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e⋆-LOCAL FUNCTIONS AND ψe⋆ -OPERATOR IN IDEAL TOPOLOGICAL
SPACES

S. MURUGAMBIGAI AND G. SARAVANAKUMAR∗

ABSTRACT. The main goal of this paper is to introduce another local function to give
the possibility of obtaining a Kuratowski closure operator. On the other hand, e⋆-local
functions defined for ideal topological spaces have not been found in the current literature.
e⋆-local functions for the ideal topological spaces have been described within this work.
Moreover, with the help of e⋆-local functions Kuratowski closure operators cl∗e

⋆

I and
τ∗e

⋆
topology are obtained. Many theorems in the literature have been revised according

to the definition of e⋆-local functions.

1. INTRODUCTION

The study of ideal topological spaces has garnered significant attention from mathemati-
cians worldwide, leading to numerous advancements and insights. Hamlett and Jankovic,
as referenced in [6], introduced a groundbreaking closure operator using local functions,
thereby introducing a novel topology into the field.

In recent times, there has been a growing interest in exploring local functions within
spaces where general topology is replaced by generalized open sets. This shift has been
fueled by the collaborative efforts of several mathematicians, as indicated by the collective
works cited in [1, 8, 14].

Jain’s introduction of totally continuous functions in classical topology served as a piv-
otal moment, offering a broader perspective on continuous functions and leading to the de-
velopment of e⋆-open sets, e⋆-continuous functions, and e⋆-compactness, as meticulously
studied by Ekici [3, 4, 5]. These concepts not only expanded the scope of classical topol-
ogy but also unveiled profound connections between different branches of mathematical
inquiry.

The practical implications of e⋆-local functions in ideal topological spaces quickly be-
came evident, prompting a surge in research activities aimed at unraveling their intricacies
and exploring their applications. This paper represents a significant contribution to this
evolving field by focusing on spaces where the conventional notion of topology is replaced
by the family of e⋆-open sets.
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Through an in-depth exploration of e⋆-local functions and their relevance in ideal topo-
logical spaces, this paper aims to elucidate their significance, uncover new insights, and
stimulate further progress in this fascinating area of mathematical research. By examining
these concepts comprehensively, we seek not only to deepen our understanding of ideal
topological spaces but also to identify new avenues for exploration and discovery within
this rich and evolving field.

2. PRELIMINARIES

Let (X, τ) be a topological space with no separation properties assumed. For a subset
A of a topological space (X, τ), cl(A) and int(A) denote the closure and interior of A in
(X, τ), respectively.

An ideal I on a topological space (X, τ) is a non-empty collection of subsets of X
which satisfies the following properties[9]:

(1) A ∈ I and B ⊆ A implies B ∈ I (heredity),
(2) A ∈ I and B ∈ A implies A ∪B ∈ I (finite additivity).

An ideal topological space is a topological space (X, τ) with an ideal I on X and
is denoted by (X, τ, I). For a subset A ∈ X, A∗(I, τ) = {x ∈ X : A ∩ U /∈
I, for every U ∈ τ(X, x)} is called the local function of A with respect to I and τ, where
τ(X, x) = {U ∈ τ : x ∈ U} [7]. We simply writeA∗ instead ofA∗(I) in case there is no
chance for confusion. For every ideal topological space (X, τ, I), there exists a topology
τ∗(I), finer than τ, generated by the base β(I, τ) = {U − J : U ∈ τ and J ∈ I}. It
is known in [7] that β(I. τ) is not always a topology. When there is no ambiguity, τ∗(I)
is denoted by τ∗. For a subset A ⊆ X, cl∗(A) and int∗(A) will, respectively, denote the
closure and interior of A in (X, τ∗).

