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ON INTERVAL VALUED FUZZY PRIME IDEALS OF Γ−SEMIRINGS

M. MURALI KRISHNA RAO∗ AND NOORBHASHA RAFI

ABSTRACT. In this paper, we introduce the notion of interval valued fuzzy prime ideals
of Γ−semirings.We study, some properties of prime ideals of a Γ−semirng in terms of
interval valued fuzzy ideals.

1. INTRODUCTION

In 1995, M. Murali Krishna Rao [16, 17] introduced the notion of a Γ−semiring as a
generalization of Γ−rings, rings, ternary semirings and semirings. Murali Krishna and his
co-authors introduced many concepts in Γ−semirings(see [18, 19, 20, 21, 22]). Notion of a
semiring was introduced by H.S.Vandiver[6] in 1934. A semiring is a well known Univer-
sal algebra. In [24], Allen Studied fundamental theorem of homomorphism on semirings.
If in a ring, we do away with the requirement of having additive inverse of each element
then the resulting algebraic structure becomes a semiring. As a generalization of a ring,
the notion of a Γ−ring was introduced by N. Nobusawa [23] in 1964. In 1981, M. K. Sen
[14] introduced the notion of a Γ−semigroup as a generalization of a semigroup. In 1965,
Zadeh[7] introduced the fuzzy theory. The aim of this theory to develop theory which deals
with problem of uncertainity. After 10 years Zadeh[8] introduced the notion of interval-
valued fuzzy sets The fuzzification of algebraic structure was introduced by Rosenfeld [3]
and he introduced the notion of fuzzy subgroups in 1971. The concept of interval valued
fuzzy subset in algebra was initiated by Biswas. After the i-v fuzzy sets have been intro-
duced (see [10, 9, 11, 4, 26, 27, 5, 25, 13, 12]), some theories related with i-v fuzzy sets
have been developed. It is therefore important to use interval-valued fuzzy sets in appli-
cations, such as fuzzy control. One of the computationally most intensive parts of fuzzy
control is defuzzification. A.B.Saeid et al., introduced the Γ − BCK−algebras[1] and
studied fuzzy ideals in Γ − BCK−algebras[2]. In this paper, we introduce the notion of
interval valued fuzzy prime ideals of Γ−semirings. We study some properties of prime
ideals of a Γ−semirng in terms of interval valued fuzzy ideals.
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2. PRELIMINARIES

In this section, we recall some definitions introduced by the pioneers in this field earlier.

Definition 2.1. [24] A set S together with two associative binary operations called addition
and multiplication (denoted by + and · respectively) will be called semiring provided

(i). Addition is a commutative operation.
(ii). Multiplication distributes over addition both from the left and from the right.

(iii). There exists 0 ∈ S such that x+ 0 = x and x · 0 = 0 · x = 0 for all x ∈ S.

Definition 2.2. [14] Let M and Γ be two non-empty sets. Then M is called a Γ−semigroup
if it satisfies

(i) xαy ∈ M,
(ii) xα(yβz) = (xαy)βz, for all x, y, z ∈ M,α, β ∈ Γ.

Definition 2.3. [16] Let (M,+) and (Γ,+) be commutative semigroups. A Γ−semigroup
M is said to be a Γ−semiring M if it satisfies the following axioms, for all x, y, z ∈ M
and α, β ∈ Γ

(i) xα(y + z) = xαy + xαz,
(ii) (x+ y)αz = xαz + yαz,

(iii) x(α+ β)y = xαy + xβy.

Every semiring M is a Γ−semiring with Γ = M and ternary operation as the usual
semiring multiplication

Definition 2.4. [16] A Γ−semiring M is said to have zero element if there exists an ele-
ment 0 ∈ M such that 0 + x = x = x+ 0 and 0αx = xα0 = 0, for all x ∈ M.

