problem P1
	Problem P2
	Problem P
	Problem P
	Problem P,,
	Existence
	Uniqueness

	5. Conclusion
	References