Definition 2.1. [16] Let (X, τ) be a topological space. A subset A of X is said to be
regular open if A = int(cl(A)). The complement of a regular open set is said to be regular
closed. The collection of all regular open (resp. regular closed) sets in X is denoted by
RO(X) (resp. RC(X).) The regular closure of A in (X, τ) is denoted by the intersection
of all regular closed sets containing A and is denoted by rcl(A).

Definition 2.2. [17] Let (X, τ) be a topological space. The δ-interior of a subset A of X
is the union of all regular open set of X contained in A and is denoted by Intδ(A). The
subset A is called δ-open if A = Intδ(A). i.e., a set is δ-open if it is the union of regular
open sets. The complement of a δ-open is called δ-closed. Alternatively a set A ⊆ (X, τ)
is called δ-closed if A = Clδ(A) where Clδ(A) = {x ∈ X : Int(Cl(U)) ∩ A ̸= ϕ, U ∈
τand x ∈ U}.

Definition 2.3. [10, 12] Let (X, τ) be a topological space. A subset A of X is said to be
semi open if there exists an open setU inX such thatU ⊆ X ⊆ cl(U). The other definition
of semi open set is that: A subset A of X is said to be semi open if A ⊆ cl(int(A)).
The complement of a semi open set is said to be semi closed. The collection of all semi
open(resp. semi closed) sets in X is denoted by SO(X)(resp. SC(X)).

Definition 2.4. [3] Let (X, τ) be a topological space. A subset A of a space X is said to
be e⋆-open if A ⊆ clintclδ(A).

Definition 2.5. [2] Let (X, τ, I) be an Ideal topological spaces andA ⊆ X. If τ∩I = {ϕ}
then we say the I is codense ideal.
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Definition 2.6. [13] Let (X, τ, I) be an ideal topological spaces. We say the τ is com-
patible with the ideal I ,denoted τ ∼ I if the following holds for every A ⊆ X, if for every
x ∈ A there exists U ∈ τ(x) such that U ∩A ∈ I , then A ∈ I.

Definition 2.7. [8] Let (X, τ, I) be a Ideal space and A a subset of X. Then A∗(I, τ) =
{x ∈ X : A ∩ U /∈ I for every U ∈ SO(X, x)} is called the semi local function of A
with respect to I and τ where SO(X, x) = {U ∈ SO(X) : x ∈ U}. .

When there is no ambiguity, we will write simply A∗ for A∗(I, τ).

3. e⋆-LOCAL FUNCTIONS

In this section we shall introduce e⋆-ideal space and ()∗e
⋆

operator and discuss various
properties of this operator.

Let (X, τ) be a topological space and I be an ideal on X, then (X, e⋆O(X, τ), I) is
called e⋆-ideal space.

Now we shall define the operator ()∗e
⋆

.
Definition 3.1. Let (X, e⋆O(X, τ), I) be a e⋆-ideal space and A a subset of X. Then
A∗e⋆(I, e⋆O(X, τ)) = {x ∈ X : A∩U /∈ I for every U ∈ e⋆O(X, x)} is called the e⋆-
local function of A with respect to I and τ where e⋆O(X, x) = {U ∈ e⋆O(X) : x ∈ U}.

When there is no ambiguity, we will write simple A∗e⋆ for A∗e⋆(I, τ).

Theorem 3.1. Let (X, e⋆O(X, τ), I) be a e⋆-ideal space and A a subset of X.

(i) A∗e⋆ ⊆ A∗ ⊆ A∗r for every A ⊆ X.
(ii) A∗ = A∗e⋆ if O(X, τ) = e⋆O(X, τ).

(iii) If A ∈ I, then A∗e⋆ = ϕ.
(iv) (ϕ)∗e

⋆

= ϕ.

Proof. (i). Let x ∈ A∗(I, τ). Then, A∩U /∈ I for every U ∈ τ. Since every open set is
e⋆-open, therefore x ∈ A∗e⋆(I, τ). Converse is not true in general, it is shown in Example
3.1.