Definition 2.5. [15] A non-empty subset A of a Γ−semiring M is called
(i) a Γ−subsemiring of M if (A,+) is a subsemigroup of (M,+) and AΓA ⊆ A.

(ii) a quasi ideal of M if A is a Γ−subsemiring of M and AΓM ∩MΓA ⊆ A.
(iii) a left (right) ideal of M if A is a Γ−subsemiring of M and MΓA ⊆ A(AΓM ⊆

A).
(iv) an ideal if A is a Γ−subsemiring of M,AΓM ⊆ A and MΓA ⊆ A.

Definition 2.6. [16] A function f : R → M where R and M are Γ−semirings is said to
be a Γ−semiring homomorphism if f(a+ b) = f(a)+ f(b) and f(aαb) = f(a)αf(b) for
all a, b ∈ R,α ∈ Γ.

Definition 2.7. [16] Let M be a non-empty set. A mapping f : M → [0, 1] is called
a fuzzy subset of a Γ−semiring M . If f is not a constant function then f is called a
non-empty fuzzy subset

Definition 2.8. [15] Let f be a fuzzy subset of a non-empty set M, for t ∈ [0, 1] the set
ft = {x ∈ M | f(x) ≥ t} is called a level subset of M with respect to f.

Definition 2.9. [15] Let M be a Γ−semiring.A fuzzy subset µ of M is said to be a fuzzy
Γ−subsemiring of M if it satisfies the following conditions
(i) µ(x+ y) ≥ min {µ(x), µ(y)}
(ii) µ(xαy) ≥ min {µ(x), µ(y)}, for all x, y ∈ M,α ∈ Γ.

Definition 2.10. [15] A fuzzy subset µ of a Γ−semiring M is called a fuzzy left (right)
ideal of M if for all x, y ∈ M,α ∈ Γ it satisfies the following conditions
(i) µ(x+ y) ≥ min{µ(x), µ(y)}
(ii) µ(xαy) ≥ µ(y) (µ(x)), for all x, y ∈ M,α ∈ Γ.
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Definition 2.11. [15] A fuzzy subset µ of a Γ−semiring M is called a fuzzy ideal of M if
it satisfies the following conditions
(i) µ(x+ y) ≥ min{µ(x), µ(y)}
(ii) µ(xαy) ≥ max {µ(x), µ(y)}, for all x, y ∈ M,α ∈ Γ.

3. INTERVAL VALUED FUZZY PRIME IDEALS OF Γ−SEMIRINGS

In this section, we introduce the notion of interval-valued fuzzy prime ideals of
Γ−semirings, interval valued Fuzzy prime ideals of Γ−semirings. And also we study,
some properties of prime ideals of a Γ−semirng in terms of interval valued fuzzy prime
ideals. An interval [a−, a+], where 0 ≤ a− < a+ ≤ 1 is called an interval number and
it is denoted by a. Let D[0, 1] denotes the family of closed subintervals of [0, 1] with the
minimum element 0 = [0, 0] and maximal element 1 = [1, 1] according to partial order
[a, b] ≤ [c, d] ⇒ a ≤ c and b ≤ d. Defined on D[0, 1] for all [a, b], [c, d] ∈ D[0, 1].

The interval min-norm is a function min
i

: D[0, 1] × D[0, 1] → D[0, 1] is defined by

min
i
[a, b ] = [min(a−, b−),min(a+, b+)], for all [a, b ] ∈ D, where a = [a−, a+], b =

[b−, b+].
The interval max-norm is a function max

i
: D[0, 1] × D[0, 1] → D[0, 1] is defined by

max
i

[a, b ] = [max(a−, b−),max(a+, b+)], for all [a, b ] ∈ D, where a = [a−, a+], b =

[b−, b+].
Let M be a non-empty set. A mapping µ : M → D[0, 1] is called an interval valued

fuzzy subset of M. For simplicity, interval valued fuzzy subset of M is denoted by IVFS
of M.
Let µ be an interval valued fuzzy subset of a Γ−semiring M then µ(x) is an interval
number, where x ∈ M. Suppose µ(x) = [a, b], for some x ∈ M. Then 0 ≤ a < b ≤ 1. We
define two fuzzy subsets µ−(x) = a and µ+(x) = b. Therefore, for all x ∈ M, µ(x) =
[µ−(x), µ+(x)] ≤ [0, 1].