(ii). It is obvious from definition of local and e⋆-local functions.
(iii). Let A ∈ I and x ∈ A∗e. Then for every e⋆-open set U containing x, U ∩ A /∈ I.

On the other hand X is also e⋆-open set. So X ∩A = A /∈ I. It is contradiction.
(iv). Because of Theorem 3.1(iii). it is obvious.

Example 3.1. LetX = {1, 2, 3} and τ = {ϕ, {3}, {1, 2}, X} with I = {ϕ, {3}}. Let
A = {1} then A∗ = {1, 2} = Cl(A∗) and A∗e⋆ = {1} = e⋆Cl(A∗e⋆). So A∗ ̸⊆ A∗e⋆ .

Remark 3.1. Let (X, e⋆O(X, τ), I) be a e⋆-ideal space and A a subset of X . Neither
A ⊆ A∗e⋆ nor A∗e⋆ ⊆ A in general.

The following is an example that supports this remark.

Example 3.2. Let X = {1, 2, 3, 4} and τ = {ϕ, {2}, {3, 4}, {2, 3, 4}, X} with I =
{ϕ, {1}}. For A = {1}, A∗e⋆ = ϕ and so A∗e⋆ ⊂ A. For A = {2, 3}, A∗e⋆ = {1, 2, 3}
and so A ⊂ A∗e⋆ . For A = {1, 2, 3}, A∗e⋆ = {1, 2, 3} and so A∗e⋆ = A.

Theorem 3.2. Let (X, τ, I) be an ideal topological space and A, B subsets of X. Then,
for e⋆-local functions, the following properties hold:

(i) If A ⊆ B, then A∗e⋆ ⊆ B∗e⋆ ,
(ii) If I, J ideal on X and I ⊆ J, then A∗e⋆(J) ⊆ A∗e⋆(I).
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Proof. (i). Let x ∈ A∗e⋆ . Then for every e⋆-open set Ux containing x, Ux ∩ A /∈ I.
Since Ux ∩A ⊆ Ux ∩B, then Ux ∩B /∈ I.

(ii). Let x ∈ A∗e⋆(J). Then A ∩ U /∈ J, for every U ∈ e⋆O(X, x). Since J ⊇
I, A ∩ U /∈ I and hence x ∈ A∗e⋆(I).

Theorem 3.3. Let (X, e⋆O(X, τ), I) be an e⋆-ideal space andA, B subsets ofX . Then,
for e⋆-local functions, the following properties hold:

(i) A∗e⋆ = cl(A∗e⋆) ⊆ e⋆cl(A) and A∗e⋆ is closed in (X, τ).
(ii) (A∗e⋆)∗e

⋆ ⊆ A∗e⋆ .
(iii) A∗e⋆ ∪B∗e⋆ = (A ∪B)∗e

⋆

.
(iv) (A ∩B)∗e

⋆ ⊆ A∗e⋆ ∩B∗e⋆ .
(v) A∗e⋆\B∗e⋆ = (A\B)∗e

⋆\B∗e⋆ ⊆ (A\B)∗e
⋆

,

Proof. (i) We have A∗e⋆ ⊆ cl(A∗e⋆) in general. Let x ∈ cl(A∗e⋆). Also given the
set U ∈ e⋆O(X, x). Then A∗e⋆ ∩ T ̸= ϕ, T ∈ τ(x). Since U is open, A∗e⋆ ∩ U ̸= ϕ.
Therefore, there exists some y ∈ (A∗e⋆ ∩ U) and U ∈ e⋆O(X, y). Since y ∈ A∗e⋆ , A ∩
U /∈ I and hence x ∈ A∗e⋆ . Hence we have cl(A∗e⋆) ⊆ A∗e⋆ and henceA∗e⋆ = cl(A∗e⋆).
Again, let x ∈ A∗e⋆ = cl(A∗e⋆), then A ∩ U /∈ I, for every U ∈ e⋆O(X. x). This
implies A ∩ U ̸= ϕ for every U ∈ e⋆O(X, x). Therefore, x ∈ e⋆cl(A). This shows that
A∗e⋆ = cl(A∗e⋆) ⊆ e⋆cl(A∗e⋆). Since A∗e⋆ = cl(A∗e⋆), A∗e⋆ is closed.

(ii) Let x ∈ (A∗e⋆)∗e
⋆

. Then for every U ∈ e⋆O(X, x), U ∩ A∗e⋆ /∈ I and hence
U ∩ A∗e⋆ ̸= ϕ. Let y ∈ U ∩ A∗e⋆ . Then U ∈ e⋆O(X, y) and y ∈ A∗e⋆ . Hence we have
U ∩A ̸= I and x ∈ A∗e⋆ . This shows that (A∗e⋆)∗e

⋆ ⊆ A∗e⋆ .
(iii)By Theorem3.2(i)., we have A∗e⋆ ∪ B∗e⋆ ⊆ (A ∪ B)∗e

⋆

. To prove the reverse
inclusion, let x /∈ A∗e⋆ ∪ B∗e⋆ . Then x belongs neither to A∗e⋆ nor to B∗e⋆ . Therefore
there exists Ux, Vx ∈ e⋆O(X, x) such that A ∩ Ux ∈ I and B ∩ Vx ∈ I. Since I is
additive, (A ∩ Ux) ∪ (B ∩ Vx) ∈ I.

(A ∩ Ux)
⋃
(B ∩ Vx) = [(A ∩ Ux)

⋃
Vx]

⋂
[(A ∩ Ux)

⋃
B]

= (Ux ∪ V x)
⋂
(A ∪ Vx)

⋂
(Ux ∪B)

⋂
(A ∪B)

On the other hand since Ux ∩ Vx ⊆ Ux ∪ Vx, Vx ⊆ A∪ Vx and Ux ⊆ B ∪Ux, we have
(Ux ∪ Vx)

⋂
(A ∪ Vx)

⋂
(Ux ∪B)

⋂
(A ∪B) ⊇ (Ux ∩ Vx)

⋂
(A ∪B)

Since I is heredity, (Ux
⋂
Vx)

⋂
(A∪B) ∈ I. Since e⋆-open sets closed under the finite

intersections,Ux∩Vx ∈ e⋆O(X, x) and so x /∈ (A∪B)∗e
⋆

.Hence (X\A∗e⋆)
⋂
(X\B∗e⋆) ⊆

X\(A ∪B)∗e
⋆

or (A ∪B)∗e
⋆ ⊆ A∗e⋆ ∪B∗e⋆ .

(iv)By Theorem3.2(i)., (A ∩ B)∗e
⋆ ⊆ A∗e⋆ and (A ∩ B)∗e

⋆ ⊆ B∗e⋆ so (A ∩ B)∗e
⋆ ⊆

A∗e⋆ ∪B∗e⋆ .
(v)We have by Theorem3.3(iii)., A∗e⋆ = [(A\B)

⋃
(A ∩ B)]∗e

⋆

= (A\B)∗e
⋆ ⋃

(A ∩
B)∗e

⋆ ⊆ (A\B)∗e
⋆ ⋃

B∗e⋆ . Thus A∗e⋆\B∗e⋆ ⊆ (A\B)∗e
⋆\B∗e⋆ .

On the other hand, by Theorem3.2(i)., (A\B)∗e
⋆ ⊆ A∗e⋆ and hence (A\B)∗e

⋆\B∗e⋆ ⊆
A∗e⋆\B∗e⋆ . Hence A∗e⋆\B∗e⋆ = (A\B)∗e

⋆\B∗e⋆ ⊆ (A\B)∗e
⋆

.