Let A be a subset of a Γ−semiring M. Then the interval valued characteristic function

χA : M → D is defined by χA(x) =

{
1̄, if x ∈ A

0̄, if x /∈ A.
.

Let µ1, µ2 be interval valued subsets of M. Then µ1 is said to be subset of µ2 if µ1(x) ≤
µ2(x), for all x ∈ M. It is denoted by µ1 ⊆ µ2. Let µ1 and µ2 be an interval valued fuzzy
subset of a Γ−semiring M.

Then µ1 ◦ µ2 is defined as µ1 ◦ µ2(x) =

 sup
x=aαb

{min
i
(µ1(a), µ2(b)},

0, otherwise.
Let µ be interval valued fuzzy subset of M and f be a mapping from a set M to a set N.
Then the pre-image f−1(µ) is defined by f−1(µ)(x) = µ(f(x)), for all x ∈ M.
The image f(µ) is an interval valued fuzzy subset of N defined by

f(µ) =

 inf
y∈f

µ(y), if f−1(x) ̸= ϕ

1̄, otherwise.
.

Definition 3.1. A non-empty interval valued fuzzy subset µ̄ of a Γ−semiring M is said to
be an interval valued fuzzy ideal of M if it satisfies the following conditions.

(i) µ̄(x+ y) ≥ min
i
{µ̄(x), µ̄(y)}

(ii) µ̄(xαy) ≥ max
i

{µ̄(x), µ̄(y)}, for all x, y ∈ M,α ∈ Γ.
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Definition 3.2. An interval valued fuzzy ideal µ̄ of a Γ−semiring M is said to be an
interval valued fuzzy prime ideal of M if µ̄ is not a constant function and for any interval
valued fuzzy ideals µ̄1 and µ̄2 of M, µ̄1 ◦ µ̄2 ⊆ µ̄ ⇒ µ̄1 ⊆ µ̄ or µ̄2 ⊆ µ̄.

Example 3.3. Let M be set of non-negative integers and Γ be set of all natural numbers.
Then M is a Γ−semiring with respect to all usual addition and ternary operation and usual
multiplication

µ(x) =


1̄, if x = 0

[0.5, 0.6], if n is odd

[0.7, 0.8], if n is even .
Then µ̄ is an interval valued fuzzy ideal of M.

The following theorems are straight forward verification.

Theorem 3.1. Let µ̄ be an interval valued fuzzy ideal of a Γ−semiring M. Then µ̄(0) ≥
µ̄(x), for all x ∈ M.

Theorem 3.2. A non-empty interval valued fuzzy subset µ̄ of a Γ−semiring M is an inter-
val valued fuzzy ideal of M if and only if Ū(µ̄, [s, t]) is an ideal of M, for all [s, t] ∈ Imµ̄

Theorem 3.3. Let I be a non-empty subset of a Γ−semiring M and [a, b] ⊆ [c, d] ̸= 0 be
any two interval numbers on [0, 1]. The interval valued fuzzy subset µ of M is defined by

µ(x) =

{
[c, d], if x ∈ I

[a, b], otherwise .

Then µ is an interval valued ideal of a Γ−semiring M if and only if I is an ideal of a
Γ−semiring M.

Proof. Suppose I is an ideal of a Γ−semiring M.
Then µ(0) = [c, d], 0 ∈ I ⇒ µ is non-empty. Let x, y ∈ M and α ∈ Γ.
Case 1: Suppose max

i
(µ(x), µ(x)) = [a, b]. Then

µ(x) = [a, b] and µ(y) = [a, b].