Theorem 3.4. Let (X, e⋆O(X, τ), I) be an e⋆-ideal space andA, B subsets ofX. Then,
for e⋆-local functions, the following properties hold:

(i) If I0 ∈ I, then (A\I0)∗e
⋆

= A∗e⋆ = (A ∪ I0)∗e
⋆

.
(ii) If U ⊆ X, then U ∩ (U ∩A)∗e⋆ ⊆ U ∩A∗e⋆ .

(iii) If A ⊆ X and U ∈ e⋆O(X, τ), then U ∩A ∈ I ⇒ U ∩A∗e⋆ = ϕ.
(iv) If A ⊆ X, then (A ∩A∗e⋆)∗e

⋆ ⊆ A∗e⋆ .

Proof. (i). Since I0 ∈ I, by Theorem3.1(iii)., I∗e
⋆

0 = ϕ. By 3.7(v)., A∗e⋆ = (A\I0)∗e
⋆

and by Theorem3.3(iii)., (A ∪ I0)∗e
⋆

= A∗e ∪ I∗e⋆0 = ϕ ∪A∗e⋆ = A∗e⋆ .
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(ii). Since U ∩ A ⊆ A, by Theorem3.2(i)., (U ∩ A)∗e⋆ ⊆ A∗e⋆ and hence U
⋂
(U ∩

A)∗e
⋆ ⊆ U ∩A∗e⋆ .

(iii). Let U ∩ A ∈ I , then for every x ∈ U, x /∈ A∗e⋆ because of U ∈ e⋆O(X, τ). So
U ∩A∗e⋆ = ϕ.

(iv). By Theorem3.2(i) (A ∩ A∗e⋆)∗e
⋆ ⊆ (A∗e⋆)∗e

⋆

. On the other hand, from 3.7(ii).,
we have (A ∩A∗e⋆)∗e

⋆ ⊆ (A∗e⋆)∗e
⋆ ⊆ A∗e⋆ .

In literature [7] for ideal topological spaces we will obtain cl∗ = A ∪ A∗ Kuratowski
Closure operator. But in [8, 14] and [15] we are not able to define a Kuratowski Clo-
sure operator with the help of () local function. Because that functions do not provide a
Theorem3.3(iii), given above for ()∗e

⋆

-Operator.
We are able to define a closure operator with the help of e⋆-local function. Because

the ()∗e
⋆

operator satisfy the conditions of Theorem3.1(iv)., Theorem3.3(ii). and Theo-
rem3.3(iii). And thus Cl∗e

⋆

I : ℘(X) → ℘(X), Cl∗e
⋆

I = A ∪ A∗e⋆ , ∀A ∈ ℘(X) is a
Kuratowski closure operator. Hence it generates a τ∗e

⋆

topology:
τ∗e

⋆

(I) = {A ∈ ℘(X) : cl∗e
⋆

(X\A) = X\A}

4. ψe⋆ -OPERATOR

In topological space cl(A) = X\int(X\A) [9] is remarkable result. Many useful result
have been proved with the help of this result. This relation is the motivation of defining the
operator ψe⋆ .
Definition 4.1. Let (X, e⋆O(X, τ), I) be a e⋆-ideal space. An operator ψe⋆ : ℘(X) → τ
is defined as: ψe⋆(A) = {x ∈ X|∃Ux ∈ e⋆O(X, x) : Ux\A ∈ I}, for every A ∈ ℘(X).

We observe that ψe⋆(A) = X\(X\A)∗e⋆ .

Theorem 4.1. Let (X, e⋆O(X, τ), I) be a e⋆-ideal space and A, B ∈ ℘(X).

(i) ψe⋆(A) ⊇ e⋆int(A).
(ii) ψe⋆(A) is open.

(iii) If A ⊆ B, then ψe⋆(A) ⊆ ψe⋆(B).
(iv) ψe⋆(A) ∪ ψe⋆(B) ⊆ ψe⋆(A ∪B).
(v) ψe⋆(A ∩B) = ψe⋆(A) ∩ ψe⋆(B).

(vi) ψe⋆(A) ⊆ ψ(A).

Proof. (i). ψe⋆(A) = X\(X\A)∗e⋆ ⊇ X\e⋆cl(X\A) by Theorem3.3(i). So ψe⋆(A) ⊇
e⋆int(A).

(ii). Since A∗e⋆ is closed, then (X\A)∗e⋆ is closed. So X\(X\A)∗e⋆ = ψe⋆(A) is a
open set.

(iii). A ⊆ B ⇒ X\A ⊇ X\B ⇒ (X\A)∗e⋆ ⊇ (X\B)∗e
⋆

⇒ X\(X\A)∗e⋆ ⊆ X\(X\B)∗e
⋆

⇒ ψe⋆(A) ⊆ ψe⋆(B)
(iv). Proof is obvious from Theorem4.1(iii).
(v). ψe⋆(A ∩B) = X\[X\(A ∩B)]∗e

⋆

= X\[(X\A) ∪ (X\B)]∗e
⋆

= X\[(X\A)∗e⋆ ∪ (X\B)∗e
⋆

]
= [X\(X\A)∗e⋆ ] ∩ [X\(X\B)∗e

⋆

]
= ψe⋆(A) ∩ ψe⋆(B)

(vi). From Theorem3.1(i)., we have that
(X\A)∗ ⊆ (X\A)∗e⋆ ⇒ X\(X\A)∗e⋆ ⊆ X\(X\A)∗
⇒ ψe⋆(A) ⊆ ψ(A)
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Theorem 4.2. Let (X, e⋆O(X, τ), I) be a e⋆-ideal space and A, B ∈ ℘(X).
(i) ψe⋆(A) = ψe⋆(ψe⋆(A)) if and only if (X\A)∗e⋆ = [(X\A)∗e⋆ ]∗e⋆ .

(ii) If I0 ∈ I, then ψe⋆(A\I0) = ψe⋆(A).
(iii) If I0 ∈ I, then ψe⋆(A ∪ I0) = ψe⋆(A).
(iv) If (A\B) ∪ (B\A) ∈ I, then ψe⋆(A) = ψe⋆(B).
(v) If A ∈ e⋆O(X, τ), then A ⊆ ψe⋆(A).

Proof. (i). Proof is obvious from definition of ψe⋆(A) and the fact:
ψe⋆(ψe⋆(A)) = X\[X\(X\(X\A)∗e⋆)]∗e⋆ = X\[(X\A)∗e⋆ ]∗e⋆ .
(ii). By Theorem3.4(ii)., we have
ψe⋆(A\I0) = X\[X\(A\I0)]∗e

⋆

= X\[(X\A) ∪ I0]∗e
⋆

= X\(X\A)∗e⋆

= ψe⋆(A)
(iii). By Theorem3.4(ii)., we have
ψe⋆(A ∪ I0) = X\[X\(A ∪ I0)]∗e

⋆

= X\[(X\A)\I0]∗e
⋆

= X\(X\A)∗e⋆

= ψe⋆(A)
(iv). Assume (A\B) ∪ (B\A) ∈ I. Let A\B = I1 and B\A = I2. Observe that by

heredity I1, I2 ∈ I. Also observe that B = (A\I1) ∪ I2. Thus ψe⋆(A) = ψe⋆(A\I1) =
ψ[(A\I1) ∪ I2] = ψe⋆(B) by Theorem4.2(ii) and Theorem4.2(iii).

(v). Since A ∈ e⋆O(X, τ), (X\A) ∈ e⋆C(X, τ). So (X\A) = e⋆cl(X\A). From
Theorem3.3(i), we have

(X\A)∗e⋆ ⊆ e⋆cl(X\A) = X\A⇒ (X\A)∗e⋆ ⊆ X\A
⇒ A ⊆ X\(X\A)∗e⋆

⇒ A ⊆ ψe⋆(A).