µ(x+ y) ≥ [a, b]

≥ min
i
(µ(x), µ(y))

and µ(xαy) ≥ [a, b]

= max
i

(µ(x), µ(y)).

Case 2: Suppose max
i

(µ(x), µ(x)) = [c, d]. Then

µ(x) = [c, d] or µ(y) = [c, d]

⇒x ∈ I or y ∈ I

⇒xαy ∈ I, since I is an ideal.

Then µ(xαy) = [c, d] = max
i

(µ(x), µ(y))

⇒min
i
(µ(x), µ(y)) = [a, b]α[c, d].

Suppose min
i
(µ(x), µ(y)) = [a, b]. Then µ(x+ y) ≥ mini(µ(x), µ(y)).

Suppose min
i
(µ(x), µ(y)) = [c, d]. Then µ(x) = [c, d] and µ(y) = [c, d]
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⇒ x, y ∈ I
⇒ x+ y ∈ I
⇒ µ(x+ y) = [c, d] = min

i
(µ(x), µ(y)).

Hence µ is an interval valued fuzzy subset of a Γ−semiring M.
Conversely, suppose µ is an interval valued fuzzy subset of a Γ−semiring M.

Then µ is non-empty fuzzy sub set. So µ is non zero
⇒ µ(x) = [c, d], for some x ∈ M. Let x, y ∈ I. Then µ(x) = µ(y) = [c, d].
Since µ is an interval valued fuzzy ideal of M, we have

µ(x+ y) ≥ min
i
(([c, d], [c, d]) = [c, d]

⇒µ(x+ y) ≥ [c, d]

⇒µ(x+ y) = [c, d], by definition of µ.

⇒ x+ y ∈ I.

Let x ∈ I, y ∈ M and α ∈ Γ. Then µ(x) = [c, d]
⇒ µ(xαy) ≥ max

i
(µ(x), µ(y)) = [c, d]

⇒ µ(xαy) = [c, d], by definition µ
⇒ xαy ∈ I.
Similarly we can prove that yαx ∈ I.
Hence the theorem. □

Corollary 3.4. Let M be a Γ−semiring and I be a subset of M. Then I is an ideal of M
if and only if µI is an interval valued fuzzy ideal of M.

Theorem 3.5. Let µ be an interval valued fuzzy ideal of a Γ−semiring M. Then the set
µ0 = {x ∈ M | µ(x) = µ(0)} is an ideal of M.

Proof. Obviously µ0 is non-empty. Let x ∈ µ0, α ∈ Γ, y ∈ M. Then

µ(xαy) ≥ max
i

(µ(x), µ(y))

= max
i

(µ(0), µ(y))

= µ(0), since µ(0) ≥ µ(y), for all y ∈ M.

⇒ µ(xαy) = µ(0).

Thus xαy ∈ µ0.
Similarly we can prove that yαx ∈ µ(0). Let x, y ∈ µ(0).

Then µ(x) = µ(0) and µ(y) = µ(0). We have

µ(y) ≥ min
i
(µ(x), µ(y))

= min
i
(µ(0), µ(y))

= µ(0)

and µ(x+ y) ≤ µ(0)

⇒ µ(x+ y) = µ(0)

⇒ x+ y ∈ µ(0).

Hence the theorem. □

Theorem 3.6. If µ is an interval valued fuzzy prime ideal of a Γ−semiring M then µ(0) =
1.
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Proof. Let µ be an interval valued fuzzy prime ideal of a Γ−semiring M. Suppose µ(0) ̸=
1. Since µ is an interval valued prime ideal of a Γ−semiring M, there exists a ∈ M such
that µ(0) > µ(a).
We define two fuzzy subsets µ1 and µ2 of M by

µ1(x) =

{
1, if x ∈ µ(0)

0, otherwise
; µ2(x) = µ(0).