Example 4.1. Let X = {1, 2, 3} and τ = {ϕ, {1}, {2}, {1, 2}, X} with I =
{ϕ, 2, 3, {2, 3}}. Then for A = {3}, we haveψe⋆(A) = {1, 2, 3} ⊇ A but A = {3} is
not a e⋆-open set.

Theorem 4.3. Let (X, e⋆O(X, τ), I) be a e⋆-ideal space and A ⊆ X .
(i) ψe⋆(A) =

⋃
{U ∈ e⋆O(X, τ) : U\A ∈ I}.

(ii) ψe⋆(A) ⊇
⋃
{U ∈ e⋆O(X, τ) : (U\A) ∪ (A\U) ∈ I}

Proof. (i). Proof is obvious from definition of ψe⋆(A).
(ii). Since I is heredity, we have⋃
{U ∈ e⋆O(X, τ) : (U\A) ∪ (A\U) ∈ I} ⊆

⋃
{U ∈ e⋆O(X, τ) : U\A ∈ I} =

ψe⋆(A).

5. e⋆O-CODENSE IDEAL

Definition 5.1. Let (X, e⋆(X, τ), I) be a e⋆-ideal spaces andA ⊆ X . If e⋆O(X, τ)∩I =
{ϕ} then we say that I is e⋆O-codense ideal.

Theorem 5.1. Let (X, e⋆O(X, τ), I) be a e⋆-ideal spaces. If I is e⋆O-codense ideal
with e⋆O(X, τ), then X = X∗e⋆ .

Proof. It is obvious thatX∗e⋆ ⊆ X. Let x /∈ X∗e⋆ , for x ∈ X . Then there is atleast one
Ux ∈ e⋆O(X. τ) that provide Ux∩X ∈ I . Hence Ux∩X = Ux ∈ I. But e⋆O(X. τ)∩I =
{ϕ}. It is a contradiction. So X = X∗e⋆ .
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Theorem 5.2. The following are equivalent for (X, e⋆O(X, τ), I) e⋆-ideal space.
(i) e⋆O(X, τ) ∩ I = {ϕ},

(ii) ψe⋆(ϕ) = ϕ,
(iii) If I0 ∈ I, ψe⋆(I0) = ϕ.

Proof. (i)⇒ (ii): Let e⋆O(X, τ) ∩ I = {ϕ}. From definition of ψe⋆operator and
Theorem 5.1., we have ψe⋆(ϕ) = X\(X\ϕ)∗e⋆ = X\X∗e⋆ = ϕ.

(ii)⇒ (iii): Let I0 ∈ I and ψe⋆(ϕ) = ϕ. Also because of Theorem3.4(i), we have
obtained (X\I0)∗e

⋆

= X∗e⋆ . So we have
ψe⋆(I0) = X\(X\I0)∗e

⋆

= X\X∗e⋆ = ψe⋆(ϕ) = ϕ.
(iii)⇒ (i): Let A ∈ e⋆O(X. τ) ∩ I. Then because of A ∈ I and Theorem5.2(iii)., we

have ψe⋆(A) = ϕ. Also A ⊆ ψe⋆(A) = ϕ since A ∈ e⋆O(X, τ) and A ⊆ ψe⋆(A). And
so A = ϕ. Hence we have e⋆O(X, τ) = {ϕ}.

Theorem 5.3. Let (X, e⋆O(X, τ), I) be a e⋆-ideal spaces. If I is e⋆O-codense ideal
with e⋆O(X, τ), then ψe⋆(A) ⊆ A∗e⋆ for every A ⊆ X.

Proof. Let x ∈ ψe⋆(A) and x /∈ A∗e⋆ for a least one x ∈ X . Then we obtain x /∈
A∗e⋆ ⇒ ∃Tx ∈ e⋆O(X, x); Tx ∩A ∈ I.