Then clearly, µ1 is an interval valued fuzzy ideal of a Γ−semiring M. Since µ2 is a constant
function, µ2 is an interval valued fuzzy ideal of a Γ−semiring M.

Let x ∈ M,µ(x) = µ(0), y ∈ M and α ∈ Γ. Then µ1(x) = T.

min
i
(µ1(x), µ2(y)) = µ2(y)

= µ(0)

µ(0) ≥ µ(xαy)

≥ µ(x) = µ(0)

⇒ µ(xαy) = µ(0), for any y ∈ M.

Suppose x ∈ M and µ(x) ̸= µ(0). Then µ1 = 0.

min
i
(µ1(x), µ2(y)) = 0 ≤ µ(xαy)

⇒ (µ1 ◦ µ2)z = sup
z=xαy

{min
i
(µ1(x), µ2(y))}

≤ µ(z), for all z ∈ M.

Therefore µ1 ◦ µ2 ⊆ µ1.
Since µ is an interval valued fuzzy prime ideal of a Γ−semring, µ1 ⊆ µ or µ2 ⊆ µ.
Therefore, we have
µ1(x) ≤ µ1(x) and µ2(y) ≤ µ(y) ⇒ 0 ≤ µ(x) and µ(0) ≤ µ(y), which is a contradition.
Hence the theorem. □

Theorem 3.7. Let µ be an interval valued fuzzy prime ideal of a Γ−semiring M. Then
Im(µ) = 2.

Proof. Since µ is a prime ideal, µ is non-constant and Im(µ) ≥ 2.
Suppose Im(µ) > 2. Let r, s ∈ M and 1 > µ(r) > µ(s). Define two fuzzy subsets

µ1(x) =

{
1, if x ∈< r >

0, otherwise
; and µ2(x) = µr(0), for all x ∈ M.

Obviously µ1(x) and µ2(x) are interval valued fuzzy ideals of M.
Suppose x ∈< r > and y ∈ M,α ∈ Γ. Then µ1(x) = T and µ(x) ≥ µ(r).

µ(xαy) ≥ µ(r)

= µ(r)

= min
i
(µ1(x), µ1(y)).

Suppose x ∈ M and x /∈< r >,α ∈ Γ. Then µ1(x) = 0.
µ(xαy) = min

i
(µ1(x), µ1(y)) = 0. Therefore
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(µ1 ◦ µ2)(z) = sup
z=xαy

{min
i
(µ1(x), µ2(y))}

≤ µ(z), for all z ∈ M

µ1 ◦ µ2 ⊆ µ.

Since µ is an interval valued fuzzy prime ideal.
We have µ1 ⊆ µ or µ2 ⊆ µ. But
T > µ(r) ⇒ µ1(x) > µ(r) and µ2(y) = µ(r) > µ(s), which is a contradiction.
Hence Im(µ) = 2. □

The following theorem characterizes to interval valued fuzzy prime ideal of a Γ−semiring
M.

Theorem 3.8. Let I be a prime ideal of a Γ−semiring M and [a, b] ∈ D[0, 1] \ {1}. and
µ be an interval valued fuzzy subset of a Γ−semiring M, defined by,

µ1(x) =

{
1, if x ∈ I

[a, b], otherwise
.

Then µ is an interval valued fuzzy prime ideal of a Γ−semiring M.

Proof. Clearly, µ is an interval valued fuzzy ideal of a Γ−semiring M.
Let µ1 and µ2 be two interval valued fuzzy subsets of a Γ−semring M such that µ1 ◦µ2 ⊆
µ.
Suppose µ1 ⊈ µ and µ2 ⊈ µ. Then there exist s, t ∈ M such that
µ1(s) ≰ µ(s) and µ2(t) ≰ µ(t). Suppose µ1(s) > µ(s) and µ2(t) > µ(t).
Then µ(s), µ(t) ̸= 1. Therefore µ(s) = µ(t) = [a, b]. Hence s, t /∈ I.
since I is a prime ideal of a Γ−semring M, there exist α, β ∈ Γ, y ∈ M such that xαyβt /∈
I ⇒ µ(sαyβt) = [a, b].

µ1 ◦ µ2(sαyβt) = sup
sαyβt=cγd

{min
i
(µ1(c), µ2(d))}

≥ min
i
(µ1(s), µ2(yβt))

≥ min
i
(µ1(s), µ2(t))

> min
i
(µ(s), µ(t))

= min
i
([a, b], [a, b])

= [a, b]

= µ(sαyβt).

This is a contradiction. Therefore µ1 ⊆ µ or µ2 ⊆ µ.
Hence µ is an interval valued fuzzy prime ideal of a Γ−semiring M. □

Example 3.4. Let M be a Γ−semiring, where M is the set of all non-negative integers
and Γ be the set of natural numbers. Then (M,+) and (Γ,+) are semigroups with respect
to usual addition ternary operation is defined as usual multiplication.

Let µ be interval valued fuzzy subset of a Γ−semiring M, defined by

µ(x) =

{
1, if x ∈ {0, 3, 6, 9, · · · }
[.4, .5], otherwise

.

Then µ is an interval valued fuzzy prime ideal of M.
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Theorem 3.9. If µ is an interval valued fuzzy prime ideal of a Γ−semiring M. Then the
set µ0 = {x ∈ M | µ(x) = µ(0)} is a prime ideal of a Γ−semiring M.

Proof. Clearly, µ0 is an ideal of a Γ−semiring M.
Let A,B be ideal of a Γ−semiring M such that AΓB ⊆ µ0.
Since A,B are ideals of a Γ−semiring M, χA, χB are interval valued fuzzy ideals of a
Γ−semiring M. Let x ∈ M. Suppose χA ◦ χB ̸= 0.

χA ◦ χB(x) = sup
x=aαb

{min
i
(χA(a), χB(b))} ≠ 0

⇒ sup
x=aαb

{min
i
(χA(a), χB(b))} = 1

⇒min
i
(χA(a), χB(b)) = 1

⇒χA(a) = 1 and χB(b) = 1

⇒a ∈ A, b ∈ B

⇒aαb ∈ AΓB

⇒x = aαb ∈ µ0.

χµ0
= 1

⇒χA ◦ χB(x) = χµ0
(x) = 1

⇒χA ◦ χB(x) ≤ χµ0
(x). for all x ∈ M

⇒χA ◦ χB ⊆ χµ0
.

Let y ∈ M. Suppose χµ0
= 0 ⇒ χµ0

(y) ≤ µ(y).

Suppose χµ0
(y) = 1 ⇒ y ∈ µ0

⇒µ(y) = µ(0), since µ is an interval valued fuzzy prime ideal

⇒χµ0
(y) = µ(y)

⇒χµ0
(y) ≤ µ(y)

⇒χµ0
⊆ µ

⇒χA ◦ χB ⊆ χµ0
⊆ µ

⇒χA ⊆ µ or χB ⊆ µ.

Suppose χA ⊆ µ and z ∈ A. Then χA(z) = 1 ⇒ µ(z) = 1 = µ(0s).
But we have µ is an interval valued then z ∈ µ0.
Therefore A ⊆ µ0.
Similarly, we can prove that B ⊆ µ0.
Hence µ0 is a prime ideal of a Γ−semiring M. □

Corollary 3.10. Let µ is an interval valued fuzzy subset of a Γ−semiring M. Then µ is
an interval valued fuzzy prime ideal of a Γ−semiring M if and only if Imµ = {1, [a, b]},
when [a, b] ∈ D[0, 1] \ {1} and µ0 is a prime ideal.