Since x ∈ ψe⋆(A), we have x ∈
⋃
{U ∈ e⋆O(X, τ) : U\A ∈ I} from Theorem4.3(i).

Hence there is V ∈ e⋆O(X, τ) which satisfy x ∈ V and V \A ∈ I. Since x ∈ Tx ∩ V is
a e⋆-open set, we obtain (Tx ∩ V ) ∩A ∈ I and (Tx ∩ V )\A ∈ I from heredity of I . Also
since I is finite additivity, we obtain Tx ∩ V = [(Tx ∩ V ) ∩A]

⋃
[(Tx ∩ V )\A] ∈ I

Since Tx ∩ V ̸= ϕ is a e⋆-open set, I ∩ e⋆O(X, τ) ̸= ϕ. But it contradict with the fact
I is e⋆O-codense. So x ∈ A∗e⋆ .

Remark 5.1. Let (X, e⋆O(X, τ), I) be a e⋆-ideal spaces andA ⊆ X. If I is e⋆O-codense
ideal, then ψe⋆(A) ⊆ e⋆cl(A).

6. e⋆-COMPATIBILITY TOPOLOGY WITH AN IDEAL

Definition 6.1. Let (X, e⋆O(X, τ), I) be an e⋆-ideal spaces. We say the τ is e⋆-
compatible with the ideal I, denoted τ ∼e⋆ I, if the following holds for every A ⊆ X, if
for every x ∈ A there exists U ∈ e⋆O(X, x) such that U ∩A ∈ I, then A ∈ I .

Theorem 6.1. Let (X, e⋆O(X, τ), I) be a e⋆-ideal space. τ ∼e⋆ I if and only if
ψe⋆(A)\A ∈ I, for every A ⊆ X.

Proof. Let τ ∼e⋆ I and ψe⋆(A)\A ∈ I , for every A ⊆ X . Then we have
x ∈ ψe⋆(A), x /∈ A⇒ x ∈ \(X\A)∗e⋆ , x /∈ A
⇒ x /∈ (X\A)∗e⋆ , x /∈ A
⇒ ∃U ∈ e⋆O(X, x); U ∩ (X\A) ∈ I, x /∈ A
⇒ X\A ∈ I, x ∈ X\A
So ψe⋆(A)\A ⊆ X\A ∈ I.
Conversely, let ψe⋆(A)\A ∈ I for every A ⊆ X. Also there is U ∈ e⋆O(X, x) which

U ∩A ∈ I for every x ∈ A. Then
x /∈ A∗e⋆ ⇒ x ∈ X\A∗e⋆ ⇒ A ⊆ X\A∗e⋆ .
Hence because of the following equation and the factA ⊆ X\A∗e⋆ we haveψe⋆(X\A)\(X\A) =

A.
ψe⋆(X\A)\(X\A) = [X\(X\(X\A))∗e⋆ ]\(X\A) = (X\A∗e⋆) ∩A
Since ψe⋆(A)\A ∈ I for every A ⊆ X , ψe⋆(X\A)\(X\A) = A ∈ I.
From the above theorem we will give the following remark.
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Remark 6.1. Let (X, e⋆O(X, τ), I) be a e⋆ ideal space and τ ∼e⋆ I . Thenψe⋆(ψe⋆(A)) =
ψe⋆(A), for every A ⊆ X.

7. CONCLUSIONS AND DISCUSSIONS

The contributions of the ψe⋆ -operator in ideal topological spaces have initiated the gen-
eralization of some important properties in general topology via topological ideals. Proper-
ties such as decomposition of continuity, separation axioms, connectedness, compactness,
and resolvability are to be studied in the future. In the usual topology, open sets are defined
as subsets of the space that satisfy certain properties, such as being closed under unions
and finite intersections. The e*-ideal topology, on the other hand, is defined based on a
specific type of ideal and may not coincide with the open sets in the usual topology.
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