Corollary 3.11. Let I be a proper ideal of a Γ−semiring M. Then I is a prime ideal of
M if and only if χI is an interval valued fuzzy prime ideal of M.
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Theorem 3.12. Let µ be an interval valued fuzzy prime ideal of a Γ−semiring M. Then
max

i
(µ(a), µ(b)) = inf{µ(aαsβb) | s, a, b ∈ M,α, β ∈ Γ}, for any a, b ∈ M.

Proof. Let µ be an interval valued fuzzy prime ideal of a Γ−semiring M.
Clearly, Imµ = {1, [x, y]}, where [a, b] ∈ D[0, 1] \ {1}.
Case 1: Suppose max

i
(µ(a), µ(b)) = 1

⇒µ(a) = 1 or µ(b) = 1

⇒µ(a) = µ(0) or µ(b) = µ(0)

⇒a ∈ µ(0) or b ∈ µ(0)

⇒aαsβb ∈ µ(0)

⇒µ(aαsβb) = µ(0), for all s ∈ M.

Therefore max
i

(µ(a), µ(b)) = inf{µ(aαsβb) | s, a, b ∈ M,α, β ∈ Γ}.
Case 2: Suppose max

i
(µ(a), µ(b)) = [x, y]. Then

µ(a) = [x, y] and µ(b) = [x, y] ⇒ a, b /∈ µ0.
Since µ0 is a prime ideal of a Γ−semiring M, there exist α, β ∈ Γ and s ∈ M such that
aαsβb /∈ µ0 ⇒ µ(aαsβb) = [x, y]. Therefore
max

i
(µ(a), µ(b)) = inf{µ(aαsβb) | s, a, b ∈ M,α, β ∈ Γ}.

Hence the theorem. □

Theorem 3.13. Let µ be an interval valued fuzzy prime ideal of a Γ−semiring M. Then
µ(aαb) = max

i
(µ(a), µ(b)).

Proof. Let a, b ∈ M and α ∈ Γ. Then,
max

i
(µ(a), µ(b)) = inf{µ(aαsβb) | s, a, b ∈ M,α, β ∈ Γ} ≥ µ(aαb) · · · (1)

We have µ(aαb) ≥ max
i

(µ(a), µ(b)) · · · (2)
Therefore, from (1) and (2), µ(aαb) = max

i
(µ(a), µ(b)). □

Now we defined the interval valued fuzzy prime ideal µ of a Γ−semiring M . A non-
empty set interval valued fuzzy subset µ of a Γ−semiring M is said to be an interval valued
fuzzy prime ideal of M if

(i) µ(x+ y) ≥ min
i
(µ(x), µ(y))

(ii) µ(xαy) = max
i

(µ(x), µ(y)), for all x, y ∈ M,α ∈ Γ.

Theorem 3.14. Let f : M → N be a homomorphism of Γ−seemirings M and N. If µ is
an interval valued fuzzy prime ideal of N then f−1(µ) is an interval valued fuzzy prime
ideal of M.
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Proof. Let µ be an interval valued fuzzy prime ideal of N, x, y ∈ M and α ∈ Γ. Then

f−1(µ)(x+ y) = µ(f(x+ y))

= µ(f(x) + f(y))

≥ min
i
(µf(x), µf(y))

= min
i
(f−1(µ)(x), f−1(µ)(y))

f−1(µ)(xαy) = µ(f(xαy))

= µ(f(x)αf(y))

≥ max
i

(µf(x), µf(y)), since µ is an interval valued fuzzy prime ideal of M .

= max
i

(f−1(µ)(x), f−1(µ)(y)).

Hence f−1(µ) is an interval valued fuzzy prime ideal of M. □

4. CONCLUSION

In this paper, we introduced the notion of an interval valued fuzzy prime ideal and
discussed the algebraic properties of interval valued fuzzy prime ideals of Γ−semirings.
We proved that if µ(aαb) = max

i
(µ(a), µ(b)), α ∈ Γ, a, b ∈ M and Im(µ) = 2. One

can extend this work by studying the other (ordered) algebraic structures.
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